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Symmetries and reductions
of nonlinear Schrödinger equations
of Doebner–Goldin type
W.I. FUSHCHYCH, V. CHOPYK, P. NATTERMANN, W. SCHERER

We compute symmetry algebras for nonlinear Schrödinger equations which contain an
imaginary nonlinearity as derived by Doebner and Goldin and certain real nonlinearities
not depending on the derivatives. In the three-dimensional case we find the maximal
symmetry algebras for equations of this type. Admitting other imaginary nonlinearities
does lead to similar symmetry algebras. These symmetries are used to obtain explicit
solutions of these equations by means of reduction.

1. Introduction
Recently, a new nonlinear Schrödinger equation as the evolution equation of a

quantum mechanical system on R
n has been derived from general principles by

Doebner and Goldin [1–4]. Their derivation is based on the representation theory
of the semidirect product of the group of diffeomorphisms with the smooth functi-
ons on R

n and results in the replacement of the usual continuity equation ρ̇ = −�∇�j
(where ρ = ψ̄ψ and �j = �

2mi (ψ̄ �∇ψ − �∇ψ̄ψ)) associated with the linear Schrödinger
equation by the Fokker–Planck equation ρ̇ = −�∇�j + d∆ρ describing diffusion of the
probability density ρ. This Fokker–Planck equation for the probability density can be
derived from a nonlinear Schrödinger equation which has to be of the form

i�ψ̇ =
(
− �

2m
∆ + V + i

�d

2
∆ρ
ρ
ψ + F [ψ, ψ̄]

)
ψ, (1)

where F is assumed to be an arbitrary real functional. Doebner and Goldin proceeded
with the requirement that F [ψ, ψ̄] should have similar properties as the imaginary
nonlinear functional, and were thus led to a five parameter functional including deri-
vative terms [4]. Galilei-invariant nonlinear Schrödinger equations of type (1), where
d = 0 and F depends on the wave function and its first order derivatives, were
described by Fushchych and Cherniha [5].

On the other hand, equations similar to (1) have been considered in plasma phy-
sics [6] and for d = 0 and F [ψ, ψ̄] = aρ it reduces to the usual nonlinear Schrödinger
equation which appears in many subfields of physics. It seems therefore worthwhile to
investigate the Lie symmetries for equations of this type and to use them to construct
solutions. This is what we shall do in this paper.

Obviously, we shall have to restrict the functional F suitably since otherwise it
would be impossible to say anything at all about the symmetries of this equation.
Whereas the maximal Lie symmetry of the Doebner–Goldin equation has already
been calculated [7], we shall restrict our considerations in this paper to another class
of functional F given by (sufficiently smooth) functions f of a single real variable:

F [ψ, ψ̄] := �f(ρ), (2)
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which includes many physically interesting models [8, 9]. Although we leave the
framework set by Doebner and Goldin if f is not real, we will consider a slightly
morel general case of complex valued functions f since calculations are similar. For
d = 0 the Lie symmetry of this nonlinear Schrödinger equation has been discussed in
[10, 11, 12].

In Section 2 we will determine the maximal Lie symmetries of the nonlinear
Schrödinger equations (1) with functional of type (2). It turns out that the most
prominent cases, i.e. f(p) ≡ ρk and f(ρ) ≡ ln ρ, admit the largest symmetry algebras.)
Subalgebras of the maximal symmetry algebras will be used in Section 3 to reduce
equation (1) and find exact solutions. We close this paper with some further remarks)
on the equations and the solutions obtained.

2. Lie symmetry algebra
2.1. n ≤ 3. First, we shall treat the physically most interesting case of three space

dimensions (n = 3) for which we will determine the maximal Lie symmetry algebra
of equation (1) with the complex valued functional (2). In order to do so, we write ψ
in terms of an amplitude function R and a phase function S:

ψ(�x, t) = R(�x, t)eiS(�x,t).

With the decomposition of f into the real and imaginary parts, f = u+iv, equation (1)
is thus equivalent to two real evolution equations:

∂tR+
�

2m

(
R∆S + 2�∇R · �∇S

)
− d

(
∆R+

(�∇R)2

R

)
−Rv(R2) = 0, (3)

∂tS +
�

2m

(
(�∇S)2 − ∆R

R

)
+ u(R2) = 0. (4)

Vector fields acting on the space of independent (x1, x2, x3, t) and dependent (R,S)
variables

X = ξj∂xj
+ τ∂t + φ∂R + σ∂S ,

are generators of a Lie symmetry of the equations (3) and (4), if the coefficients
ξj , τ , φ, σ satisfy the so-called determining equations. A detailed description of
the theory can be found in the monographs [10, 13, 14]. Since the procedure is
purely algorithmic, we use a Mathematica program [15] to obtain these equations.
This leads to 62 determining equations among which only two contain the real and
imaginary part of f . These two equations determine the functional F of equation (1).
The integration of the 60 remaining equations yields the following coefficients of the
vector field X:

ξj = (2c1t+ c2)xj + wjlxl + vjt+ aj ,

τ = 2c1t2 + 2c2t+ 2c3,
φ = α(t)R,

σ =
m

�
(c1�x2 + vkxk) + β(t),

(5)
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where ci, vj and aj are real constants, wjl is an antisymmetric matrix with real
constant coefficients, and α and β are real functions of time. The two remaining
determining equations which contain the functions u and v thus read

α(t)R2u′(R2) + (2c1t+ c2)u(R2) +
1
2
β′(t) = 0, (6)

α(t)R2v′(R2) + (2c1t+ c2)v(R2) − 1
2
(α′(t) + 2nc1) = 0. (7)

For the cases n = 1, 2 the resulting equations are exactly the same, with the
understanding that in equation (7) the dimension n has to be inserted. In order
to calculate the maximal symmetry, we solve the ordinary differential equation (7)
for α and then (6) for β, requiring that the resulting functions do not depend on R.
Neglecting the case of constant functions u = C — which can be transformed to zero
by the map ψ �−→ eiCtψ — this leads to the following six possible cases.

1. For arbitrary functions u and v one has to require that their coefficients and the
inhomogeneous terms in equations (6) and (7) vanish, which leaves only the centrally
extended Galilei algebra g(n = 3) = 〈H,Pj , Jjk, Gj , Q〉 with ten generators:

H = ∂t, Pj = ∂xj
, Jjk = xj∂xk

− xk∂xj
,

G = t∂xj
+
m

�
xj∂S , Q = ∂S .

(8)

2. A larger algebra is obtained if u and v are of the from

u(R2) = λ1R
2k, v(R2) = λ2R

2k,

in which case equations (6) and (7) reduce to linear inhomogeneous equations in u
and v, respectively. Requiring the coefficients and the inhomogeneous term to vanish
allows the maximal Lie symmetry to contain an additional generator

D = 2t∂t + xk∂xk
− 1
k
R∂R, (9)

and this algebra 〈H,Pj , Jjk, Gj , Q,D〉 has been named the Galilei similitude algeb-
ra [16]. D generates the dilations.

3. Calculations of the previous case show that the Lie symmetry has an extra
generator if k = 1

n = 1
3 :

C = t2∂t + txk∂xk
+
m

2�
�x2∂S − ntR∂R, (10)

yielding the maximal Lie symmetry algebra of the free linear Schrödinger equa-
tion [17] 〈H,Pj , Jjk, Gj , Q,D,C〉 (Schrödinger algebra). The transformations genera-
ted by C are called projective or conformal transformations.

4. If u(R2) = λ1 ln(R2) and v = λ3 is a constant, we obtain the maximal Lie
symmetry algebra 〈H,Pj , Jjk, Gj , Q,D,B〉, where

B = R∂R − 2λ1t∂S . (11)

Note that for nonvanishing λ1 the constant λ3 can be transformed to zero by the map
ψ �−→ e−λ3t+iλ1λ3t2ψ.
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5. If u(R2) = λ1 ln(R2) and v(R2) = λ2 ln(R2) + λ3 with λ2 �= 0, equation (7)
leads to a simple differential equation for α(t) and equation (6) determines β(t) up to
a constant. Hence, the maximal symmetry algebra is 〈H,Pj , Jjk, Gj , Q,D,A〉, where

A = e2λ2t

(
R∂R − λ1

λ2
∂S

)
. (12)

6. Finally, if u and v vanish identically, the maximal Lie symmetry algebra is
〈H,Pj , Jjk, Gj , Q,D

′, I〉, the direct sum of the Schrödinger algebra (though with
a different representative D′ of the generator of dilations) with a one-dimensional
algebra generated by I, where

D′ = 2t∂t + xk∂xk
, (13)

I = R∂R. (14)

The invariance under I reflects real homogeneity of the equation (1); together with Q
it generates complex rescalings of ψ.

2.2. n > 3. In all cases the algebras remain symmetry algebras for arbitrary di-
mension n. We believe that they are still maximal, but we have no proof of maximality
for arbitrary n. The algebras of the cases 1–3 and 6 have been studied in [18], and
the finite transformations they generate are well known. The structure of the algebra
of case 4 was investigated in [12, 19, 20].

As for the generators B and A, they generate the following finite transformations:

ψ �→ gB
ε ψ, gB

ε ψ(�x, t) = exp(ε(1 − i2λ1t))ψ(�x, t),

ψ �→ gA
ε ψ, gA

ε ψ(�x, t) = exp
(
ε

(
1 − i

λ1

λ2

))
e2λ2tψ(�x, t),

3. Reduction and exact solutions
Using the operators of symmetry we will construct ansätze reducing equation (1)

to a system of ordinary differential equations (ODEs). The algebras of the cases 1–3
and 6 are subalgebras of the maximal symmetry algebra of the linear Schrödinger
equation; their structure was studied in detail and corresponding ansätze are well
known. Thus we concentrate on the cases 4 and 5, and particularly on the reduction
by those subalgebras containing the “new” generators A and B. The solutions obtained
in this way might reflect the nonlinear structure of equation (1) with f(ρ) := (λ1 +
iλ2) ln ρ+ iλ3. We consider mainly the case of three spatial variables, n = 3.

3.1. Case 4: f(ρ) := λ1 ln ρ+ iλ3; or u(R2) = λ1 ln(R2), v(R2) = λ3

1. 〈B +G1, G2, G3〉. The ansatz

ψ(�x, t) = exp
{
x1

t
+ g(t) + i

[
−2λ1x1 +

m

2�

�x2

t
+ h(t)

]}
(15)

reduces equation (1) to the system

dg

dt
=
(

2�λ1

m
− 3

2

)
1
t

+ 2d
1
t2

+ λ3,

dh

dt
= −2�λ2

1

m
+

�

2m
1
t2

− 2λ1g(t).
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Having solved this system we find the solution

ψ(�x, t) = tk exp
{
λ3t+ (x1 − 2d)

1
t

+ c1 + i

[
−2λ1x1 +

m

2�

�x2

t
− λ1λ3t

2−

− 2λ1kt ln t+ 2λ1

(
k − c1 − �λ1

m

)
t+ 4dλ1 ln t− �

2m
1
t

+ c2

]}
,

where k := 2�λ1
m − 3

2 and c1, c2 are real constants.
2. 〈B + αH, J12 + βP3〉, α ∈ R�=0, β ∈ R. For λ3 = 0, the ansatz

ψ(�x, t) = exp
{
t

α
+ g(ω1, ω2) + i

[
−λ1

α
t2 + h(ω1ω2)

]}
, (16)

with ω1 := (x2
1 + x2

2)
1
2 and ω2 := arctan

(
x2
x1

)
− βx3, reduces equation (1) to the

system

h11 + h22

(
1 +

β2

ω2
1

)
+
h1

ω1
+ 2g1h1 + 2g2h2

(
1 +

β2

ω2
1

)
−

− 2md
�

(
g11 + g22

(
1 +

β2

ω2
1

)
+
g1
ω1

+ 2g2
1 + 2g2

1 + 2g2
2

(
1 +

β2

ω2
1

))
=

=
2m
�

(
λ3 − 1

α

)
,

g11 + g22

(
1 +

β2

ω2
1

)
+
g1
ω1

+ g2
1 + g2

2

(
1 +

β2

ω2
1

)
−

− 4mλ1

�
g − h2

1 − h2
2

(
1 +

β2

ω2
1

)
= 0,

where subscripts denote derivatives, i.e. g1 := ∂g/∂ω1, etc.
3. 〈B + αH + βG1, J23〉, α ∈ R�=0, β ∈ R. The ansatz

ψ(�x, t) = exp
{
t

α
+ g(ω1, ω2) + i

[
mβ

�α
x1t− λ1

α
t2 − mβ2

3�α2
t3 + h(ω1ω2)

]}
, (17)

with ω1 := βt2

2α − x1 and ω2 := (x2
2 + x2

3)
1
2 reduces equation (1) to the system

2g1h1 + 2g2h2 + h11 + h22 +
h2

ω2
− 2md

�

(
g11 + g22 +

g2
ω2

− 2g2
1 − 2g2

2

)
=

=
2m
�

(
λ3 − 1

α

)
,

h2
1 + h2

2 −
2βm2ω1

�2α
− g11 − g22 − g2

ω2
− g2

1 − g2
2 +

4λ1m

�
g = 0.

For α = 1/λ3, λ3 �= 0 and d �= �/2m we have found the following partial solution of
this system:

g(ω1, ω2) =
mβ

2�αλ1
ω1 +

m�λ1

�2 − 4m2d2
ω2

2 +
�

2

�2 − 4m2d2
+

(�2 − 4m2d2)mβ2

16�3α2λ3
1

,

h(ω1, ω2) =
2md

�
f(ω1, ω2).
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The corresponding solution of equation (1) has then the form

ψ(�x, t) = exp
{
t

α
+

mβ2

4�α2λ1
t2 − mβ

2�αλ1
x1 +

m�λ1

�2 − 4m2d2
(x2

1 + x2
2) +

+
�

2

�2 − 4m2d2
+

(�2 − 4m2d2)mβ2

16�3α2λ3
1

+

+ i

[
mβ

�α
tx1 +

(
m2β2

2�2α2λ1
− λ1

α

)
t2 − mβ2

3�α2
t3 − m2dβ

�2αλ− 1
x1 +

+
2m2dλ1

�2 − 4m2d2
(x2

2 + x2
3) + c

]}
.

4. 〈B + αH, Jjk〉, α ∈ R�=0. The ansatz

ψ(�x, t) = exp
{
t

α
+ g(ω) + i

[
−λ1

α
t2 + h(ω)

]}
, (18)

where ω :=
√
x2

1 + x2
2 + x2

3, reduces equation (1) to the system

d2h

dω2
+

2
ω

dh

dω
+ 2

dg

dω

dh

dω
− 2md

�

(
d2g

dω2
+

2
ω

dg

dω
+ 2

(
dg

dω

)2
)

=
2m
�

(
λ3 − 1

α

)
,

d2g

dω2
+

2
ω

dg

dω
+
(
dg

dω

)2

−
(
dh

dω

)2

− 4mλ1

�
g = 0.

Its partial solution for the case α = 1/λ3 and d �= �/2m is

g(ω) =
�

�2 − 4m2d2

(
mλ1�x

2 +
3
2

�

)
,

h(ω) =
2m2dλ1

�2 − 4m2d2
�x2 + c,

where c is an arbitrary real constant. The corresponding solution of equation (1) has
then the form

ψ(�x, t) = exp
{
t

α
+

�

�2 − 4m2d2

(
mλ1�x

2 +
3
2

�

)
+

+ i

[
2m2dλ1

�2 − 4m2d2
�x2 − λ1

α
t2 + c

]}
.

3.2. Case 5: f(ρ) := (λ1 + iλ2) ln ρ; or u(R2) = λ1 ln(R2), v(R2) = λ2 ln(R2);
λ2 �= 0.

1. 〈A+ αP1, G2, G3〉, α ∈ R�=0. The ansatz

ψ(�x, t) = exp
{

1
α
e2λ2tx1 + g(t) + i

[
− λ1

αλ2
e2λ2tx1 +

m

2�

x2
2 + x2

3

t
+ h(t)

]}

reduces equation (1) to the system of ODEs

dg

dt
− 2λ2g = −1

t
+

1
α2

(
�λ1

mλ2
+ 2d

)
e4λ2t,

dh

dt
= −2λ1g +

�

2mα2

(
1 − λ2

1

λ2
2

)
e4λ2t.
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Having solved this system we obtain the following exact solution of equation (1):

ψ(�x, t) = exp
{

1
α
e2λ2tx1 + ce2λ2t +

1
2λ2α2

(
�λ1

mλ2
+ 2d

)
e4λ2t −

−Ei(−2λ2t)e2λ2t + i

[
− λ1

αλ2
e2λ2tx1 +

m

2�

x2
2 + x2

3

t
− λ1c

λ2
e2λ2t − λ1

λ2
ln(2λ2t) +

+
�

8mα2λ2

(
1 − 3

λ2
1

λ2
2

− 4md
�

)
e4λ2t +

λ1

λ2
Ei(−2λ2t)e2λ2t

]}
,

where c is a real constant and Ei(ax) =
∫ exp(ax)

x dx = lnx +
∑
k=1

akxk

k!k . This solution

is non-analytical in λ2, and for n = 1 can be written in explicit form.
2. 〈A+ αJ12, G3〉, α ∈ R�=0. The ansatz

ψ(�x, t) = exp
{

1
α
e2λ2t arctan

(
x2

x1

)
+ g(t, ω) +

+ i

[
− λ2

αλ1
e2λ2t arctan

(
x2

x1

)
+
mx2

3

2�t
+ g(t, ω)

]}
,

where ω =
√
x2

1 + x2
2, reduces equations (1) to the system

g1 +
�

2m

(
h22 +

h2

ω
+ 2g2h2 − 2λ1

α2λ2
e4λ2t 1

r2

)
−

− d

(
g22 +

g2
ω

+ 2g2
2 +

2
α2
e4λ2t 1

r2

)
− 2λ2g = 0,

h1 +
�

2m

(
h2

2 − g22 − g2
ω

− g2
2 − 1

α2

(
1 − λ2

1

λ2
2

)
e4λ2t 1

r2

)
+ 2λ1g = 0,

3. 〈A+ αH, J12 + βP3〉, α ∈ R�=0, β ∈ R. The ansatz

ψ(�x, t) = exp
{

1
2αλ2

e2λ2t + g(ω1, ω2) + i

[
− λ1

2αλ2
2

e2λ2t + h(ω1, ω2)
]}

,

where ω1 =
√
x2

1 + x2
2, ω2 = β arctan

(
x1
x2

)
− x3, reduces equations (1) to the system

h11 +
h1

ω1
+ 2g1h1 + h22

(
1 +

β2

ω2
1

)
+ h2

2

(
1 +

β2

ω2
1

)
−

− 2md
�

(
g11 +

g1
ω1

+ 2g2
1 + g22

(
1 +

β2

ω2
1

)
+ g2

2

(
1 +

β2

ω2
1

))
− 4mλ2

m
g = 0,

g11 +
g1
ω1

+ g2
1 − h2

1 + g22

(
1 +

β2

ω2
1

)
+ g2

2

(
1 +

β2

ω2
1

)
−

− h2
2

(
1 +

β2

ω2
1

)
− 4mλ1

m
g = 0.

4. 〈A+ αP3, J12〉, α ∈ R�=0. The ansatz

ψ(�x, t) = exp
{

1
α
e2λ2tx3 + g(t, ω) + i

[
− λ1

αλ2
e2λ2tx3 + h(t, ω)

]}
,
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where ω =
√
x2

1 + x2
2, reduces equations (1) to the system

g1 +
�

2m

(
h22 +

h2

ω
+ 2g2h2 − λ1

α2λ2
e4λ2t

)
−

− d

(
g22 +

g2
ω

+ 2g2
2 +

2
α2
e4λ2t

)
− 2λ2g = 0,

h1 +
�

2m

(
h2

2 − g22 − g2
ω

− g2
2 − 1

α2

(
1 − λ2

1

λ2
2

)
e4λ2t

)
+ 2λ1g = 0.

4. Conclusions
We have determined the maximal Lie symmetries of equation (1) with an F of

the form F [ψ, ψ̄] := �f(ρ), and have found six different algebras containing among
others the centrally extended Galilei algebra, the Galilei similitude algebra, and the
Schrödinger algebra. Reduction and ansätze for these algebras have been studied
previously.

New maximal symmetry algebras, due to the nonlinear character of the equation,
appear in the case f(ρ) = (λ1 + iλ2) ln(ρ) (see cases 5 and 6 in Section 2.1). For
these cases we have obtained reduced equations for various subalgebras. The ansätze
resulting from these reductions lead to differential equations which we have solved
explicitly in some cases and thus we have obtained explicit solutions of (1). Those
reduced equations, which we have not been able to solve explicitly, are still much more
suitable to numerical treatments than the original equation (1). The list of subalgebras
which we have used for reduction in the case of the new algebras is by no means
complete. In view of the successes of the reduction technique it seems warranted
to obtain a classification of their subalgebras. The non-Lie anzätze for the nonlinear
Schrödinger equation were constructed by Fushchych and Chopyk [21].

1. Doebner H.D., Goldin G.A., Phys. Lett. A, 1992, 162, 397.

2. Doebner H.D., Goldin G.A., Annales de Fisica, Monografias, Vol. II, CIEMAT, 1993, 442–445.

3. Doebner H.D., Goldin G.A., Manifolds, general symmetries, quantization and nonlinear quantum
mechanics, in Proceedings of the First German-Polish Symposium on Paricles and Fields (Rydzyna
Castle, 1992), Singapore, World Scientific, 1993, 115.

4. Doebner H.D. and Goldin G.A., J. Phys. A, 1994, 27, 1771.

5. Fushchych W., Cherniha R., Ukr. Math. J., 1989, 41, № 10, 1349; № 12, 1487.

6. Malomed B.A., Stenflo L., J. Phys. A, 1991, 24, L1149.

7. Nattermann P., Maximal Lie symmetry of the free general Doebner–Goldin equation in 1 + 1
dimensions, Clausthal-preprint ASI-TPA/9/94.

8. Biatynicki-Birula I., Mycielski J., Ann. Phys., 1976, 100, 62.

9. Malomed B.A. and Kivshar Y.S., Rev. Mod. Phys., 61, 1989, 763.

10. Fushchych W.I., Shtelen V.M., Serov N.I., Symmetry analysis and exact solutions of equations of
nonlinear mathematical physics, Dordrecht, Kluwer, 1993.

11. Fushchych W., in Algebraic-Theoretical Studies in Mathematical Physics, Kiev, Inst. Math. Ukrai-
nian Acad. Sci., 1981, 6–44 (in Russian).

12. Fushchych W., Chopyk V., Symmetry analysis and ansatzes for Schrödinger equation with the
logarithmic nonlinearity, Preprint, Linköping University, 1993.
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