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Galilei-invariant nonlinear systems
of evolution equations
W.I. FUSHCHYCH, R.M. CHERNIHA

All systems of (n + 1)-dimensional quasilinear evolution second-order equations invari-
ant under chain of algebras AG(1, n) ⊂ AG1(1, n) ⊂ AG2(1, n) are described. The
results obtained are illustrated by the examples of the nonlinear Schrödinger equations,
Hamilton–Jacobi-type systems and of reaction-diffusion equations.

1. Introduction
The (n + 1)-dimensional diffusion (heat) system of equations

λ1Ut = ∆U,

λ2Vt = ∆V,

where U = U(t, x), V = V (t, x) are unknown differentiable real functions, Ut =
∂U/∂t, Vt = ∂V/∂t, x = (x1, . . . xn), λ1, λ2 ∈ R, is known to be invariant under the
generalized Galilei algebra AG2(1, n) [1, 2]

Pt = ∂t, Pa = ∂a, (2a)

Qλ = λ1U∂U + λ2V ∂V , Ga = tPa − xa

2
Qλ, Jab = xaPb − xbPa, (2b)

D = 2tPt + xaPa + Iα, (2c)

Π = t2Pt + txaPa − 1
4
|x|2Qλ + tIα, αk = −1

2
n. (2d)

In relations (2) and elsewhere hereinafter Iα = α1U∂U + α2V ∂V , ∂U ≡ ∂/∂U , ∂V ≡
∂/∂V , ∂t ≡ ∂/∂t, ∂a ≡ ∂/∂xa, αk ∈ R, k = 1, 2 and a summation is assumed from 1
to n over repeated indices.

The algebra produced by the operators (2a), (2b) is called the Galilei algebra
AG(1, n), and its extension by using the operator (2c) will be refereed to as AG1(1, n)
[1, 2].

Clearly, the unit operators Iα and Qλ are linearly dependent only in the case when
the determinant

δ =
∣∣∣∣ α1 α2

λ1 λ2

∣∣∣∣ = 0.

As a result we obtain two essentially different representations of algebras AG1(1, n)
and AG2(1, n) for δ = 0 and δ �= 0, in contrast to the case of a single diffusion
equation (the nonlinear diffusion equation invariant with respect of a set of AG2(1, n)
subalgebras was studied in [2, 3]).
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Note that in the case when the system (1) is a pair of complex conjugate Schrö-

dinger equations, i.e. U =
∗
V , λ1 =

∗
λ1 = i, the operators Iα and Qλ are linearly

independent. This results in the fact that nonlinear generalizations of Schrödinger
equations, preserving its symmetry [1], differ essentiallyfrom nonlinear generaliza-
tions of the diffusion system (1) at δ = 0.

Now consider a system of quasilinear generalizations of diffusion equations (1) of
the form

λ1Ut = AabUab + CabVab + B1,

λ1Vt = DabUab + EabVab + B2,
(3)

Aab, Cab, Dab, Eab, B1, B2 being arbitrary real or complex differentiable functions of
2n+2 variables U, V, U1, . . . , Un, V1, . . . , Vn. The indices a = 1, . . . , n and b = 1, . . . , n
of functions U and V denote differentiating with respect to xa and xb.

The system (3) generalizes practically all the known nonlinear systems of first-
and second-order evolution equations, describing various processes in physics, chemi-
stry and biology (heat and mass transfer, filtration of two-phase liquid, diffusion in
chemical reactions etc.) [4–7].

In the case of complex U =
∗
V , Aab =

∗
Eab, Cab =

∗
Dab, B1 =

∗
B2 = B, λ1 =

∗
λ2 = i

the system (3) is transformed into a pair of complex conjugate equations. We treat
them as a class of nonlinear generalizations of Schrödinger equations, namely:

iUt = AabUab +
∗
Dab

∗
Uab + B, (4a)

−i
∗
U t =

∗
Aab

∗
Uab + DabUab +

∗
B (4b)

(hereinafter complex conjugate equations (4b) are omitted).
For Aab = Dab = Daa = 0, a �= b, Aaa = −h equation (4a) is obviously

transformed into a Schrödinger equation with nonlinear potential B:

iUt + h∆U = B. (4′)

By choice of the corresponding potential B = B(U,
∗
U,U1, . . . , Un,

∗
U1, . . . ,

∗
Un) a great

variety of Schrödinger equation generalizations, known from the literature (see e.g. [1,
2, 8, 9, 10]) can be obtained.

In case of zero potential B a classical Schrödinger equation is obtained

iUt + h∆U = 0 (5)

invariant under AG2(1, n) algebra with the basic operators (2) [11], where

Qλ = − i

h
(U∂U − ∗

U ∂ ∗
U

), Iα = α(U∂U +
∗
U ∂ ∗

U
). (6)

Note that the algebra AG2(1, n) in the case of the Schrödinger equations is called
the Schrödinger algebra [11].

In the present paper all the systems of evolution equations of the form (3), invari-
ant under the chain of algebras AG(1, n) ⊂ AG1(1, n) ⊂ AG2(1, n), are described.
The results obtained are illustrated by the examples of the nonlinear Schrödinger
equations, reaction-diffusion equations and Hamilton–Jacobi type systems.
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2. Description of systems (3) with Galilean symmetry
The algebra of symmetries for the system of equations (1) contains the Galilei

operators Ga, a = 1, . . . , n, being a mathematical expression of the Galilei relativistic
principle for equations (1). The Galilei operators are also known [3] to be closely
related with the fundamental solution of the diffusion equation. We recall that if some
system of PDEs is invariant with respect to the Galilei algebra or its extention, then it
gives a wide range of possibilities for the construction of multiparametric families of
exact solutions [1, 12, 22]. Moveover the Galilei operators and the projective operator
(2d) generate non-trivial formulae of multiplication of solutions. These formulae can
be used to convert stationary (time-independent) into non-stationary ones with a
different structure.

In view of this it seems reasonable to search for Galilei-invariant nonlinear
generalizations of system (1) in the class of system (3).

Theorem 1. The system of nonlinear equations (3) is invariant under the Galilei
algebra in the represention (2a), (2b) if and only if it has the form:

λ1Ut = ∆U + U [A1∆ln U + C1∆ln V + B1] +
+ U [A2ωaωb(ln U)ab + C2ωaωb(ln V )ab],

λ2Vt = ∆V + V [D1∆ln U + E1∆ln V + B2] +
+ V [D2ωaωb(ln U)ab + E2ωaωb(ln V )ab],

(7)

where (ln U)ab ≡ ∂2 ln U/∂xa∂xb, (ln V )ab ≡ ∂2 ln V/∂xa∂xb, ∆ln U ≡ (ln U)11 +
· · · + (ln U)nn, ∆ln V ≡ (ln V )11 + · · · + (ln V )nn, ω = Uλ2V −λ1 , ωa = ∂ω/∂xa ≡
(λ2Ua/U − λ1Va/V )ω and Ak, Bk, Ck, Dk, Ek, k = 1, 2 are arbitrary functions of
absolute invariants of the AG(1, n) algebra ω and θ = ωaωa.

The proof of this and the following theorems is based on the classical Lie scheme,
which is realized in [3, 12] for obtaining the Galilei invariant equations. The detailed
cumbersome calculations are omitted.

Note that in case where λ1 = 0, i.e. the first equation of system (3) being elliptical,
the absolute invariants of the Galilei algebra simplify considerebly: ω = U , θ = UaUa.

In case of systems of the form (3) being AG1(1, n)- and AG2(1, n)-invariant the
structure of such systems essentially depends on the determinant δ.

Theorem 2. The nonlinear system (3) is invariant with respect to algebra AG1(1, n)
with basic operators (2a)–(2c) if and only if it has the form:

(i) In case when δ �= 0

λ1Ut = ∆U + U [A1(θ̂)∆ ln U + A2(θ̂)∆ ln V + ω−2/δB1(θ̂)] +

+ Uω2/δ−2[C1(θ̂)ωaωb(ln U)ab + C2(θ̂)ωaωb(ln V )ab],

λ2Vt = ∆V + V [D1(θ̂)∆ ln U + D2(θ̂)∆ ln V + ω−2/δB2(θ̂)] +

+ V ω2/δ−2[E1(θ̂)ωaωb(ln U)ab + E2(θ̂)ωaωb(ln V )ab].

(8)

(ii) In case when δ = 0

λ1Ut = ∆U + U [A1(ω)∆ ln V + A2(ω)∆ ln V + ωaωaB1(ω)] +
+ U(ωa1ωa1)

−1ωaωb[C1(ω)(ln U)ab + C2(ω)(ln V )ab],
λ2Vt = ∆V + V [D1(ω)∆ ln U + D2(ω)∆ ln V + ωaωaB2(ω)] +

+ V (ωa1ωa1)
−1ωαωb[E1(ω)(ln U)ab + E2(ω)(ln U)ab],

(9)
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where Ak, Bk, Ck, Dk, Ek, k = 1, 2 being arbitrary functions, θ̂ = ωaωaω2/δ−2 and
ω are the absolute first-order invariants of the algebra AG1(1, n), a1 = 1, . . . , n (ωa,
ω see theorem 1).

In the case when the first equation of system (3) degenerates into an elliptical
(λ1 = 0) equation, the absolute invariants in systems (8) and (9) simplify and θ̂ =
UaUaU2/α1−2 for δ �= 0, ω = U for δ = 0.

Theorem 3. The nonlinear system of equations (3) is invariant with respect to
algebra AG2(1, n) with basic operators (2) (α1, α2 are arbitrary constants) iff it has
the form:

(i) In case when δ �= 0

λ1Ut = α̂1∆U + UA(θ̂)(λ2∆ln U − λ1∆ln V ) + Uω−2/δB1(θ̂) +

+ (1 − α̂1)UaUa/U + Uω2/δ−2ωaωb[λ2(ln U)ab − λ1(ln V )ab]C(θ̂),

λ2Vt = α̂2∆V + V D(θ̂)(λ2∆ln U − λ1∆ln V ) + V ω−2/δB2(θ̂) +

+ (1 − α̂2)VaVa/V + V ω2/δ−2ωaωb[λ2(ln U)ab − λ1(ln V )ab]E(θ̂).

(10)

(ii) In case when δ = 0

λ1Ut = α̂1∆U + UA(ω)(λ2∆ln U − λ1∆ln V ) + UωaωaB1(ω) +
+ (1 − α̂1)UaUa/U + U(ωa1ωa1)

−1ωaωb[λ2(ln U)ab − λ1(ln V )ab]C(ω),
λ2Vt = α̂2∆V + V D(ω)(λ2∆ln U − λ1∆ln V ) + V ωaωaB2(ω) +

+ (1 − α̂2)VaVa/V + V (ωa1ωa1)
−1ωaωb[λ2(ln U)ab − λ1(ln V )ab]E(ω),

(11)

where A, B1, B2, C, D, E being arbitrary functions, α̂k = −2αk/n, k = 1, 2 (αk see
operator Iα).

It can be noticed that in case where α1α2 �= 0 systems (10) and (11) can be reduced
by the local substitution U → U α̂1 , V → V α̂2 to the systems of the same structure,
but with α̂k = 1, i.e. αk = −n/2. The specific case of α1 = α2 = 0 will be considered
in what following.

The classes of AG2(1, n)-invariant systems (10) and (11) thus obtained contain, in
particular, such genaralizations of equations (1) as (δ �= 0)

λ1Ut = ∆U + e1U(λ2∆ln U − λ1∆ln V ),
λ2Ut = ∆V + e2V (λ2∆ln U − λ1∆ln V )

and (δ = 0)

Ut = ∆U + e1U
∂(UV −1)

∂xa

∂(UV −1)
∂xa

,

Vt = ∆V + e2V
∂(UV −1)

∂xa

∂(UV −1)
∂xa

,

where e1, e2 ∈ R.
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In the case where the first of equations (3) degenerates into an elliptical one
(λ1 = 0), the AG2(1, n)-invariant systems of equations are simply

0 = A1(θ̂)∆U + A2(θ̂)(Ua1Ua1)
−1UaUbUab + U1−2/α1B1(θ̂) +

+ UC(θ̂)[∆ ln V − (Ua1Ua1)
−1UaUb(ln V )ab],

λ2Vt = α̂2∆V +
V

U
D1(θ̂)∆U +

V

U
D2(θ̂)(Ua1Ua1)

−1UaUbUab +

+ (1 − α̂2)VaVa/V + V U−2/α1B2(θ̂) +

+ V E(θ̂)[∆ ln V − (Ua1Ua1)
−1UaUb(ln V )ab]

(12)

if δ �= 0, and

0 = A1(U)∆U + A2(U)(Ua1Ua1)
−1UaUbUab + UaUaB1(U) +

+ C(U)[∆ ln V − (Ua1Ua1)
−1UaUb(ln V )ab],

λ2Vt = α̂2∆V + V D1(U)∆U + V D2(U)(Ua1Ua1)
−1UaUbUab + V UaUaB2(U) +

+ (1 − α̂2)VaVa/V + V E(U)[∆ ln V − (Ua1Ua1)
−1UaUb(ln V )ab],

(13)

if δ = 0. In equations (12), (13) Ak, Bk, Dk, E, C are arbitrary functions, θ̂ =
UaUaU2/α1−2, α̂2 = −2α2/n. In [13] integration of two-dimensional systems of equati-
ons (12), (13) form was reduced to the integration of linear heat equation with a
source.

3. Galilei-invariant nonlinear generalizations of the Schrödinger equation
As noted above, a class of nonlinear generalization of Schrödinger equation (4)

is a specific case of evolution equations (3). On the basis of theorems 1, 2 and 3
this enables one to describe all quasilinear generalizations of Schrödinger equation
(5), which are invariant with respect to a chain of algebras AG(1, n) ⊂ AG1(1, n) ⊂
AG2(1, n).
Corollary 1. In the class of nonlinear equations of the form (4) algebra AG(1,n)

(2a),(2b) with Qλ = − i
h (U∂U−

∗
U ∂ ∗

U
) is admitted only for equations given by

iUt + h∆U = U [A1∆ln U + A2∆ln
∗
U +B] +

+ U [A3|U |a|U |b(ln U)ab + A4|U |a|U |b(ln
∗
U)ab],

(14)

where Aj = 0, j = 1, 2, 3, 4 and B are arbitrary complex functions of two arguments

|U | and |U |a|U |a; |U |2 = U
∗
U , |U |a = ∂|U |/∂xa.

In case Aj = 0 the class of equations (14) is reduced to an equation

iUt + h∆U = UB(|U |, |U |a|U |a) (15)

obtained in [1, 12], whose specific case is a Schrödinger equation with power nonli-
nearity U |U |β , β = const.

By using the identities

∆ln |U |2 = (∆|U |2 − 4|U |a|U |a)/|U |2,
Re (∆U/U) + |∇U |2/|U |2 = ∆ ln |U | + |U |a|U |a/|U |2,
Im (∆U/U − UaUa/U2) = (∆ ln U − ∆ln

∗
U)/2i



386 W.I. Fushchych, R.M. Cherniha

it is easily to show that the class of the Galilei-invariant equations (14) contains the
equation

iUt + ∆U =
id

2
U∆|U |2/|U |2 + U [d1(Re (∆U/U) + |∇U |2/|U |2) +

+ d2Im (∆U/U − (∇U/U)2) + d3(Re (∇U/U)2) + |∇U |2/|U |2)],
where ∇U = (∂U/∂x1, . . . , ∂U/∂xn), d1, d2, d3 ∈ R, proposed in [9] from certain
physical considerations. By the way, a nonlinear generalization of the Schrödinger
equation [8]

iUt = (id1 − h)∆U + id1U |∇U |2/|U |2 + UB(|U |),
does not preserve Galilean symmetry of the linear Schrödinger equation. Instead it
would be appropriate to propose Galilei-invariant nonlinear equations of the class (14)

iUt = c∆U + (h − c)
∗
U (∇U)2/|U |2 + UB(|U |),

and [13]

iUt = −h∆U + cU∆|U |2/|U |2 + UB(|U |),
where c is arbitrary complex constant and B is an arbitrary complex function.

Corollary 2. In the class of nonlinear equations of the form (4) algebra AG1(1, n)
(2a), (2b), (2c), (6) is admitted only for equations given by

(i) In the case α �= 0

iUt + h∆U = U [D1∆ln U + D2∆ln
∗
U +|U |−2/αB] +

+ U |U |2/α−2[D3|U |a|U |b(ln U)ab + D4|U |a|U |b(ln
∗
U)ab],

(16)

where Dj , j = 1, 2, 3, 4 and B are arbitrary complex functions of the argument
|U |2/α−2|U |a|U |a;

(ii) In the case α = 0

iUt + h∆U = U [D1∆ln U + D2∆ln
∗
U +|U |a|U |aB] +

+ U(|U |a1 |U |a1)
−1[D3|U |a|U |b(ln U)ab + D4|U |a|U |b(ln

∗
U)ab],

(17)

where Dj = Dj(|U |), j = 1, 2, 3, 4 and B = B(|U |) are arbitrary complex functions.
It is easily seen that the class of the AG1(1, n)-invariant equations (14) contains

the well-known nonlinear Schrödinger equation

iUt + h∆U + cU |U |2 = 0 (18)

which in the case n = 1 is integrated by inverse scattering method [14]. Note that in
the case n = 2 equation (17) is invariant under the AG2(1, 2) algebra [12, 15].

Corollary 3. Within the class of nonlinear equations of the form (4) algebra
AG2(1, n) (2), (6) for α = −n/2 of the linear Schrödinger equation (5) is conserved
only for equations given by

iUt + h∆U = UE1∆ln |U | + U |U |4/nB + U |U |−4/n−2E2|U |a|U |b(ln |U |)ab. (19)
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In equation (19) E1, E2 and B are arbitrary complex functions of the argument
|U |−4/n−2|U |a|U |a, which is an absolute invariant of the generalized Galilei algebra
AG2(1, n).

If we consider a representation of AG2(1, n) algebra with basic operators (2), (6)
for α = 0, a principally different class of quasilinear second-order equations, invariant
with respect to this algebra, namely

iUt + hUaUa/U = UE1(|U |)∆ ln |U | + U |U |a|U |aB(|U |) +
+ UE2(|U |)(|U |a1 |U |a1)

−1|U |a|U |b(ln |U |)ab.
(20)

is obtained.
It is easily seen that within the class of equations (20) there is not a single linear

equation, the simplest one among them being Hamilton–Jacobi equation for a complex
function

iUt + hUaUa/U = 0

which is reduced to a standard form

iWt + hWaWa = 0, Wa =
∂W

∂xa
, Wt =

∂W

∂t

by a local substitution U = exp W , W = W (t, x1, . . . , xn).
In case E1 = E2 = 0 equation

iUt + h∆U = U |U |4/nB (21)

is obtained from the class of equations (19) which had been obtained in [1, 12]. Note
that at B = c = const equation (21) is transformed into an equation with fixed power
nonlinearity, studied in a series of papers (for n = 1 [16, 17], n = 2 [18] and n = 3 [1,
2, 12, 19]). In [1, 12] multiparametric families of invariant solutions of equation (21)
of the form

iUt + h∆U = cU
|U |a|U |a
|U |2

are also constructed and systematized.
Being written in the case of one spatial variable (n = 1), after simple transformati-

ons the class of equations (19) is given by

iUt + hUxx = UE1(ln |U |)xx + U |U |4B, U = U(t, x), x = x1, (22)

E1 and B being arbitrary complex functions of the argument |U |−3|U |x.
Obviously, a specific case of equation (22) is given by

iUt + hUxx + c1U |U |4 + c2U |U ||U |x = 0 (23)

which at h = 1, c1 = 1, c2 = 4 is known as Eckhaus equation [20, 21]. Equation
(23) has been studied in detail for arbitrary constant values of c1 and c2 in [22]. A
multidimensional generalization of equation (23), posessing AG2(1, n) symmetry, can
be proposed

iUt + h∆U + c1U |U |4/n + c2U |U |−1+2/n(|U |a|U |a)1/2 = 0. (24)
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4. Galilei-invariant systems of Hamilton–Jacobi-type
It should be noted that the local substitution U = M(Û), V = N(V̂ ), where

M , N are arbitrary differentiable functions, reduces any equation system with the
symmetry AG(1, n), AG1(1, n) or AG2(1, n) to a locally equivalent system with the
same symmetry, but with different representation of operators Qλ and Iα, namely

Q̂λ = λ1M

(
dM

dÛ

)−1

∂Û + λ2N

(
dN

dV̂

)−1

∂V̂ ,

Iα = α1M

(
dM

dÛ

)−1

∂Û + α2N

(
dN

dV̂

)−1

∂V̂ .

In the particular case where M = exp(Û), N = exp(V̂ ), we obtain

Q̂λ = λ1∂Û + λ2∂V̂ , Iα = α1∂Û + α2∂V̂ . (25)

In this case the class of equation systems, invariant with respect to AG2(1, n) algebra
in the representation (2), (25), at δ = 0 is given by

λ1Ût = α̂1∆Û + A(ω̂)(λ2∆Û − λ1∆V̂ ) + ω̂aω̂aB1(ω̂) +

+ ÛaÛa + C(ω̂)(ω̂a1 ω̂a1)
−1ω̂aω̂b[λ2Ûab − λ1V̂ab],

λ2V̂t = α̂2∆V̂ + D(ω̂)(λ2∆Û − λ1∆V̂ ) + ω̂aω̂aB2(ω̂) +

+ V̂aV̂a + E(ω̂)(ω̂a1 ω̂a1)
−1ω̂aω̂b[λ2Ûab − λ1V̂ab],

(26)

where ω̂ = λ2Û − λ1V̂ , ω̂a = λ2Ûa − λ1V̂a and A, B1, B2, C, D, E are arbitrary
differentiable functions.

In case where α̂1 = α̂2 = 0, A = C = D = E = 0 the system of equations (26) is
reduced to the systems of the form (the symbols ·̂ being omitted below)

λ1Ut = UaUa + ωaωaB1(ω),
λ1Vt = VaVa + ωaωaB2(ω), λ1λ2 �= 0

(27)

It is natural to call system (27) a generalization of the noncoupled system of the
Hamilton–Jacobi (HJ) equations

λ1Ut = UaUa, λ1Vt = VaVa. (28)

In contrast to the symmetry of a single HJ equation [2, 23], the local symmetry of
the system (28) is exhausted by AG2(1, n) algebra (2), (25) at α1 = α2 = 0 with
additional operators

PV = ∂V , D1 = −t∂t + U∂U + V ∂V . (29)

Thus, all the nonlinear generalizations of the form

λ1Ut = UaUa + B1(U, V, U1, . . . , Un, V1, . . . , Vn),
λ1Vt = VaVa + B2(U, V, U1, . . . , Un, V1, . . . , Vn)

(30)

of HJ system, preserving its symmetry AG2(1, n), are exhaused by system (27).
Among the non-linear generalizations of HJ system (27), a system of equations

with unique symmetry properties exists, namely for B1 = 0, B2 = −1/(λ2)2 (in the
following λ1 = 1, λ2 = λ).
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Theorem 4. The maximal (in the sense of Lie) algebra of the invariance for the
system of equations

Ut = UaUa,

Vt = −λUaUa + 2UaVa

(31)

is generated by the basic operators

Pt, Pa, Jab, Qλ = λ∂U − ∂V , X = W∂V , Ga = tPa − xa

2
Qλ,

D = 2tPt + xaPa, Π = t2Pt + txaPa − 1
4
|x|2Qλ,

G1
a = UPa − xa

2
Pt, D1 = 2UPU + xaPa,

Π1 = U2PU + UxaPa − 1
4
|x|2Pt,

Ka = xatPt −
(

2tU +
1
2
|x|2

)
Pa + xaxbPb + xaUQλ,

(32)

where W are an arbitrary differentiable function of λU − V .
Note that the presence of the operatorX including an arbitrary function W in the

invariance algebra for the system (31) is natural, since the second equation of the
system is linear with respect to the function V . Much more interesting is the fact
the system (31) can be considered as a generalization of classical HJ equation to the
case of two unknown functions, since for W = 1 the operators (32) generate the
same algebra as the HJ equation. We consider this fact to be very important, since a
trivial generalization of the above-mentioned equation to the system of (28) does not
preserve the symmetry of the HJ equation.

5. Galilei-invariant reaction-diffusion systems
Now consider a nonlinear system of evolution equations, given by

λ1Ut = ∆U + f(U, V ),
λ2Vt = ∆V + g(U, V ),

(33)

where f , g are arbitrary differentiable functions. The systems of reaction-diffusion
equations (33) has been studied intensively of late (see, e.g., [4, 6, 7]). As follows
from theorems 1, 2 and 3, the class of systems (33) contains systems with broad
symmetry. In particular, all the systems of equations of the form

λ1Ut = ∆U + Uf(ω), ω = Uλ2V −λ1 ,

λ2Vt = ∆V + V g(ω)
(34)

will be invariant under the Galilei algebra AG(1, n).
Note 1. In the case, where λ2 = λ1 = λ, f = d1((U + V )/V )d0 − 1, g = d2((U +
V )/V )d0 − d3 and d0, d1, d2, d3 ∈ R the system (34) is the particular case of the
conservation equations for normal and mutant cells [7, 24].

In case where f = β1ω
−2/δ, g = β2ω

−2/δ, δ �= 0 (δ is defined in the introduction)
there will be invariance under the algebra AG1(1, n). Finally, for δ = −n(λ2 − λ1)/2,
i.e. α1 = α2 = −n/2, the system of equations

λ1Ut = ∆U + β1U
1+λ2γV −λ1γ ,

λ2Vt = ∆V + β2V
1−λ1γUλ2γ

(35)
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is obtained (where γ = 4/(n(λ2 − λ1)), λ2 �= λ1, βk ∈ R), preserving the AG2(1, n)-
symmetry of the linear system (1).

Note 2. For λ2 = −λ1 = λ the diffusion system (33) is reduced by substitution

U = Y + Z, V = Y − Z, Y = Y (t, x), Z = Z(t, x) (36)

to the system of equations

−λYt = ∆Z + f1(Y,Z),
λZt = ∆Y + g1(Y,Z),

whose invariance under the chain of algebras AG(1, n) ⊂ AG1(1, n) ⊂ AG2(1, n)
with the unit operator Qλ = λY ∂Z + λZ∂Y is described by the substitution (36)
being applied to the system of equations of the form (33) with the corresponding
symmetry.

It is interesting to consider system (33) in case where one of the equations
degenerates into an elliptical one. Without reducing generality we consider λ2 = 0,
λ1 = 1. Then according to the theorem 1, all systems of the form (33) for λ2 = 0,
λ1 = 1 and posessing AG(1, n) symmetry are given by

Ut = ∆U + Uf(V ), (37a)

0 = ∆V + g(V ), (37b)

where f and g being arbitrary functions.
For the system (37) a clear physical treatment can be suggested. Namely, eqution

(37a) is the heat equation with spatial source of energy absorption (extraction) q =
Uf(V ), proportional to the temperature U, with an additional condition of elliptical
equation (37b) being imposed on proportionality coeficient f(V ) (in particular we can
consider f(V ) = V ). Thus we have obtained a class of nonlinear heat equations with
an additional condition for the source that preserve Galilean symmetry of the linear
heat equation. This result is quite non-trivial, since it is well-known fact that among
nonlinear heat equations with a source

Ut = ∆U + q(U)

not a single one is invariant with respect to Galilei algebra AG(1, n) [3]. As it is seen,
this “symmetry contradiction” between the linear and nonlinear heat equations can be
solved in two ways: either the source is supposed to depend explicitly on temperature
and independent variables t, x1, . . . , xn [3], or an additional condition equation (37b)
upon the source is imposed as above.

It should be noted that in case f = β1V
2/α2 , g = β2V

1+2/α2 , 0 �= α2, βk ∈ R

system (37) is invariant under AG1(1, n) algebra (2a)–(2c). If the system (37) has
the form

Ut = ∆U + β1UV 4/n, (38a)

0 = ∆V + β2V
1+4/n, (38b)
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it is invariant under AG2(1, n) algebra with basic operators (2) for λ2 = 0, λ1 = 1,
i.e. heat equation (38a) with nonlinear condition (38b) for the source conserves all
the non-trivial Lie symmetry of the linear heat equation

Ut = ∆U.

Note 3. If V is a fixed given function on independent variables t, x1, . . . , xn, equation
(38a) can lose any symmetry.

In conclusion, the interesting system of the form (33) should be considered,
namely

λUt = ∆U + β1U
2V −1,

λVt = ∆V + β2U, β1 �= β2.
(39)

Theorem 5. The maximal algebra of invariance for the system (39) is the generali-
zed Galilei algebra with the basic operators (2a), (2b) and

D = 2tPt + xaPa − 2U∂U −
(

n

2
+

β2

β1 − β2

)
Qλ,

Π = −t2Pt + tD − 1
4
|x|2Qλ − λ

β1 − β2
V ∂U .

By the way, among the systems of the form (33) in case where λ2 = λ1 = λ there
is not an AG2(1, n)-invariant system in the standard representation (2). Note that the
system (39) can be considered as a particular case of the conservation equations for
normal and mutant cells [7, 24].

Some classes of exact solutions for the system (39) are obtained in [25].
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