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Symmetry classification
of the one-dimensional second order equation
of hydrodynamical type

W.I. FUSHCHYCH, V.M. BOYKO

The paper contains a symmetry classification of the one-dimensional second order equa-
tion of hydrodynamical type L(Lu) + λLu = F (u), where L ≡ ∂t + u∂x. Some classes
of exact solutions of this equation are pointed out.

In [1, 2] the following generalized Navier–Stokes equation

λ1L�v + λ2L(L�v) = F
(
�v 2

)
�v + λ4∇p, (1)

was proposed, where

L ≡ ∂

∂t
+ vl ∂

∂xl
+ λ3�, l = 1, 2, 3,

�v =
(
v1, v2, v3

)
, vl = vl(t, �x), p = p(t, �x), ∇ is the gradient, � is the Laplace operator,

λ1, λ2, λ3, λ4 are arbitrary real parameters, F
(
�v 2

)
is an arbitrary differentiable

function.
In the one-dimensional scalar case, when λ3 = 0, λ4 = 0, equation (1) has the

form

λ1Lu + λ2L(Lu) = F (u), (2)

where u = u(t, x), L ≡ ∂t + u∂x.
In the case when λ2 = 0 and F (u) = 0, equation (2) is known to describe the

simple wave

u = ϕ(x − tu), (3)

where ϕ is an arbitrary function. Formula (3) gives the general solution of the equation

∂u

∂t
+ u

∂u

∂x
= 0.

If λ2 �= 0, then equation (2) can be rewritten in the form

L(Lu) + λLu = F (u), λ = const. (4)

Equation (4), in expanded form, is written as follows

∂2u

∂t2
+ 2u

∂2u

∂t∂x
+

∂u

∂t

∂u

∂x
+ u

(
∂u

∂x

)2

+ u2 ∂2u

∂x2
+ λ

(
∂u

∂t
+ u

∂u

∂x

)
= F (u).
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This equation with arbitrary F (u) is evidently invariant under the two-dimensional
algebra of translations that is determined by the operators

P0 = ∂t, P1 = ∂x. (5)

In the present paper we carry out a symmetry classification of the equation (4),
i.e., we describe functions F (u), with which the equation (4) admits more extensive
Lie algebras than the two-dimensional algebra of translations (5).

Symmetry classification
Symmetry classification of (4) is performed on the base of the Lie algorithm [3,

4, 5] in the class of first-order differential operators

X = ξ0(t, x, u)∂t + ξ1(t, x, u)∂x + η(t, x, u)∂u. (6)

Remark. In cases 1.4, 2.3, 2.4 we assume that

∂ξ0

∂u
= 0,

∂ξ1

∂u
= 0.

It is obvious, that the cases λ = 0 and λ �= 0 will be essentially different for the
investigation of symmetries of the equation (4). If λ �= 0, then one can always set
λ ≡ 1 (there exists a change of variables). For this reason we consider the cases
λ = 0 and λ = 1 separately.

I. Let us consider equation (4), when λ = 0, i.e., the equation

L(Lu) = F (u). (7)

Symmetry classification of (7) leads to five distinct cases.
Case 1.1. F (u) is an arbitrary continuously differentiable function. The maximal

invariance algebra in this case is the two-dimensional algebra (5).
Case 1.2. F (u) = a exp (bu), a, b = const, a �= 0, b �= 0. Without loss of generality

we can put b ≡ 1 (there exists a change of variables). The maximal invariance algebra
of the equation

L(Lu) = a exp (u) (8)

is a three-dimensional algebra, whose basis elements are given by the operators

P0 = ∂t, P1 = ∂x, Y = t∂t + (x − 2t)∂x − 2∂u. (9)

The finite transformations which are generated by the operator Y in (9) have the
form:

t → t̃ = t exp (θ),
x → x̃ = (x − 2θt) exp (θ),
u → ũ = u − 2θ.

Hereafter θ is a real group parameter of the corresponding Lie group.
We note that Y in (9) can be represented as the linear combination of the dilatation

and Galilei operators

Y = (t∂t + x∂x) − 2(t∂x + ∂u) = D − 2G.
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The operators D and G commute, thus the transformations corresponding to Y can
be interpreted as a composition of dilatation and Galilei transformations, i.e., as
a composition of dilatation on t and x with a change of inertial system. On the other
hand, the operators (9) form a subalgebra of extended Galilei algebra, although the
extended Galilei algebra is not the invariance algebra of the equation (8). The same
results are valid for other cases of equation (4).

Case 1.3. F (u) = a(u + b)p, a, b, p = const, a �= 0, p �= 0, p �= 1. The maximal
invariance algebra of the equation

L(Lu) = a(u + b)p (10)

is a three-dimensional algebra, whose basis elements are given by the operators

P0 = ∂t, P1 = ∂x,

R = t∂t +
(

p − 3
p − 1

x − 2b

p − 1
t

)
∂x − 2

p − 1
(u + b)∂u.

(11)

The operator R generates the following finite transformations:

t → t̃ = t exp (θ),

x → x̃ = x exp
(

p − 3
p − 1

θ

)
− bt exp (θ),

u → ũ = (u + b) exp
(
− 2

p−1θ
)
− b.

If b �= 0, then R can be again represented as a linear combination of dilatation and
Galilei operators.

Case 1.4. F (u) = au + b, a, b = const, a �= 0. In consequence of a change of
variables one can always set a ≡ 1 or a ≡ −1. Let us consider these cases.

a) The invariance algebra of the equation

L(Lu) = u + b (12)

is a seven-dimensional algebra, whose basis elements are given by the operators

P0 = ∂t, P1 = ∂x,

Y1 = (x + bt)∂x + (u + b)∂u,

Y2 = cosh t∂x + sinh t∂u,

Y3 = sinh t∂x + cosh t∂u,

Y4 = cosh t∂t + (x + bt) sinh t∂x + ((x + bt) cosh t + b sinh t)∂u,

Y5 = sinh t∂t + (x + bt) cosh t∂x + ((x + bt) sinh t + b cosh t)∂u.

(13)

The operators Y1–Y3 generate the following finite transformations (because the trans-
formations for Y4 and Y5 are cumbersome we omit their explicit form):

Y1 : t → t̃ = t,
x → x̃ = (x + bt) exp(θ) − bt,
u → ũ = (u + b) exp(θ) − b.

Y2 : t → t̃ = t,
x → x̃ = x + θ cosh t,
u → ũ = u + θ sinh t.



374 W.I. Fushchych, V.M. Boyko

Y3 : t → t̃ = t,
x → x̃ = x + θ sinh t,
u → ũ = u + θ cosh t.

The operator Y1 in (13) can be again represented as a linear combination of the
dilatation and Galilei operators.

b) The invariance algebra of the equation

L(Lu) = −u + b (14)

is a seven-dimensional algebra, whose basis elements are given by the operators

P0 = ∂t, P1 = ∂x,

R1 = (x − bt)∂x + (u − b)∂u,

R2 = cos t∂x − sin t∂u,

R3 = sin t∂x + cos t∂u,

R4 = − cos t∂t + (x − bt) sin t∂x + ((x − bt) cos t − b sin t)∂u,

R5 = sin t∂t + (x − bt) cos t∂x − ((x − bt) sin t + b cos t)∂u.

(15)

The operators R1–R3 generate the following finite transformations (because the
transformations for R4 and R5 are cumbersome we omit their explicit form):

R1 : t → t̃ = t,
x → x̃ = (x − bt) exp(θ) + bt,
u → ũ = (u − b) exp(θ) + b.

R2 : t → t̃ = t,
x → x̃ = x + θ cos t,
u → ũ = u − θ sin t.

R3 : t → t̃ = t,
x → x̃ = x + θ sin t,
u → ũ = u + θ cos t.

The operator R1 in (15) can be again represented as a linear combination of dilatation
and Galilei operators.

Case 1.5. F (u) = a, a = const. In the case a �= 0 (there exists a change of
variables) without loss of generality we can admit that a ≡ 1. Thus we consider the
cases a = 0 and a = 1 separately.

a) The maximal invariance algebra of the equation

L(Lu) = 0 (16)

is a ten-dimensional algebra, whose basis elements are given by the operators

P0 = ∂t, P1 = ∂x,

G = t∂x + ∂u, D = t∂t + x∂x, D1 = x∂x + u∂u,

A1 =
1
2
t2∂t + tx∂x + x∂u, A2 =

1
2
t2∂x + t∂u, A3 = u∂t +

1
2
u2∂x,

A4 = (tu − x)∂t +
1
2
tu2∂x +

1
2
u2∂u,

A5 =
(
t2u − 2tx

)
∂t +

(
1
2
t2u2 − 2x2

)
∂x +

(
tu2 − 2xu

)
∂u.

(17)
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We note, that subalgebras 〈P0, P1, G〉 and 〈A1,−A2, G〉 in the representation (17)
define two different representations of the Galilei algebra AG(1, 1) [3].

The finite transformations which are generated by the operators (17) have the form
(because the transformations for A4 and A5 are cumbersome we omit their explicit
form):

G : t → t̃ = t,
x → x̃ = x + θt,
u → ũ = u + θ.

D : t → t̃ = t exp(θ),
x → x̃ = x exp(θ),
u → ũ = u.

D1 : t → t̃ = t,
x → x̃ = x exp(θ),
u → ũ = u exp(θ).

A1 : t → t̃ =
2t

2 − θt
,

x → x̃ =
4x

(2 − θt)2
,

u → ũ = u +
2xθ

2 − θt
.

A2 : t → t̃ = t,

x → x̃ = x +
1
2
θt2,

u → ũ = u + θt.

A3 : t → t̃ = t + θu,

x → x̃ = x +
1
2
θu2,

u → ũ = u.

b) The maximal invariance algebra of the equation

L(Lu) = 1 (18)

is a ten-dimensional algebra, whose basis elements are given by the operators

P0 = ∂t, P1 = ∂x, G = t∂x + ∂u,

B1 = t∂t + 3x∂x + 2u∂u, B2 =
(

x − 1
6
t3

)
∂x +

(
u − 1

2
t2

)
∂u,

B3 =
1
2
t2∂t +

(
tx +

1
12

t4
)

∂x +
(

x +
1
3
t3

)
∂u, A2 =

1
2
t2∂x + t∂u,

B4 =
(

u − 1
2
t2

)
∂t +

(
1
2
u2 − 1

8
t4

)
∂x +

(
tu − 1

2
t3

)
∂u,

(19)
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B5 =
(

tu − x − 1
3
t3

)
∂t +

(
1
2
tu2 − 1

2
t2x − 1

24
t5

)
∂x +

+
(

1
2
u2 +

1
2
t2u − tx − 5

24
t4

)
∂u,

B6 =
(

t2u − 2tx − 1
6
t4

)
∂t +

(
1
2
t2u2 − 2x2 − 1

3
t3x − 1

72
t6

)
∂x +

+
(

tu2 − 2xu +
1
3
t3u − t2x − 1

12
t5

)
∂u.

The algebra, generated by the operators (19), includes again two different Galilei
algebras 〈P0, P1, G〉 and 〈B3,−A2, G〉 as subalgebras.

The finite transformations which are generated by the operators (19) have the
form (because the transformations for B4, B5 and B6 are cumbersome we omit their
explicit form):

B1 : t → t̃ = t exp(θ),
x → x̃ = x exp(3θ),
u → ũ = u exp(2θ).

B2 : t → t̃ = t,

x → x̃ =
(

x − 1
6
t3

)
exp(θ) +

1
6
t3,

u → ũ =
(

u − 1
2
t2

)
exp(θ) +

1
2
t2.

B3 : t → t̃ =
2t

2 − θt
,

x → x̃ =
12x − 2t3

3(2 − θt)2
+

4t3

3(2 − θt)3
,

u → ũ = u +
2t2

(2 − θt)2
+

12x − 2t3

3t(2 − θt)
− 12x + t3

6t
.

II. Let us consider equation (4) for λ �= 0. As it was noticed above, we can set
λ ≡ 1. Symmetry classification gives in this case four principally distinct cases.

Case 2.1. F (u) is an arbitrary continuously differentiable function. The maximal
invariance algebra of the equation

L(Lu) + Lu = F (u), (20)

is the two-dimensional algebra (5).
Case 2.2. F (u) = au3 − 2

9u, a = const, a �= 0. The maximal invariance algebra of
the equation

L(Lu) + Lu = au3 − 2
9
u (21)

is a three-dimensional algebra, whose basis elements are given by the operators

P0 = ∂t, P1 = ∂x, Z = exp
(

1
3
t

)(
∂t − 1

3
u∂u

)
. (22)
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The operator Z generates the following finite transformations:

t → t̃ = −3 ln
(

exp
(
−1

3
t

)
− θ

3

)
,

x → x̃ = x,

u → ũ = u

(
1 − 1

3
θ exp

(
1
3
t

))
.

Case 2.3. F (u) = au + b, a, b = const, a �= 0. The invariance algebra of the
equation

L(Lu) + Lu = au + b (23)

is a five-dimensional algebra, whose basis elements are given by the operators

P0 = ∂t, P1 = ∂x, Z1 =
(

x +
b

a
t

)
∂x +

(
u +

b

a

)
∂u,

and two other operators depending on constant a have the form
a) a = − 1

4

Z2 = exp
(
−1

2
t

)(
∂x − 1

2
∂u

)
, Z3 = exp

(
−1

2
t

)(
t∂x +

(
1 − 1

2
t

)
∂u

)
,

b) a > − 1
4 , a �= 0

Z4 = exp(αt)(∂x + α∂u), Z5 = exp(βt)(∂x + β∂u),

where

α =
−1 −√

4a + 1
2

, β =
−1 +

√
4a + 1

2
,

c) a < − 1
4

Z6 = exp(γt)(sin δt∂x + (γ sin δt + δ cos δt)∂u),
Z7 = exp(γt)(cos δt∂x + (γ cos δt − δ sin δt)∂u),

where

γ = −1
2
, δ =

√−(4a + 1)
2

.

The corresponding finite transformations have the form:

Z1 : t → t̃ = t,

x → x̃ =
(

x +
b

a
t

)
exp(θ) − b

a
t,

u → ũ =
(

u +
b

a

)
exp(θ) − b

a
.

Z4 : t → t̃ = t,

x → x̃ = x + θ exp(αt),
u → ũ = u + αθ exp(αt).
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Z3 : t → t̃ = t,

x → x̃ = x + θt exp
(
−1

2
t

)
,

u → ũ = u + θ

(
1 − 1

2
t

)
exp

(
−1

2
t

)
.

Z6 : t → t̃ = t,

x → x̃ = x + θ sin δt exp(γt),
u → ũ = u + θ(γ sin δt + δ cos δt) exp(γt).

Z7 : t → t̃ = t,

x → x̃ = x + θ cos δt exp(γt),
u → ũ = u + θ(γ cos δt − δ sin δt) exp(γt).

Case 2.4. F (u) = a, a = const. The invariance algebra of the equation

L(Lu) + Lu = a (24)

is a five-dimensional algebra, whose basis elements are given by the operators

P0 = ∂t, P1 = ∂x, G = t∂x + ∂u,

Q1 =
(
x − a

2
t2

)
∂x + (u − at)∂u, Q2 = exp(−t)(∂x − ∂u).

(25)

The finite transformations for Q1, Q2 have the form:

Q1 : t → t̃ = t,

x → x̃ =
(
x − a

2
t2

)
exp(θ) +

a

2
t2,

u → ũ = (u − at) exp(θ) + at.

Q2 : t → t̃ = t,

x → x̃ = x + θ exp(−t),
u → ũ = u − θ exp(−t).

Construction of solutions
In the case when the equation (4) has the form

L(Lu) + λLu = a, a, λ = const (26)

the change of variables

t = τ, x = ω + uτ, u = u (27)

enable us to construct the general solution of (26). In consequence of the change of
variables (27) we obtain:

L =
∂

∂t
+ u

∂

∂x
→ ∂τ ,

Lu =
∂u

∂t
+ u

∂u

∂x
→ uτ

1 + τuω
.
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After the change of variables the equation (26) has the form

∂τ

(
uτ

1 + τuω

)
+ λ

(
uτ

1 + τuω

)
= a. (28)

Integrating (28) one time, we get the linear nonhomogeneous partial differential
equation. Finding first integrals of the corresponding system of characteristic equa-
tions and doing the inverse change of variables we find the solutions of (26).

Remark. We notice that the solution of equation 1 + τuω = 0 in variables (t, x, u) is
x = f(t), where f(t) is an arbitrary function. Thus (26) is equivalent to an ordinary
differential equation in this singular case.

Let us illustrate it on the example of equations (16). After the change of variables
(27), equation (16) is rewritten in the form:

∂τ

(
uτ

1 + τuω

)
= 0. (29)

Integrating (29) we obtain

uτ

1 + τuω
= g(ω), (30)

where g(ω) is an arbitrary function.
If g(ω) ≡ 0, then uτ = 0 and we get the solution of type (3) (because, it is

obvious that the solution of equation Lu = 0 is a solution of (16)). When g(ω) �= 0,
in accordance with arbitrary choice of g(ω) we can set g(ω) = −2(dh(ω)/dω)−1.
Therefore (30) has the form

uτ +
2τ

h′(ω)
uω = − 2

h′(ω)
. (31)

The system of characteristic equation for (31) is

dτ

1
=

h′(ω)dω

2τ
=

h′(ω)du

−2
. (32)

Hence, we obtain two first integrals:

τ2 − h(ω) = C1, u ±
∫

dω√
h(ω) + C1

= C2. (33)

Integrating (33) and expressing C1 and C2 by (τ, ω, u) we find a solution of (30) in
the form

Φ(C1, C2) = 0, (34)

where Φ is an arbitrary function. Performing in (34) the inverse change of variables
we get a solution of (16). For instance, we set h(ω) = ω. Then the expression

x − ut − t2 = ϕ(u + 2t), (35)

defines the class of implicit solutions of equation (16), where ϕ is an arbitrary function.
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The same results we can obtain for other cases of (26). If F (u) �= const in (4)
then this method does not lead to solutions. Below we give some classes of solutions
of equations (26):

1. L(Lu) = 0

1.1. x − ut +
C

2
t2 = ϕ(u − Ct);

1.2. u ± ln(x − ut ∓ t) = ϕ
(
t2 − (x − ut)2

)
;

1.3. u +
t(x − ut)3

t2(x − ut)2 − 1
= ϕ

(
t2 − 1

(x − ut)2

)
;

1.4. u = ϕ

(
x − ut

exp (t2)

)
− x − ut

exp (t2)

∫
exp

(
t2

)
dt;

2. L(Lu) = a

x − ut +
a

3
t3 +

C

2
t2 = ϕ

(
u − a

2
t2 − Ct

)
;

3. L(Lu) + Lu = a

x − ut − C(t + 1) exp(−t) +
a

2
t2 = ϕ (u + C exp(−t) − at) ,

C = const, ϕ is an arbitrary function.
Thus, we have investigated the symmetry classifications of (4) and pointed out

all functions F (u) under which the invariance algebra of (4) admits the extension.
The new representations which may have an interesting physical interpretation are
obtained. In the case F (u) = const we described the algorithm of construction of
the general solution of (4) and pointed out some solutions. The symmetry properties
of (4) can be used for a symmetry reduction and construction of the solutions and for
their generation by finite group transformations [3, 4, 5].
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