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On new exact solutions
of the multidimensional nonlinear
d’Alembert equation

W.I. FUSHCHYCH, A.F. BARANNYK, YU.D. MOSKALENKO

On the present paper new classes of exact solutions of the nonlinear d’Alembert
equation in the space Ry ,, n > 2,

Ou+ Mk =0 (1)
are built. Here Ou = ugo—u11—- - -—Upn, Upy = %, u=u(x),r = (x0,T1,--.,Tn);
w,v =0,1,...,n. Symmetry properties of equation (1) have been studied in papers

[1, 2] in which it was established that equation (1) is invariant under the extended
Poincaré algebra AP(1,n):

Joa = 2004 + waa(h Jab = p0q — xaabv P/_L = a}u
S = —m“@u—k%@u (a,b=1,...,m; u=0,1,...,n).

Using the subgroup structure of the group P(1,2) in papers [l, 2] some classes
of exact solutions of equation (1) in the space Ry were built. The analogous results
in the space R; 3 were obtained in [3, 4]. The generalization of results for the n-
dimensional case was considered in [5, 6]. In order to find exact solutions, symmetry
ansatzes reducing equation (1) to ordinary differential equations were applied in above
mentioned papers.

In the present paper in order to build exact solutions of equation (1), symmetry
ansatzes reducing equation (1) to equations of two invariant variables are used. We are
interested in these ansatzes because a reduced equation often has additional symmet-
ries. This fact permits to apply these ansatzes for finding new solutions of the present
equation. Let us cite as an example the ansatz u = u(zg — zp,x1,...,2,—1) Which
was considered in [6]. The corresponding reduced equation has the infinite group of
invariance. Note that this ansatz is built by one-dimensional subalgebra (Py + P,).

In the present paper the series of ansatzes of such a kind as u = u(w;,ws), where
W) =T — T, wo = 33 — 27 — -+ — a2, 2 < m < n, is considered. These ansatzes
are built by the subalgebras AE;[1,m — 1] & AE[m + 1,n|, where AE [1,m — 1] =
<G17 R Gmflv J12a AR Jm72,m71>v AE[m + 1; TL] = <Pm+17 LARE an Jm+1,m+2; B
In-1n)s Ga = Joa — Jam, a =1,...,m—1, and if m = n we think AE[m + 1,n] = 0.
The ansatz u = u(wy,ws) reduces equation (1) to the equation

dwrus + dwaugs + 2(m + 1ug + Auf = 0. (2)

Let us investigate symmetry of the equation (2).

JTonosini HAH Ykpainu, 1995, Ne 2, P. 33-37.
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Theorem 1. The maximal algebra of invariance of equation (2) in the case of k # 0,
Zﬁﬂ and m > 1 in the Lie sense is the 4-dimensional Lie algebra A(4) which is
generated by such operators:

B L N S
Owy k—1 0u’ 2T 20w, k-1 ou’
0 0 m—1 0 (m—=1)(k-1)
M =uw! 5 T — U =——1
“1 (wl ow, tw Ows 2 “au) L 2
Theorem 2. The maximal algebra of invariance of equation (2) in the case of
k=2t and m > 1 in the sense of Lie is the 4-dimensional Lie algebra B(4) which

m—1
is generated by such operators:

0
X1 :wla—zyl +LLJ2

0 -1 0
SZWIlnwla—wl —‘rwglnwla—wQ—mQ (lnw1—|—1)u%,
gm0, 0 m—1 0

LM 0w, 2 Dy 2 ou’

0 m—1 0
TZy—mwg—oe — Y g L
2 wQ(’?wg 2 “au’ 3 wl@wz

Let us consider two cases.

1. The case k # 2+l Classify one-dimensional subalgebras of the algebra A(4)
with respect to G-conjugation, where G = exp A(4). Ansatzes, built by these sub-
algebras, reduce the equation (2) to ordinary differential equations. Note that the
operators of the algebra A(4) satisfy the following commutation relations: [X1, Xo] =
0, [X1,X3] =0, [X1,M] =1IM, [Xs, X3] = —X3, [X2, M] =0, [X3,M] =0.
Theorem 3. Let K be one-dimensional subalgebra of the algebra A(4). Then K is
conjugated with one of the following algebras: 1) K1 = (X1 + aXs); 2) Ko = (Xs);
3) Kg = <X1 +OLX3> (Oé = :tl), 4) K4 = <X3>,' 5) K5 = <M+OZX2> (Oz = O,:l:l),
6) K¢ = (M + aX3) (a==+1).

The following ansatzes correspond to the subalgebras K;-Kg of the theorem 3:

atl o
K u=wi*pWw), w=uww;*
Ky: u=wy "pWw), w=uwiy;

Ks: u=uw] "pW), w:ﬂ—alnwl;
w1
Ky u=¢Ww), w=uws;
Ks : u:(w%wg)ﬁcp(w), w:%wfl—i—lnﬂ;
w1

(67

w
olw), w= 24 wl_l.

Kg: u=w
! w1 l

These ansatzes reduce equation (2) to ordinary differential equations with an
unknown function ¢(w):

4(1 — ok
K —4aw¢+%¢+)\apk20;
4w 41
Ky: — 5 — ApF = 0;
20 Y T ot =0

41
Ks: —dap+ m(ﬁ-‘r—)\@k =0
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Ky: \pF =0;

4
Ks: —dag+ k—f‘1¢+ AP = 0;
K¢ : —4dap+ \pF =0.

The equation corresponding to the subalgebra K, in case o = 0 has the solution

_ Ak —1)2
-k _
T T
In consequence we obtain the following solution of equation (1)
_ Ak —1)2
-k _
YT T

then the equation corresponding to the subalgebra K; assumes

(w+O).

(we 4+ Cwy). 3)

If =2

k+1°

8l A1
_ ow .o al A kZO.
Pl Rrir Tt

The particular solution of this equation is

1k _ AR=1)% o

1 2
© T (w2 +0C)~.
Therefore, equation (1) has the following solution:
ME—1)2 [ 1 Shm1 2
it A 1? <w; n cwfw) . (4)

If o= @ then the equation corresponding to the subalgebra K; assumes

—2U(k + 1)@ — 2(k + 2)¢ + A" = 0.
This equation has the solution

12, N2
(pl_k — M (wi + Cw2(kk+1)) .

41
Therefore, equation (1) has the following solution
Mk —1)2 1 k)42 k-1 ) 2
u =k = ( = ) {wé + G, 0D 20D } . (5)
The equations corresponding to the subalgebras K5 and Kg have such solutions:
_ Ak —1)2 _ Ak —1)2
1—k — 1 C l 1—k _ C 2'
i’ g e e =g @t Y

Therefore, equation (1) has the following solutions:

12
utk = %wg(l + Cwi), (6)

Ak —1)2 a 2
utF = 8<§4(k n )1)wl1_1 (w2 + Tw%_l + Cwl) . (7)
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2. The case k = +1. The basis elements of the algebra B(4) satisfy the following

commutation relations: [S, Z1] = —Z1, [S, Z2] =0, [S,Z3] =0, [Z1, Z2) =0, [Z1, Z3] =
0, [Za, Z3] = —Z3.
Theorem 4. Let L be one-dimensional subalgebra of the algebra B(4). Then L is
conjugated with one of the following algebras: 1) Ly = (Z1 + aZ3) (a = 0,£1);
2) Ly = (Zs); 3) Ly = {(Z1 + aZs) (a = £1); 4) Ly = (Z3); 5) Ls = (S + aZs);
6) L¢ = (S + aZs) (a = =£1).

The following ansatzes correspond to the subalgebras L;—Lg of theorem 4:

d—1

Li: u=wy? pw), w=waw;®

Ly: u=wy? pw), w=uws;

1—m
Ls: u:wlz (p(w)7 w:ﬂ—alnwl;
w1
Ly: u=¢w), w=uw;
—m In®
L5 . u = (Wl lna-'rl CJJl)l 5 SO(QJ), w = M,
w2
1-m w9
Lg: u=(wilnw) 2 pw), w=——-aln(lnw).
w1

These ansatzes reduce equation (2) to ordinary differential equations with an
unknown function ¢(w):

m+1

Li: —40w’@ + 2a(m — 3)wep + Apm—1 = 0;

Ly —2(m—1wp+ Apat = 0;

Ly: —da@+ Apm1 = 0;

Li: Apmtt =0

Ly —4aw@+2((m —3)a +m — Dw?p+ Agit = 0;
Le¢: —dap—2(m—1)p+ A(pm_ﬂ =0.

The equation corresponding to the subalgebra Ly has the solution

2

A
pr-m Z—m(

Inw+ C).

Therefore, the equation (2) has the following solution

2 A
ul-m = —W(WQ lnw1 + OUJQ) (8)

The equation corresponding to the subalgebra L3 has the particular solution

2

@1_"1 e

~dam(m —1) (w+C)*

Therefore, equation (2) has the following solution

2 A

ul—m

(WQ — Qw1 lnw1 + C’wl)z. (9)

~dam(m — 1w,
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In the case of an equation corresponding to the subalgebra Ls a =0 or ov = :-"%
(m # 3) we obtain the equations:

mt1 4(1 — mt1
2(m — 1w + Apn-1 =0, —i—l@ﬁ¢+wﬁ5:0
m—3
The solutions of these equation are:
= _ A -1 2 _ A -1
301 - (m_l)z(w +C)7 @1 (m_l)gw
Hence equation (2) has the following solutions:
= A 1 10
uT—m = RO nwi(ws + Cwy), (10)
ul-m = —WWQ lnwl. (11)

Using the groups of invariance of equations (1) and (2) we can duplicate the
solutions (3)—(11). In consequence we obtain multiparametric exact solutions of equa-
tion (1). Write out these solutions for equation (1) in the space R; 3 using the following
notations: a = (ag,a1,az2,as3), b = (bo,b1,b2,b3), ¢ = (co,c1,¢2,¢3), Yyp = T, +
(,u = 0, ].7 2, 3), a-b= aobo - (llbl - a2b2 - a3b3, e ==+1.

132
D u ™ =o(y-y)(1+eb-y)* ), :%%:%%7 b-b=0;
2) u'F=¢ [(y.y)(l+5(b.y)k*2)]%+a(b~y)%[1+e(b'y)k*2]%}27
_AE-1)? _
o= 1k=2) b-b=0, «a€R;
3) ulf’c:g{[(y-y)(ua(by)’“”)ﬁ+a(b-y)%(y~y)ﬁ} )
_AE-1)? _
o= 1k=2) b-b=0, «a€R;
T I U R O s S e s
k—3 — 2
5) w' ™ =olly-y)+(a-y)Il+eb-y) 7] ”:%’

a-a=-1, a-b=0, b-b=0;
6) w =0 {[(y-y)+ (a-y))(1+eb-y) T+

B _ _ 2
+alb-y) T (L4 e(b-y) 720}
MMk —1)2
o= 2((l<: 3))7 a-a=-1, a-b=0, b-b=0, a€cR;

N u = o {l( y) + @ A1+ T+

(k=1)2 gy k=1 2
+alb-y) T ((y-y) + (b-y)")ZFD 5
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_1)2
o:%a ara=-1, a-b=0, b-b=0, a€kR
k=5 5—k
8) ul—k? — O'E(b . y)T[(y . y) -+ (a . y)2 + g(b . y)T}Q’
—1)2
o= A(k )_ a-a:—:[’ a-b=0, bb:O,

Ak =3)(k+ 1)

A
9 wl==Z-yhb-y), bb=0 k=2

10) w =250y w) — <l ) Wy, bob=0,
1) w™ = =Aln(b-y)[y-y) + (a-y)?],
a-a=-1, a-b=0, b-b=0, k=3;

12) w?= %(b-y)‘l[(y )+ (a-y)? —e(b-y)P,
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