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Galilei invariant nonlinear Schrödinger type
equations and their exact solutions

W.I. FUSHCHYCH

In this paper we describe wide classes of nonlinear Schrödinger-type PDEs which are
invariant under the Galilei group and its generalizations. We construct sets of ansatzes
for Galilei invariant equations, and exact classes solutions are found for some nonlinear
Schrödinger equations.

1. Introduction
Let us consider the following nonlinear equations

L1(ψ,ψ∗) ≡ SΨ − F1(x, ψ, ψ∗),

S = p0 − p2
a

2m
, p0 = i

∂

∂x0
, pa = −i ∂

∂xa
, a = 1, 2, 3,

(1)

L2 ≡ p0ψ + gab(x0, �x, ψ, ψ
∗)

∂2ψ

∂xa∂xb
+ F2(x0, �x, ψ, ψ

∗, ψ
1
, ψ

1

∗) = 0,

ψ ≡ ψ(x0, x1, x2, x3), x0 ≡ t, ψ
1
(x) =

{
∂ψ

∂xa

}
, ψ

1

∗ =
{
∂ψ∗

∂xa

}
,

(2)

where F1, F2, gab are some smooth functions,

L3ψ ≡ Sψ − F3(ψ,ψ∗, ψ
1
, ψ

1

∗, ψ
2
, ψ

2

∗),

ψ
2
(x) ≡

{
∂2ψ

∂xa∂xb

}
, ψ

2

∗(x) ≡
{

∂2ψ∗

∂xa∂xb

}
.

(1′)

In the present paper we consider the following problems.

Problem 1. Describe all nonlinear equations (1), (2) which are invariant with respect
to the Galilei group and its various generalizations.

Problem 2. Study the conditional symmetry of equation (l).

Problem 3. Construct classes of exact solutions for Galilei invariant equations.

The results of this talk have been obtained in collaboration with R. Cherniha,
V. Chopyk and M. Serov.

2. Galilei invariant quazilinear equations
Theorem 1 [1]. There are only three types of equations of the form (1)

Sψ = λF (|ψ|)ψ, (3)
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Sψ = λ|ψ|kψ, k ∈ R, (4)

Sψ = λ|ψ|4/nψ, n = 1, 2, 3 . . . , (5)

which are invariant, correspondingly, with respect to the following algebras:

AG(1, n) = 〈P0, Pa, Jab, Ga, Q〉, a = 1, 2, . . . , n,

P0 = i
∂

∂x0
≡ p0, Pa = −i ∂

∂xa
≡ pa,

Jab = xapb − xbpa, Ga = x0pa −mxaQ, Q = i

(
ψ
∂

∂ψ
− ψ∗ ∂

∂ψ∗

)
;

(6)

AG(1, n) = 〈AG(1, n),D〉,
D = 2x0p0 − xapa − kI, k ∈ R, I = ψ

∂

∂ψ
+ ψ∗ ∂

∂ψ∗ ;
(7)

AG(1, n) = 〈AG1(1, n),Π〉,
Π = x2

0p0 + x0xapa +
m

2
x2Q+

n

2
x0I,

(8)

λ is arbitrary parameter, n is the number of space variables.
Note 1. If we put F = 0 in (1) we obtain the standard linear Schrödinger equation
and its maximal invariance algebra is AG2(1, n).
Corollary 1. There is only one nonlinear equation in the class of Schrödinger equa-
tions (1)(

p0 − p2
a

2m

)
ψ = λ|ψ|4/nψ (9)

which has the same symmetry as the linear Schrödinger equation.
Let us answer the following question: whether there exist other equations in

the class (1) invariant under the Galilei algebra AG(1, n) but not invariant under
operators D and Π (7), (8).

The following theorem answers this question.

Theorem 2 [2]. There is only one equation of the form (1)(
p0 − p2

a

2m

)
ψ = λ ln(ψψ∗)ψ, λ = λ1 + iλ2 (10)

which is invariant with respect to the following algebras:

AG3(1, n) ≡ 〈AG(1, n), B1〉, λ1 �= 0, λ2 = 0, B1 = I − 2λ1x0Q;

AG4(2, n) = 〈AG(1, n), B2〉, λ3 �= 0, B2 = exp(2λ2x0)(I + iλ1λ
−1
2 Q).

Note 2. The maximal invariance algebra of equation (10) with logarithmic nonlinearity
contains operators not admitted by the linear equation (1).

Corollary 2. Operators B1, B2 generate the following transformations for ψ:

ψ → ψ′ = exp{(1 − 2iλ1x0)θ1}ψ for λ2 = 0,
ψ → ψ′ = exp{θ2[2x0λ2(1 − iλ1λ

−1
2 )}ψ, λ2 �= 0,

ψ → ψ′ = exp{θ3 exp(2λ1x0)}ψ, λ1 �= 0, λ2 �= 0,

where θ1, θ2, θ3 are group parameters.
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The following equation is widely used for description of dissipative systems

i
∂ψ

∂t
=

1
2m

∆ψ − iβ ln(ψ(ψ∗)−1)ψ + F2(ψψ∗)ψ. (11)

Equation (11) is usually called the phase Schrödinger equation or the Schrödinger–
Langevin equation [4].

The main difference of equation (11) from equations (3), (4), (5), (10), (11) is that it
is not invariant with respect to the Galilei transformations. This equation does not the
standard Galilei relativity principle. However equation (11) has interesting symmetry
properties.

Theorem 3 [2]. The maximal invariance algebra of equation (11) is a 11-dimensional
Lie algebra

A = 〈P0, Pa, Jab, G
(1)
a , Q〉,

G(1)
a = exp{2βx0}

(
pa +

βm

2
xa

)
Q, Q1 = exp{2βx0}Q.

Corollary 3. Operators G(1)
a generate the transformations

x0 → x′0 = x0, xa → x′a = xa + exp{2βx0}θa, (12)

ψ → ψ′ = ψ exp{i[βm exp(4βx0)θ2 + exp(2βx0)xaθa]}, (13)

where θ2 = θaθa, θa are group parameters.

So operators G(1)
a as distinguished from the Galilei operators, generate nonlinear

transformations (12). In the first approximation by β (12) coincides with the Galilei
transformations. It is known that the Galilei transformations are of the form

x0 → x′0 = x0, xa → x′a = xa + x0θa,

ψ → ψ′ = exp
{
im

(
�θ�x+

1
2
(�θ)2x0

)}
ψ(x′).

(14)

3. Galilei invariant nonlinear equations
with first order derivatives

Let us consider equations

Sψ = F (x, ψ, ψ∗, ψ
1
, ψ

1

∗). (15)

Theorem 4 [5]. There exist four classes of equations of the form (15) which are
invariant with respect to Galilei algebras:

AG1(1, n) : Sψ = F1(|ψ|, (�∇|ψ|)2)ψ; (16)

AG1(1, n) : Sψ = |ψ|−2/kF2(|ψ|−2+2/k(�∇|ψ|)2)ψ, (17)

Sψ = (�∇|ψ|)2F3(|ψ|)ψ; (18)

AG2(1, n) : Sψ = |ψ|4/nF4(|ψ|−2−4/n(�∇|ψ|)2). (19)
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Let us adduce some simplest G2(1, 3) invariant equations:

Sψ = λ|ψ|4/3ψ, (20)

Sψ = λ|ψ|2 ∂|ψ|∂|ψ|
∂xa∂xa

ψ. (21)

4. Conditional symmetry of the nonlinear Schrödinger equation
Let us consider some nonlinear differential equation of s-th order:

L(x, ψ, ψ
1
, ψ

2
, . . . , ψ

s
) = 0, (22)

ψ
s
designates the set of all s-th order derivatives.

Let us assume that equation (22) is invariant with respect to a certain Lie algebra
A = 〈X1,X2, . . . , Xn〉, where Xk are basis vectors of the algebra A.

This means that the following conditions must be satisfied:

X
s

kL = RL, (23)

where X
s

k is the s-th prolongation of the operator Xk ∈ A, R = R(x, ψ, ψ
1
, . . .) is some

differential expression.
Let us consider a set of operators which do not belong to the invariance algebra

of equation (22)

Y = 〈Y1, Y2, . . . , Yr〉, Yk ∈ A.

Definition 1 [6, 7]. We shall say that equation (22) is conditionally invariant with
respect to the operators Y if there exists an additional condition

L̃1(x, ψ, ψ
1
, . . . , ) = 0 (24)

on solutions of equation (22), such that equation (22) together with (24) is invariant
with respect to the set of operators Y . This means that the following conditions are
satisfied:

Y
s

kL = R0L+R1L̃1, Y
s

kL̃ = R2L+R3L̃1,

where R0, R1, R2, R3 are some smooth functions, Y
s

k is the s-th Lie prolongation of

the operator Yk ∈ Y .

It is evident that Definition 1 makes sense only if system (23), (24) is compatible.
The notion of conditional symmetry has turned out extremely efficient, and during

recent years it was established that d’Alembert, Schrödinger, Maxwell, heat, Boussi-
nesq equations possess nontrivial conditional symmetry. The problem of detailed
description of conditional symmetry for principal equations of mathematical physi-
cs remains open [6, 7].

Theorem 5 [2, 8]. Equation(
p0 − p2

a

2m

)
ψ = F (|ψ|)ψ (25)
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is conditionally invariant with respect to the operator

Y = xapa + r

(
ψ
∂

∂ψ
+ ψ∗ ∂

∂ψ∗

)
− i ln(ψ(ψ∗)−1)Q, (26)

if

F = a1|ψ|2r−1
+ a2|ψ|−2r−1

, r �= 0 (27)

L̃1(u) = ∆|ψ| − a3|ψ|(r−2)/r = 0, a3 =
1
2
a2m, r, a1, a2 ∈ R. (28)

Corollary 4. Operator (26) generates the following finite transformations

x0 → x′0 = x0, xa → x′a = exp θ · xa, (29)

ψ → ψ′ = exp(rθ) exp{exp(2θ)}(ψ(ψ∗)−1)1/2|ψ|, (30)

θ is the group parameter.

Formula (30) gives nonlinear transformations for the function ψ.
So equation (25), (27) together with (28) admits an additional operator Y (26).

Equation (25) with the nonlinearity (27) without the additional condition (28) is not
invariant with respect to the operator (26).

Having the additional symmetry operator (26) we can construct new ansatzes.

5. Reduction and exact solutions of nonlinear equations
Let us consider the simplest equations (1), (2) which are invariant with respect to

algebra AG2(1, 3):

i
∂ψ

∂t
= −∆ψ + λ|ψ|4/3ψ, (31)

i
∂ψ

∂t
= −∆ψ + λ|ψ|−2 ∂|ψ|

∂xk

∂|ψ|
∂xk

ψ. (32)

We shall search for the solutions in the form [7]

ψ = f(t, �x)ϕ(w), w ≡ (w1, w2, w3), wk = wk(t, �x). (33)

Definition 2. We shall say that the formula (33) is an ansatz for equations (31), (32)
if functions f(x), w1, w2, w3 have such structure that four-dimensional equations are
reduced to three-dimensional ones for the function ϕ(w). Equations obtained for ϕ(w)
depend only on w.

The problem of reduction in the general formulation is an extremely difficult
problem and it requires explicit description of functions f(x), w1, w2, w3 which
satisfy a nonlinear system of equations. We do not think that it is possible now to
construct the general solution of these equations. But in case of an equation having
rich symmetry properties the problem of reduction and description of f(x) and w can
be partially reduced to an algebraic problem of description of inequivalent subalgebras
of this equation [7].
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By means of subalgebraic structure of the algebra AG2(1, 3) we have constructed
quite a large list of ansatzes which reduce four-dimensional equations (31), (32) to
three-dimensional ones. I adduce some of them.

Ansatzes for equations (31), (32).

1. ψ(x) = exp
(
i
x2

3

4t

)
ϕ(w),

w1 = t, w2 = x2
1 + x2

2, w3 = x3 − t arctan
x2

x1
.

(34)

The reduced equation

i

(
∂ϕ

∂w1
+

ϕ

2w1
+
w3

w1

∂ϕ

∂w3

)
= −4w2

∂2ϕ

∂w2
2

−
(

1 +
w2

1

w2
2

)
∂2ϕ

∂w2
3

+ λ|ϕ|4/3ϕ. (35)

2. ψ = (t2 + 1)−3/4 exp
{
i

4

( |�x|2t
1 + t2

+ 2α arctan t
)}

ϕ(w),

w1 =
x1√

1 + t2
, w2 =

x2√
1 + t2

, w3 =
x3√

1 + t2
.

(36)

The reduced equation

− ∂2ϕ

∂w2
1

− ∂2ϕ

∂w2
2

− ∂2ϕ

∂w2
3

− (2α− �w�w)
4

ϕ+ λ|ϕ|4/3ϕ = 0, (37)

where α is an arbitrary real parameter.

3. ψ = (t2 + 1)−3/4 exp
{
i

4

( |�x|2t
1 + t2

+ 2β
tx2 − x1

t2 + 1
arctan t

)}
ϕ(w),

w1 =
tx1 + x2

t2 + 1
+ β arctan t, w2 =

tx2 + x1

t2 + 1
, w3 =

x3√
t2 + 1

.

(38)

The reduced equation

i

(
β
∂ϕ

∂w1
+ w1

∂ϕ

∂w2
− w2

∂ϕ

∂w1

)
= ∆ϕ+

1
4
(2βw2 + �w�w)ϕ+ λ|ϕ|4/3ϕ. (39)

Having investigated symmetry of reduced equations which depend on three vari-
ables and then of ones depending on two variables we come finally to ordinary di-
fferential equations of the form

A(w)
d2ϕ

dw2
+B(w)

dϕ

dw
+ C(w)ϕ+ λ|ϕ|4/3ϕ = 0, (40)

where A(w), B(w), C(w) are second degree polynomials.
Having solved equations (40) we construct exact solutions of the four-dimensional

nonlinear Schrödinger equations (31) by means of the formulae (34), (36), (38).
Solutions of equation (32) constructed by means of ansatzes (34), (36), (38).

ψ(t, �x) =
exp(ia0t)

{√−γ cos(�a�x)}3/2
, λ > 0, a0 < 0;

ψ(t, �x) =
exp(ia0t)

{√−γ sh(�a�x)}3/2
, λ > 0, a0 > 0;

ψ(t, �x) =
exp(ia0t)

{√−γ ch(�a�x)}3/2
, λ < 0, a0 > 0;
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ak are arbitrary real parameters and what is more �a�a = a2 = 4
9 |a0|, γ = 3λ/5a0.

One can see that all obtained solutions depend non-analytically on the parameter λ
(constant of interaction).

The obtained three-dimensional partial solutions can be used for construction of
multi-parameter families of exact solutions. Really, as equation (31) is invariant with
respect to 13-parameter group G(1, 3), that means the following.

If ψ1(t, �x) is a solution of equation (31), then functions

ψ2(t, �x) = exp
{
i

2

(
�v�x+

�v 2t

2

)}
ψ1(t, �x+ �vt),

ψ3(t, �x) = exp
{
− i

4
θ�x 2 + 2�v�x+ �v 2t

1 − θt

}
(1 − θt)−3/2ψ1

(
t

1 − θt
,
�x− �vt

1 − θt

) (41)

are also solutions of the same equation. �v, θ are real parameters.

6. Galilei invariant nonlinear equations
with second order derivatives

Now we formulate one result about the equations (1′) which are invariant under
AG2(1, n) (for more details, see [9]).

Theorem 6 [9]. The equations

Sψ = A0

{
∆ψ − ψ−1 ∂ψ

∂xa

∂ψ

∂xa
+ (ψ∗)−1ψ

[
∆ψ∗ − (ψ∗)−1 ∂ψ

∗

∂xa

∂ψ∗

∂xa

]}
+

+A1|ψ|4/nψ +A2|ψ|−
2n+4

n
∂|ψ|
∂xa

∂|ψ|
∂xb

×

×
{

∂2ψ

∂xa∂xb
− ψ−1 ∂ψ

∂xa

∂ψ

∂xb
+ (ψ∗)−1ψ

[
∂2ψ∗

∂xa∂xb
− (ψ∗)−1 ∂ψ

∗

∂xa

∂ψ∗

∂xb

]}
,

A0 ≡ A0(w), A1 ≡ A1(w), A2 ≡ A2(w) w =
∂|ψ|
∂xa

∂|ψ|
∂xa

|ψ|− 2n+4
n

are invariant under AG2(1, n) algebra. A0, A1, A2 are arbitrary smooth functions.
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