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Ansatz ’95

W.I. FUSHCHYCH

In this talk I am going to present a brief review of some key ideas and methods which
were given start and were developed in Kyiv, at the Institute of Mathematics of National
Academy of Sciences of Ukraine during recent years.

Plan of the talk

The simplest classification of equations.

What is ansatz? The problem of PDE reduction without symmetry.

Conditional symmetry. How can we expand symmetry of PDE?

Conditional symmmetry of Maxwell and Schrödinger systems.

Q-conditional symmetry of the nonlinear wave equation, which is not invariant with
respect to the Lorentz group.

Conditional symmetry of the Poincaré–invariant d’Alembert equation.

Conditional symmetry of the nonlinear heat equation.

Reduction and Antireduction.

Antireduction of the nonlinear acoustics equation.

Antireduction of the equation for short waves in gas dynamics.

Antireduction of nonlinear heat equation.

Nonlocal symmetry, new relativity principles.

Non–Lie symmetry of the Schrödinger equation.

Time is absolute in relativistic physics.

New equations of motions.

High–order parabolic equation in Quantum Mechanics.

Nonlinear generalization of the Maxwell equations.

Equations for fields with the spin 1/2.

How to extend symmetry of on equation with arbitrary coefficients?

1 Classification of equations

Every field of science must begin from some classification. We have today a lot of
classifications of differential equations: parabolic, hyperbolic, elliptic, ultrahyperbolic
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etc. I believe that it is most appropriate for our Conference to divide all equations of
mathematics into two classes: B and B̄
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B

It is seen from the adduced picture that all fundamental equations of mathemati-
cal physics are united into one class B. From the point of view of existing now
classifications they belong to essentially different classes. Equations from the class B
have wide symmetry, and by this feature they are substantially different from other
equations of mathematics.

It is important to point out that there are close relations among these different
equations, which have not been investigated yet till now. For example, if we know
solutions of the heat equation, we can construct solutions for the wave (d’Alembert)
equation. By means of solutions of the Dirac equation, solutions of the Maxwell, heat,
Yang–Mills, and other equations [18] can be obtained.

2 Ansatz reduction of PDE without using symmetry

Let us consider a PDE

L(x, u, u(1), u(2), . . . u(n)) = 0,

u = u(x), x = (x0, x1, . . . , xn), u(1) = (u0, u1, u2, . . . , un), uµ =
∂u

∂xµ
,

u(2) = (u00, u01, . . . , unn), uµν =
∂2u

∂xµ∂xν
.

(2.1)
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Depending on the explicit form of L, equation (2.1) can belong to B or B̄. In
mathematical physics we often come across equations of the following type:

Lu ≡ �u− F (x, u, u(1)) = 0. (2.2)

What can we say today about solutions of equations (2.1), (2.2)? The answer is
trivial: Nothing.

If equation (2.2) belongs to the class B and is invariant with respect to the Poincaré
group P (1, n), that is, a nonlinear function F (x, u, u(1)) has the special form

F (x, u, u(1)) = F

(
u,

∂u

∂xµ

∂u

∂xµ

)
(2.3)

then for equation (2.2) we can construct some classes of exact solutions, study Pain-
levé properties, construct approximate solutions, study asymptotic properties, etc.

Definition 1. (W. Fushchych, 1981, 1983 [1, 2, 3]) We shall call a formula

u = f(x)ϕ(ω) + g(x), (2.4)

an ansatz for equation (2.2) if after substitution of (2.4) we get an equation for the
function ϕ(ω) which depends only on new variables ω = (ω1, ω2, . . . , ωn−1), where
f(x), g(x) are given functions.

If (2.4) is an ansatz for (2.2), then the latter is reduced (the number of independent
variables decreases by one) to an equation for the function ϕ(ω).

Thus the problem of reduction of an equation reduces to description of three
functions 〈f(x), g(x), ω〉 which leads to an equation for ϕ(ω) with less number of
variables.

We can display schematically the process of reduction for an 4–dimensional equati-
on in the following way:
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E3 is a set of three-dimensional equations, E2 is a set of two-dimensional equations,
E1 is a set of one-dimensional equations with the following inclusion E3 ⊂ E2 ⊂ E1.

That is, from one principal equation we obtain the whole set of ODE. Having
solved the ODE, we find exact solutions of a multidimensional equation.

Description of ansatzes of the form (2.4) for the nonlinear wave equation is an
extremely difficult nonlinear problem. In the simplest case, when we put f(x) = 1,
g(x) = 0 for the nonlinear Poincaré–invariant d’Alembert equation

�u = F (u), (2.5)

the problem of reduction of (2.5) to ODE reduces to construction of solutions for the
following overdetermined system for ω (Fushchych W., Serov M. 1983 [3])

�ω = F2(ω),

∂ω

∂xµ

∂ω

∂xµ
=

(
∂ω

∂x0

)2

−
(
∂ω

∂x1

)2

−
(
∂ω

∂x2

)2

− · · · −
(
∂ω

∂xn

)2

= F2(ω).
(2.6)

If ω is a solution of the system (2.6), then the multidimensional equation (2.5) reduces
to ODE with variable coefficients

a2(ω)ϕ̈(ω) + a1(ω)ϕ̇(ω) + a0(ω)ϕ(ω) F (ϕ) = 0 (2.7)

A solution of equation (2.5) has the form

u(x0, . . . xn) = ϕ(ω), ω = ω(x0, x1, . . . , xn), (2.8)

ϕ is a solution of equation (2.7).
Compatibility and general solutions of system (2.6) are described in detail in

papers of Zhdanov, Revenko, Yehorchenko, Fushchych (1987–1993, [4–6]). As we
see, without using explicitly the symmetry of equation (2.5), we can reduce a multi-
dimensional wave equation to ODE. It is obvious that all ansatzes and solutions, which
are constructed on the basis of the classical method by Sophus Lie, can be obtained
within the framework of our approach. The subgroup analysis of the Poincaré group
P (1, n) (Patera J., Winternitz P., Zassenhaus H., 1975–1983, [7, 8] Fedorchuk V.,
Barannyk A., Barannyk L., Fushchych W., 1985–1991 [9–11]) gives only a part of
possible ansatzes.

Note 1. P. Clarkson and M. Kruskal (1989 [12]) implemented the approach suggested
by us in 1981–1983 [1, 2, 3] for the one-dimensional Boussinesq equation and const-
ructed in explicit form ansatzes and solutions which cannot be obtained within the
framework of the classical S. Lie method. In the literature, this approach is often
called the “direct method of reduction”. I believe that it would be more consistent and
correct to call this method of construction of PDE solutions a method of ansatzes.

3 Conditional symmetry

The Lie symmetry, as known, is a local symmetry of the whole set of solutions.
The Lie algorithm enables us to define the invariance algebra for an arbitrary given
equation and to construct ansatzes.
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The term and the concept “conditional symmetry” was introduced and developed
in our papers (1983–1993, [2, 3, 13–18]). This extremely simple concept has appeared
to be efficient and enabled us to discover a nature of many ansatzes which could not
be obtained within the framework of the Lie method.

Conditional symmetry is the symmetry of subsets of equation’s solutions. Knowing
conditional symmetry of an equation, we can construct non–Lie ansatzes and soluti-
ons. It is more difficult to study conditional symmetry of a given equation than to
study its classical Lie symmetry. The difficulty is related to the fact that to find
conditional symmetry of an equation, it is necessary to solve nonlinear determining
equations.

During recent years, there are intensive studies in this promising direction, and
today we can make following general conclusion:

Corollary 1. Principal nonlinear equations of mathematical physics have conditional
symmetry.

Let us denote by the symbol

Q = 〈Q1, Q2, . . . , Qr〉 (3.1)

some set of operators which does not belong to the invariance algebra (IA) of equation
(2.1).

Definition 2. (Fushchych W., Nikitin A., Shtelen W. and Serov M., 1987 [13, 14, 18],
Fushchych W. and Tsyfra I. (1987 [15])). Equation (2.1) is said to be conditionally
invariant under the operators Q from (3.1), if there exists a supplementary condition
on the solutions of (3.1) of the form

L1(x, u, u(1), . . . , u(n)) = 0 (3.2)

such that (3.1) together with (3.2) is invariant under Q.

Thus, one has the following criterion of conditional invariance [13, 15, 18]

QsL = λ0L+ λ1L1, (3.3)

QsL1 = λ2L+ λ3L1, (3.4)

where λ0, λ1, λ2, λ3 are some differential expressions, Qs is the s-th prolongation by
Lie.

Definition 3. We shall say that an equation is Q-conditionally invariant if the additi-
onal equation L1 = 0 is a quasilinear equation of the first order

L1(x, u, u(1)) ≡ Qu = 0, (3.5)

Q = ξµ(x, u)
∂

∂xµ
+ η(x, u)

∂

∂u
, (3.6)

with η being a smooth function.

Thus, the problem of finding the conditional symmetry of a equation reduces to the
solution of equations (3.3), (3.4). As a rule, the determining equations for calculating
ξµ and η are nonlinear equations.

As is known, in the classical approach ξµ, η satisfy a linear system of differential
equations which, because of being overdetermined, can be solved.
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3.1 Conditional symmetry of the Maxwell equations

The first equation where we had noticed conditional symmetry was the Maxwell
subsystem [13]

∂ �E

∂t
= rot �H,

∂ �H

∂t
= −rot �E. (3.7)

It is possible to prove by means the standard Lie method that the maximal invari-
ance algebra of system (3.7) is an 8-dimensional extended Euclid algebra AE1(4) with
basis elements:

Pµ = i
∂

∂xµ
, Jab = xapb − xbpa + Sab, D = xµP

µ, (3.8)

where Sab are 6×6 matrices, which realize a reduced representation of the Lie algebra
of the group SU(2).

Thus, system (3.7) is not invariant with respect to the Lorentz transformations,
which are generated by operators

Joa = xoPa − xaP0 + S0a, (3.9)

〈Sab, S0a〉 are matrices which realize a finite-dimensional representation of the Lie
algebra of the Lorentz group S(1, 3).

Theorem 1. (Fushchych W. and Nikitin A. 1983 [13]). System (3.7) is conditionally
invariant under the Lorentz boosts (3.9) if and only if the solutions of (3.7) satisfy
the conditions

div �E = 0, div �H = 0. (3.10)

Thus, system (3.7) only together with equations (3.10) is invariant under the Lorentz
group.

Note 2. 90 years ago H. Lorentz (1904, April 23), H. Poincaré (1905, June 5, July 23),
A. Einstein (1905, June 30) discovered the theorem about invariance of the full
Maxwell system (3.7), (3.10) with respect to rotations in the four-dimensional pseudo-
Euclidean space-time. This theorem is a mathematical formulation of the fundamental
Lorentz–Poincaré–Einstein principle of relativity.

3.2 Conditional symmetry of linear Schrödinger systems

Let us consider the multicomponent system of disconnected Schrödinger equations:

SΨ =
(
p0 − p2

a

2m

)
Ψr = 0, r = 1, 2, . . . , n,

p0 = i
∂

∂x0
, pa = −i ∂

∂xa
, a = 1, 2, 3,

Ψ = (Ψ1,Ψ2, . . . ,Ψn), Ψ = Ψ(x0 = t, x1, x2, x3).

(3.11)

It is evident that every separate Schrödinger equation (3.11) is invariant with
respect to a scalar representation of the group G2(1, 3), a full Galilei group.
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Let us consider a problem of existence of nontrivial vector, spinor, tensor represen-
tations of the full Galilei group, which are realized on the set of solutions of system
(3.11).

We demand system (3.11) be invariant with respect to the following linear repre-
sentations of the algebra AG2(1, 3)

P0 = i
∂

∂x0
, Pa = −i ∂

∂xa
, M = im,

Ja = xapb − xbpa + Sa, Sa =
1
2
εabcSbc,

Ga = x0pa − xap0 + λa, D = 2x0P0 − xkPk + λ0,

A = x0D − x2
0P0 +

1
2
mx2

k − λaxa,

(3.12)

where matrices Sa, λ0, λa satisfy the commutation relations [29]

[Sa, Sb] = iεabcSc, [λa, λb] = 0, [λ0, Sa] = 0,
[λaSb] = iεabcSc, [λ0, λa] = iλa.

(3.13)

Theorem 2 (Fushchych and Shtelen, 1983, [19]). System of equations (3.11) is condi-
tional invariant under representation AG2(1, 3) (3.12) if

(
λ0 − 3

2
i− 1

m
λkPk

)
Ψ = 0, (3.14)

(λ2
1 + λ2

2 + λ2
3)Ψ = 0. (3.15)

3.3 Q-conditional symmetry of Lorentz noninvariant nonlinear
wave equation

Let us consider the following wave equation (Fushchych and Tsyfra 1987, [15])

Lu ≡ �u+ F (x, u
1
) = 0 (3.16)

F (x, u
1
) = −

(
λ0

x0

)2 (
∂u

∂x0

)2

+
(
λ1

x1

)2 (
∂u

∂x1

)2

+

+
(
λ2

x2

)2 (
∂u

∂x2

)2

+
(
λ3

x3

)2 (
∂u

∂x3

)2

, xµ �= 0,

(3.17)

λµ are arbitrary parameters.
Equation (3.16) is invariant only with respect to scale transformations and trans-

lations:

xµ → x′µ = ebxµ, u→ u′ = e2bu, u→ u′ = u+ c,

b is a real parameter.
Let us consider a Lorentz-invariant ansatz

u = ϕ(ω), ω = xµx
µ = x2

0 − x2
1 − x2

2 − x2
3. (3.18)
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This ansatz, despite the fact that (3.16) is not invariant with respect to the Lorentz
group, reduces equation (3.16) to ODE

ω
d2ϕ

dω2
+ 2

dϕ

dω
+ λ2

(
dϕ

dω

)2

= 0 (3.19)

whose solutions are given by the functions

λ = λ2
0 − λ2

1 − λ2
2 − λ2

3,

ϕ(ω) = 2(−λ2)1/2 tan−1 ω(−λ2)−1/2 for− λ2 > 0,

ϕ(ω) = −(λ2)−1/2ln

{
(λ2)1/2 + ω

(λ2)1/2 − ω

}
for− λ2 < 0.

What is the reason of such reduction? From the classical point of view, ansatz (3.18)
must not reduce the Lorentz non–invariant equation (3.16) to ODE.

The reason of all this is the fact that equation (3.16) is conditionally invariant with
respect to the Lorentz group.

Theorem 3 (Fushchych and Tsyfra, 1987 [15]). Equation (3.16), (3.17) is conditio-
nally invariant with respect to the Lorentz group if the following six conditions are
added:

Jµνu = 0, Jµν = xµ
∂

∂xν
− xν

∂

∂xµ
, µ, ν = 0, 1, 2, 3. (3.20)

Thus, equation (3.16) together with the additional condition (3.20) is invariant
with respect to the Lorentz group. The condition (3.20) picks out the subset from the
whole set of solutions which is invariant with respect to the Lorentz group.

3.4 Conditionally conformal symmetry
of the Poincaré-invariant d’Alembert equation

Let us consider the nonlinear d’Alembert equation with an additional condition

�u+ F (u) = 0, (3.21)

∂u

∂xµ

∂u

∂xµ
= F1(u). (3.22)

Theorem 4 (Fushchych, Zhdanov, Serov 1989 [18]). Equation (3.21) is conditionally
invariant under the conformal group if

F = 3λ(u+ c)−1, (3.23)

∂u

∂xµ

∂u

∂xµ
= λ, (3.24)

where λ, c are arbitrary constants. The operators of conformal symmetry are

Kµ = 2xµD − (xαx
α − u2)

∂

∂xµ
, µ = 0, 1, 2, 3 (3.25)
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D = xµ ∂

∂xµ
+ u

∂

∂u
. (3.26)

Remark 3. Formulae (3.25), (3.26) give a nonlinear representation for the conformal
algebra AC(1, 3).

An ansatz for the system

�u = u−1, ∂µu∂
µu = 1 (3.27)

has the form (Fushchych and Zhdanov, 1989 [4])

u2 = (aµx
µ + g1)2 − (bµxµ + g2)2, (3.28)

where g1 = g1(θµx
µ), g2 = g2(θµx

µ) are arbitrary smooth functions, aµ, bµ, θµ are
arbitrary complex parameters satisfying the condition

aµa
µ = −bµbµ = 1, aµb

µ = aµθ
µ = bµθ

µ = θµθ
µ = 0.

Remark 5. The problem of compatibility and construction of solutions of the d’Alem-
bert–Hamilton system are considered in detail in [5, 6].

3.5 Conditional symmetry of the nonlinear heat equation

Let us consider the equation

u0 + �∇[f(u)�∇u] = 0, f(u) �= const. (3.29)

Ovsyannikov L. (1962, [20]) carried out the complete classification of the one-
dimensional equation (3.29). Dorodnitsyn A., Knyaseva Z., Svirshchevskii S. (1983,
[21]) carried out group classification of the three-dimensional equation (3.29) From
the analysis of these results it follows.

Conclusion 1. (Fushchych 1983 [2]). Among equations of the class (3.29), there are
no nonlinear equations invariant with respect to Galilei transformations which are
generated by the operators

Ga = x0∂a +M(u)xa
∂

∂u
, (3.30)

M(u) is constant.

Theorem 5 (Fushchych, Serov, Chopyk 1988 [16]). The equation (3.29) is conditional
invariant under the Galilean operators (3.30) if

u0 +
(�∇u)2
2M(u)

= 0, (3.31)

M(u) =
u

2f(u)
. (3.32)

Conclusion 2. The nonlinear equation (3.29) with the additional condition (3.31) is
compatible with the Galilei relativity principle.
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Conclusion 3. If

f(u) =
1

2m
uk, M(u) =

2m
kn+ 2

u1−k, (3.33)

f(u) = eu, M(u) = 1, (3.34)

where m, k are arbitrary constants, kn+2 �= 0, then equation (3.29) is conditionally
invariant with respect to Galilei transformations.

Q-conditional symmetry of the one-dimensional equation

u0 − u11 = F (u)

was studied in detail (Fushchych and Serov, 1990, [22, 23]). Recently these results
were obtained by Clarkson P. and Mansfield E. (1994, [24]).

4 Reduction and antireduction

Under the term “reduction–antireduction”, we understand a decreasing of dimension
of an equation with respect to independent variables and increasing (antireduction)
by the number of dependent variables. That is we have simultaneously the process of
reduction (by the number of independent variables) and antireduction (increasing the
number of reduced systems with respect to the original equation) [25].

In the classical Lie approach as a rule the number of components of dependent
variables for reduced systems does not increase.

Example 1. Let us consider the nonlinear acoustics equation (Khokhlov–Zabolotskaja
equation)

u01 − (u1u)1 − u22 − u33 = 0, (4.1)

u = u(x1, x2, x3).

The ansatz (Fushchych and Myronyuk, 1991 [26])

u =
1
3
x1ϕ

(1)(ω0, ω2, ω3) +
1
6
x2

1ϕ
(2)(ω0, ω2, ω3) + ϕ(3)(ω0, ω2, ω3), (4.2)

ω0 = x0, ω2 = x2, ω = x3

antireduces four-dimensional equation (4.1) to the system of coupled three-dimensional
equations for functions ϕ(1), ϕ(2), ϕ(3)

∂2ϕ(1)

∂ω2
2

+
∂2ϕ(2)

∂ω2
3

= (ϕ(2))2,

∂2ϕ(1)

∂ω2
2

+
∂2ϕ(1)

∂ω2
3

+
∂ϕ(1)

∂ω0
− ϕ(1)ϕ(2) = 0,

∂2ϕ(3)

∂ω2
2

+
∂2ϕ(3)

∂ω2
3

− 1
3
ϕ(2)ϕ(3) − 1

3
∂ϕ(1)

∂ω0
+

1
9
(ϕ(1))2 = 0.

(4.3)

The formula (4.2) gives a non-Lie ansatz for equation (4.1).
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Example 2. Let us consider the equation for short waves in gas dynamics

2u01 − 2(2x1 + u1)u11 + u22 + 2λu1 = 0,
u = u(x0 = t, x1, x2).

(4.4)

The ansatz (Fushchych and Repeta 1991, [27])

u = x1ϕ
(1)(ω0, ω2) + x2

1ϕ
(2)(ω0, ω2) + x

3/2
1 ϕ(3) + ϕ(4),

ω0 = x0, ω2 = x2

(4.5)

antireduces one three-dimensional scalar equation (4.4) to a system of two-dimensio-
nal equations for four functions

ϕ(3) = 0,
∂2ϕ(1)

∂ω2
2

= 0,
∂2ϕ(2)

∂ω2
2

= 0,

∂2ϕ(4)

∂ω2
2

=
9
4
(
ϕ(1)

)2
,

∂ϕ(1)

∂ω0
= ϕ(1)

(
3ϕ(2) +

1
2
− λ

)
.

(4.6)

4.1 Antireduction and ansatzes for the nonlinear heat equation

Let us consider the nonlinear one-dimensional heat equation

∂u

∂t
=

∂

∂x

{
a(u)

∂u

∂x

}
+ F (u), (4.7)

∂u

∂t
=
∂2u

∂x2
+ F (u). (4.8)

We consider an implicit ansatz

h
(
t, x, u, ϕ(1)(ω), ϕ(2)(ω) . . . , ϕ(N)(ω)

)
= 0, (4.9)

which reduces the two–dimensional equation (4.7) to the system of ODE for functi-
ons ϕ(1), . . . , ϕ(N). We have constructed a quite long list of ansatzes which reduce
equation (4.7) to the system of ODE (Zhdanov R. and Fushchych W. 1994, [33]).

Example 3. If in (4.7)

a(u) = λu−3/2, F (u) = λ1u+ λ2u
5/2, (4.10)

then the ansatz [33] is as follows

u−3/2 = ϕ(1)(t) + ϕ(2)(t)x+ ϕ(3)(t)x2 + ϕ(4)(t)x3, (4.11)

ϕ̇(1) = 2λϕ(1)ϕ(3) − 2
3
λ(ϕ(2))2 − 3

2
λ1ϕ

(1) − 3
2
λ2,

ϕ̇(2) = −2
3
λϕ(2)ϕ(3) + 6λϕ(1)ϕ(4) − 3

2
λ1ϕ

(2),

ϕ̇(3) = −2
3
λ(ϕ(3))2 + 2λϕ(2)ϕ̇(4) − 3

2
λ1ϕ

(3),

ϕ̇(4) = −3
2
λ1ϕ

(4).

(4.12)
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Having solved the system of ODE (4.12), by formula (4.11) we construct exact soluti-
ons of the equation (4.7).

Example 4. If in (4.8)

F (u) =
{
α+ β lnu− γ2(lnu)2

}
u, (4.13)

then the ansatz

lnu = ϕ(1)(t) + eγxϕ(2)(t) (4.14)

reduces (4.8) to the system of ODE

ϕ̇(1) = 2 + βϕ(1) − γ2(ϕ(1))2,

ϕ̇(2) =
{
β + γ2 − 2γ2ϕ(1)

}
ϕ(2).

(4.15)

It is possible to construct solutions of system (4.15) in the explicit form. Depending
on the sign of the quantity d = β2 + 4αγ2 we get the following solutions of the
nonlinear equation (4.8), (4.13).

Case 4.1 d > 0

u = c

(
cos

d1/2t

2

)−2

exp
(
γx+ γ2t

)
+

1
2γ2

(
β − d1/2tg

d1/2t

2

)
. (4.16)

Case 4.2 d < 0

u = c

(
ch

|d|1/2t

2

)−2

exp
(
γx+ γ2t

)
+

1
2γ2

(
β + |d|1/2th

|d|1/2t

2

)
. (4.17)

Case 4.3 d = 0

u = ct−2 exp
(
γx+ γ2t

)
+

1
2γ2t

(βt+ 2). (4.18)

Example 5. If in (4.7)

a(u) = λuk, F (u) = λ1u+ λ2u
1−k, (4.19)

then the ansatz

uk = ϕ(1)(t) + ϕ(2)(t)x+ ϕ(3)(t)x2 (4.20)

antireduces (4.7) to the system of ODE

ϕ̇(1) = 2λϕ(1)ϕ(3) + λk−1(ϕ(2))2 + kλ2,

ϕ̇(2) = 2λ(1 + 2k−1)ϕ(2)ϕ(3) + kλ1ϕ
(2),

ϕ̇(3) = 2λ(1 + 2k−1)(ϕ(3))2 + kλ1ϕ
(3).

(4.21)
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5 Non-Lie symmetry, new relativity principles

5.1 Non-Lie symmetry Schrödinger equation

Let us consider the Schrödinger equation(
i
∂

∂x0
− p2

a

2n

)
u(x0, �x) = 0. (5.1)

It is well known that the maximal (in the Lie sense) invariance algebra (5.1) is
the full Galilei algebra AG2(1, 3) = 〈P0, Pa, Jab, Ga,D,A〉

P0 = i
∂

∂x0
, Pa = −i ∂

∂x0
, a = 1, 2, 3,

Jab = xapb − xbpa, Ga = x0pa −mxa,

D = 2x0P0 − xkPk, A = x0D − x2
0P0 +

1
2
mx2

a.

(5.2)

Operators Ga generate the standard Galilei transformations:

t→ t′ = exp {iGava} t exp {−iGava} = t, (5.3)

xa → x′a = exp {iGbvb}xa exp {−iGcvc} = xa + vat. (5.4)

Let us put the following question: do symmetries which are not reduced for the
algebra (5.2) exhaust for equation (5.1)?

Answer: The Schrödinger equation (5.1) has additional symmetries (supersymmetries,
non-Lie, nonlocal) which are not reduced to the Galilei algebra AG2(1, 3) [29].

One of results in this direction is the following:

Theorem 6. (Fushchych and Seheda 1977 [28]). The Schrödinger equation (5.1) is
invariant with respect to the Lorentz algebra AL(1, 3)

Jab = xapb − xbpa, (5.5)

J0a =
1

2m
(pGa +Gap), p = (p2

1 + p2
2 + p2

3)
1/2 = (−∆)1/2. (5.6)

It is not difficult to check that the operators 〈Jab, J0c〉 ≡ AL(1, 3) satisfy the
commutation relations

[Jab, J0c] = i(gacJb0 − gbcJa0), [J0a, J0b] = −iJab.

It is important to point out that J0a are integral-differential symmetry operators and
generate nonlocal transformations

xa → x′a = exp {iJobVb}xa exp {−iJ0cVc} �= Galilei transform. (5.4), (5.7)

t→ t′ = exp {iJ0aVa} t exp {−iJ0bVb} = t. (5.8)

Hence the operators J0a (5.6) generate new transformations which do not coincide
with the known Galilei and Lorentz transformation. Thus we have new relativity
principle. It is defined by formulae (5.7), (5.8).
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5.2 Time is absolute in relativistic physics

The four-component Dirac equation lies in the foundation of the modern quantum
mechanics

γµp
µΨ = mΨ(x0, x1, x2, x3). (5.9)

Here γµ are 4 × 4 Dirac matrices.
Since the time of discovery of this equation it is known that (5.9) is invariant with

respect to the Poincaré algebra AP (1, 3) = 〈Pµ, Jµν〉 with the basis elements

Pµ = i
∂

∂xµ
, J (1)

µν = xµpν − xνpµ + Sµν , Sµν =
i

4
(γµγν − γνγµ). (5.10)

Operators J (1)
µν generate the standard Lorentz transformations

t→ t′ = exp
{
iJ

(1)
0a va

}
t exp {−iJ0bvb} , (5.11)

xa → x′a = exp
{
iJ

(1)
0b vb

}
xa exp {−iJ0cvc} . (5.12)

Hence, the fundamental statement follows that time t ∈ T (1) and space �x ∈ R(3) are
the single pseudo-Euclidean space-time with the metric

s2 = x2
0 − x2

1 − x2
2 − x2

3. (5.13)

Let us put another question: Do there exist symmetries in equation (5.10) which
cannot be reduced to the algebra AP(1,3) (5.11)?

Answer: The Dirac equation (5.9) has a wide additional symmetry (supersymmetry,
non-Lie symmetry) which cannot be reduced to the algebra AP (1, 3) (5.10) [13, 29].

I shall say here briefly about one of such symmetries.

Theorem 7. (Fushchych 1971, 1974 [30, 31]. The Dirac equation (5.9) is invariant
with respect to the following representation of the Poincaré algebra

P
(2)
0 = H = γ0γapa + γ0m, P (2)

a = −i ∂

∂xa
, a = 1, 2, 3, (5.14)

J
(2)
ab = xapb − xbpa + Sab, Sab =

i

4
(γaγb − γbγa), (5.15)

J
(2)
0a = x0pa − 1

2
(xaH +Hxa). (5.16)

Thus we have two different representations of the Poincaré algebra AP (1, 3) (5.10)
and (5.14)–(5.16).

The representation (5.15) and (5.16) generates nonlocal transformations

xa → x′a = exp{iJ (2)
ab vb}xa exp{iJ (2)

0c vc} �= Lorentz transform, (5.17)

t→ t′ = exp{iJ (2)
0b vb}t exp{−iJ (2)

0c vc} = t. (5.18)

Thus, time does not change in relativistic physics. Time is absolute in relativistic
physics.
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There are two nonequivalent possibilities (duality) for transformations of coordi-
nates and time: Lorentz transformation (5.11), (5.12) and non-Lorentz transformation
(5.17), (5.18).

The Maxwell and Klein–Gordon–Fock equations are also invariant under nonlocal
transformations (5.17), (5.18) when time does not change. However energy and
momentum are transformed by the Lorentz law [31,32]. We have new relativity prin-
ciple (5.17), (5.18).

What is the reason of such a paradoxical statement? The reason is that the
operators J (2)

0a are non-Lie symmetry operators and the standard relation (S. Lie’s
theorems) between Lie groups and Lie algebras is broken.

So, physics is not equivalent to geometry and geometry is not physics. Physics is
Nature. Theoretical Physics is only a Model of Nature!

6 On some new motion equations

Some new motion equations are adduced in this section. These equations are generali-
zations of known classical equations. Symmetry of these equations has not been
investigated.

6.1 High order parabolic equation in quantum mechanics

The Schrödinger equation (5.1) is not the only equation compatible with the Galilei
relativity principle. A more general equation was suggested in [1, 2]

(λ1S + λ2S
2 + · · · + λnS

n)u = λu,

S ≡ p0 − p2
a

2m
, S2 = S · S, Sn = Sn−1S,

(6.1)

λ, λ1, λ2, . . . , λn are arbitrary parameters. Equation (6.1) as well as the classical
equation (5.1) is invariant with respect to the Galilei transformations but it is not
invariant with respect to scale and projective transformations.

A new equation for two particles (waves):

p0u1 =
1

2m1
p2

au1 + V1

(
t, x1, x2, . . . , x6, u1, u2

)
,

p0u2 =
1

2m2
p2

a+3u2 + V2

(
t, x1, x2, . . . , x6, u1, u2

)
,

u1 = u1(t, x1, x2, x3), u2 = u2(t, x4, x5, x6), V1 and V2 are potentials.

6.2 Nonlinear generalization of Maxwell equations

If we assume that the light velocity is not constant [34], we can suggest some
generalizations of the Maxwell equations

∂ �E
∂t = rot {c( �E2, �H2, �E �H) �H}, ∂ �H

∂t
= −rot {c( �E2, �H2, �E �H) �E},

div {a( �E2, �H2, �E �H) �E} = 0, div {b( �E2, �H2, �E �H) �H} = 0,
(6.2)
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where a, b and c are some functions of electromagnetic field;

∂ �E

∂t
= rot {c( �B2, �D2, �B �D) �B} +�j,

∂ �H

∂t
= −rot {c( �B2, �D2, �B �D) �D},

or

∂ �D

∂t
= rot {c( �E2, �H2, �E �H) �E} +�j,

∂ �B

∂t
= −rot {c( �E2, �H2, �E �H) �E},

(6.3)

λ1
�D + λ2� �D = F1( �E2, �H2, �E �H) �E + F2( �E2, �H2, �E �H) �H,

λ3
�B + λ4� �B = R1( �E2, �H2, �E �H) �E +R2( �E2, �H2, �E �H) �H,

(6.4)

div �D = ρ, div �B = 0, (6.5)

where F1, F2, R1, R2 are functions of fields �E and �H, c in equations (6.2), (6.3) can
be a function of (t, �x), c = c(t, �x), or depend on the gravity potential V , c = C(V ).
Nonlinear wave equations for �E and �H have form

∂2 �E

∂t2
− c2∆ �E = 0,

∂2 �H

∂t2
− c2∆ �H = 0, (6.6)

or

∂2 �E

∂t2
− ∆(c2 �E) = 0,

∂2 �H

∂t2
− ∆(c2 �H) = 0; (6.7)

or

∂2

∂t2

(
1
c2
�E

)
− ∆ �E = 0,

∂2

∂t2

(
1
c2
�H

)
− ∆H = 0, (6.8)

with one of the conditions

c2 =
1
2

(
∂ �E
∂t

)
+

(
∂ �H
∂t

)

(rot �H)2 + (rot �E)2
(6.9)

or

∂c2

∂xµ

∂c2

∂xµ
= 0. (6.10)

or

cµ
∂c2
∂xµ

= λ(E2 �H2, �E �H)Fαβc
β , (6.11)

cα is the four-velocity of the light (electromagnetic field), c2 = cαc
α.

Equations of hydrodynamical type for electromagnetic field have form

∂ �E

∂t
= a1

{
�∇× (�c× �H)

}
+ a2

{
�∇× (�c× �E)

}
,

∂ �H

∂t
= b1

{
�∇× (�c× �E)

}
+ b2

{
�∇× (�c× �H)

}
,

∂�c

∂t
+ (�c�∇)�c = R1

�E +R2
�H,

(6.12)
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�c is the three-velocity of the light, where a1, a2, b1, b2, R1, R2 are functions of �E2,
�H2, �E �H.

Maxwell’s equations in a moving frame with the velocity can be generalized in
such forms

∂ �E

∂t
+ λ1vk

∂ �E

∂xk
+ λ2 rot �H = 0,

∂ �H

∂t
+ λ3vk

∂ �H

∂xk
+ λ4 rot �E = 0,

or

∂ �E

∂t
+ λ1vk

∂ �H

∂xk
+ λ2 rot �H = 0,

∂ �H

∂t
+ λ3vk

∂ �E

∂xk
+ λ4 rot �E = 0,

with the conditions ∂vk

∂t + vl
∂vk

∂xl
= 0.

6.3 Equations for fields with the spin 1/2

Fields with the spin 1/2 are described, as a rule, by first-order equations, by the Dirac
equation. However, such fields can be also described by second-order equations. Some
of such equations are adduced below:

pµp
µΨ = F1(ψ̄ψ)Ψ, ψ̄γµp

µΨ = F2(ψ̄Ψ); (6.13)

pµp
µΨ = R1(ψ̄ψ)Ψ, (ψ̄γµΨ)pµΨ = F2(ψ̄ψ)Ψ; (6.14)

pµp
µΨ = F1(ψ̄ψ)Ψ, (ψ̄γµΨ)(ψ̄pµΨ) = F3(ψ̄ψ); (6.15)

pµp
µΨ + λγµp

µΨ = F (ψ̄ψ)Ψ; (6.16)

pµp
µΨ = F1(ψ̄ψ)Ψ, p0Ψ = {(ψ̄γ0Ψ)(ψ̄γkψ)pk +mΨ̄γ0Ψ}Ψ.

6.4 How to extend symmetry of an equation
with arbitrary coefficients?

Let us consider the a second-order equation

aµν(x)
∂2u

∂xµ∂xν
+ bµ(x)

∂u

∂xµ
+ F (u) = 0. (6.17)

Equation (6.17) with arbitrary fixed coefficients has only a trivial symmetry (x →
x′ = x, u → u′ = u). However, if we do not fix coefficient functions aµν(x), bµ(x),
such an equation can have wide symmetry. E.g., if aµν , bµ satisfy the equations

�aµν =
∂u

∂xµ

∂u

∂xν
F1(u) (6.18)

or

�bµ = F2(u)
∂u

∂xµ
, �aµν =

∂2u

∂xµ∂xν
F3(u), (6.19)

then the nonlinear system (6.17), (6.18), (6.19) is invariant with respect to the Poin-
caré group P(1,3). Let us emphasize that here even if we put F1 = 0, F2 = 0,
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equations (6.17), (6.18), (6.19) are a nonlinear system of equations. With some parti-
cular functions F1 and F2, it is possible to construct ansatzes which reduce system
(6.17), (6.18), (6.19) to the system of ordinary differential equations.

So, considering (6.17) as a nonlinear equation with additional conditions for aµν ,
bν , we can construct the exact solution for eqation (6.17). The adduced idea about
extension of the symmetry of (6.17) can be used for construction of exact solutions
for motion equations in gravity theory.

The second example of equations which have wide symmetry is

vµvν
∂2Fαβ

∂xµ∂xν
= 0, (6.20)

vµ
∂vν

∂xµ
= 0. (6.21)

If in (6.20) vµ are fixed functions the equation, as a rule, has trivial symmetry.
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