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Amplitude-phase representation for solutions
of nonlinear d’Alembert equations
P. BASARAB-HORWATH, N. EULER, M. EULER, W.I. FUSHCHYCH

We consider the nonlinear complex d’Alembert equation �Ψ = F (|Ψ|)Ψ with Ψ
represented in terms of amplitude and phase, in (1 + n)-dimensional Minkowski space.
We exploit a compatible d’Alembert–Hamilton system to construct new types of exact
solutions for some nonlinearities.

1. Introduction
Let us consider the general nonlinear complex d’Alembert equation in (1 + n)-

dimensional Minkowski space

�Ψ = F (|Ψ|)Ψ, (1)

where F is a smooth, real function of its argument, Ψ is a complex function of 1 + n
real variables, and

� =
∂2

∂x2
0

− ∂2

∂x2
1

− · · · − ∂2

∂x2
n

.

Equation (1) plays a fundamental role in classical and quantum field theories, and in
superfluidity and liquid crystal theory. Many exact solutions have been found using
Lie symmetry methods [6, 11, 12, 13, 8, 7], as well as with conditional symmetries [7].

In this paper we use the representation Ψ = ueiv, where u is the amplitude and
v is the phase (both real functions). On substituting this in (1), we find the following
system:

�u− u(vµvµ) = uF (u), (2)

u�v + 2uµvµ = 0. (3)

We use the notation

uµvµ =
∂u

∂x0

∂v

∂x0
− ∂u

∂x1

∂v

∂x1
− · · · − ∂u

∂xn

∂v

∂xn
.

The system (2), (3) is obviously equivalent to the starting equation (1). However,
equations (2), (3) has the advantage that it gives us the possibility of making functio-
nal and differential connections between the amplitude and phase, which substantially
simplifies the problem of integrating equation (1). Moreover, in assuming the simplest
possible relations between the amplitude and phase, we are able to construct exact
solutions of (2), (3), and hence of (1).

We now seek solutions of (2), (3). We consider two cases: (i) the amplitude
as a function of the phase, u = g(v); (ii) the phase as a function of the amplitude,
v = g(u). This is reminiscent of the polar description of plane curves in geometry. The
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system (2), (3) then yields a pair of equations for the phase v in the first case and for
the amplitude u in the second case. There then arises the question of the compatibility
of the two equations obtained, and we solve it by exploiting the compatible system

w =
λN

w
, wµwµ = λ, (4)

where λ = −1, 0, 1 and N = 0, 1, . . . , n. Exact solutions for the system (4) are given
in table 1 in section 2.

The system (4) is a particular case of the d’Alembert–Hamilton system

�w = F1(w), wµwµ = F2(w), (5)

The system (5) was studied by Smirnov and Sobolev in 1932, with w = w(x0, x1, x2)
and F1 = F2 = 0. Collins [2–4] studied (5) with w a function of three complex
variables, and obtained compatibility conditions for the functions F1(w), F2(w). For
(1 + 3) and higher dimensional Minkowski space, (5) was studied by Fushchych and
co-workers [9, 10]: they obtained compatibility conditions for F1(w), F2(w) and some
exact solutions.

Here, we exploit the results of Fushchych et. al [10], applying them to the
system (4). Moreover, the compatibility of (4) dictates the type of nonlinearity F (u)
which can appear in (1). This is the novelty of our approach to finding some exact
solutions of (1).

2. Solutions
2.1. u = g(ν). We now assume that the amplitude is a function of the phase:

u = g(v). Inserting this assumption in (2), (3), we obtain

�v =
−2gġF (g)

gg̈ − 2ġ2 − g2
= F1(v), (6)

vµvµ =
g2F (g)

gg̈ − 2ġ2 − g2
= F2(v) (7)

with ġ = dg/dv.
We now deal with (6), (7) in two ways: (i) assume forms for F1, F2 so as to make

equations (6), (7) compatible; (ii) transform equation (4) locally so as to agree with
(6), (7).

First, let us make the assumption

F1(v) =
λN

v
, F2(v) = λ

with N,λ �= 0. Then equations (6), (7) become a compatible system [10], and we also
find that g and F must satisfy

gg̈ − 2ġ2 − g2 − g2

λ
F (g) = 0,

−2ġ
g

= N. (8)

From (8) it now follows that

g(v) = σv−N/2, F (v) = −λ+ λ
N

2

(
1 − N

2

)
σ−4/Nv4/N ,

where σ �= 0 is an arbitrary real constant.
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With this, we have obtained the following:

Result 1. An exact solution of (1) with nonlinearity

F (|Ψ|) = −λ+ σ−4/Nλ
N

2

(
1 − N

2

)
|Ψ|4/N

is given by

Ψ(x) = σv(x)−N/2eiv(x),

where v(x) is a solution of the compatible system (4) for N,λ �= 0.
Our next step is to perform a local transformation of (4). We do this by setting

w = f(v) in (4) (with λ �= 0), with f a real, smooth function such that ḟ �= 0. With
this substitution, we obtain the system:

�v =
λN

f(v)ḟ(v)
− λf̈(v)
ḟ3(v)

, (9)

vµvµ =
λ

ḟ2(v)
. (10)

The system (9), (10) is obviously compatible since it is the local transformation of
an already compatible system. However, it should be noted that this does not mean
that the exact solutions we obtain by using (9), (10) are equivalent to those obtained
from (8), since we have introduced some extra freedom via the function f .

We now equate the right-hand sides of (6), (7) with the right-hand sides of (9),
(10), respectively. A little algebraic manipulation gives us

g(v) = σ

(
ḟ(v)
fN (v)

)1/2

, (11)

where σ is an arbitrary non-zero constant. Thus we have a differential relation between
f and g which we can integrate. For N = 1 we obtain

f(v) = C exp
(

1
σ2

∫ v

g2(ξ)dξ
)

(12)

and g has to satisfy the integro-differential equation

gg̈ − 2ġ2 − g2 − C2

λσ4
g6 exp

(
1
σ2

∫ v

g2(ξ)dξ
)
F (g) = 0. (13)

For N �= 1 we find

f(v) =
(

1 −N

σ2

∫ v

g2(ξ)dξ + C

)1/(1−N)

, (14)

C being an arbitrary real constant, and with the following condition on g:

gg̈ − 2ġ2 − g2 − 1
λσ4

g6

(
1 −N

σ2

∫ v

g2(ξ)dξ + C

)2N/(1−N)

F (g) = 0. (15)
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Our result is summarized in the following:

Result 2. (i) The function

Ψ(x) = g(v(x)) exp[iv(x)]

is a solution of (1) whenever g is a solution of (13) and w(x) = f(v(x)) is a solution
of

�w =
λ

w
, wµwµ = λ

with f given by (12).
(ii) The function

Ψ(x) = g(v(x)) exp[iv(x)]

is a solution of (1) whenever g is a solution of (15) and w(x) = f(v(x)) is a solution
of

�w =
λN

w
, wµwµ = λ

with f given by (14) for N �= 1.
One may treat (13) and (15) in two ways: consider F as given, and then attempt

to solve for g, or make an assumption about g and then find the corresponding F .
We take this second approach, and in doing so, we determine the function f which
appears in (12) and (14), which also relates (4) to the system (6), (7).

This is illustrated in the following example, where we take g as g(v) = vβ . Then
we obtain after some elementary manipulation

w = f(v) = Cv1/σ2

when N = 1, β = − 1
2 In this case we find the corresponding nonlinear version of (1)

and an exact solution:

�ψ +
λσ4

C2

(
1
4
|ψ|4/σ2 − |ψ|4(1−σ2)/σ2

)
ψ = 0,

ψ(x) =
(

1
C
w(x)

)−σ2/2

exp

[
i

(
1
C
w(x)

)σ2]
,

where w is a solution of

�w =
λ

w
, wµwµ = λ.

The solutions of this system are given in table 1. We can choose the nonlinearity
in the above wave equation by choosing σ. For instance, for σ2 = 2

3 we obtain the
equation

�Ψ −
(

2
3

)2
λ

C2

(
|Ψ|2 − 1

4
|Ψ|6

)
Ψ = 0. (16)

Equation (16) is of the type considered by Grundland and Tuczynski [12].
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For N = 2, β = −1 we obtain the following wave equation and exact solution:

�Ψ +
1
σ8

(
|Ψ|2 +

1
λσ4

|Ψ|6
)

Ψ = 0, (17)

Ψ(x) = (C − w(x))σ2 exp
[
i

1
(C − w(x))σ2

]
, (18)

where w is a solution of the compatible system

�w =
2λ
w
, wµwµ = λ

and exact solutions of this system are given in table 1. Equation (17) is also of a type
considered by Grundland and Tuczynski [12]. Our exact solutions are new.

2.2. ν = g(u). We now assume that the phase is a function of the amplitude:
v = g(u). On substituting this in equations (2), (3), we obtain

�u =
(u2g̈ + 2uġ)F (u)
ug̈ + 2ġ + u2ġ3

≡ F1(u), (19)

uµuµ =
−u2Ḟ (u)

ug̈ + 2ġ + u2ġ3
≡ F2(u). (20)

Here ġ = dg/du.
We perform the same analysis as before. First, letting F1(u) = λN/u, F2(u) = λ,

λ �= 0, we find (after some computation)

g(u) = −σu
N+1

N + 1
+ σ1, F (u) =

λN

u2
− λσ1

u2(N+2)
.

Having determined g and the nonlinearity of the wave equation (19), we have the
following:

Result 3. An exact solution of (1) with nonlinearity

F (|Ψ|) = λN |Ψ|−2 − λσ1|Ψ|−2(N+2)

is given by

Ψ(x) = Cu(x) exp
( −iσ

(N + 1)u(x)(N+1)

)
,

where λ �= 0 and C �= 0 is an arbitrary real constant, and where u(x) is a solution of
the system (4).

Another way of dealing with (19), (20) is to transform (4) locally using the
transformation w = f(u) with ḟ �= 0, which gives us

�u =
λN

f(u)ḟ(u)
− λf̈(u)
ḟ3(u)

, (21)

uµuµ =
λ

ḟ2(u)
. (22)
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Then, equating the right-hand sides of (21), (22) with the right-hand sides of (19),
(20), we find (for λ �= 0, as before) that

u2ġ(u) = σ
ḟ(u)
fN (u)

,

where σ �= 0 is an arbitrary real constant. Again we see that there are two cases to
consider: N = 1 and N �= 1.

For N = 1 we obtain

f(u) = C exp
(

1
σ

∫ u

ξ2
dg(ξ)
dξ

dξ

)
(23)

with C an arbitrary real constant. The condition on g is

ug̈ + 2ġ + u2ġ3 +
u4C2

λσ2
ġ3 exp

(
1
σ

∫ u

ξ2
dg(ξ)
dξ

dξ

)
F (u) = 0. (24)

When N �= 1, f is given by

f(u) =
(
C − N − 1

σ

∫ u

ξ2
dg(ξ)
dξ

dξ

)1/(1−N)

(25)

with C an arbitrary real constant and with the following condition on g:

ug̈ + 2ġ + u2ġ3 +
u4

λσ2

(
C − N − 1

σ

∫ u

ξ2
dg(ξ)
dξ

dξ

)2N/(1−N)

F (u) = 0.

This reasoning can be summarized in the following:

Result 4. (i) The function

Ψ(x) = u(x) exp(ig(u(x)))

is a solution of (1) whenever g is a solution of (24) and w(x) = f(u(x)) is a solution
of

�w =
λ

w
, wµwµ = λ

with f given by (23).
(ii) The function

Ψ(x) = u(x) exp(ig(u(x)))

is a solution of (1) whenever g is a solution of (26) and w(x) = f(u(x)) is a solution
of

�w =
λN

w
, wµwµ = λ

with f given by (25) for N �= 1.

We treat equations (24) and (26) relating g to the nonlinearity F as before: we
assume a form for g and treat the equations as determining F . Taking g(u) = uβ ,
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we have the following examples of the wave equation, exact solution and relation
between u and w:

N = 1, β �= −2.

�Ψ +
λσ2

C2
|Ψ|−2

(
1 +

β + 1
β2

|Ψ|−2β

)
exp

[ −β
σ(β + 2)

|Ψ|β+2

)
Ψ = 0,

Ψ(x) = u(x) exp[iu(x)β ],

u =
(
σ(β + 2)

β
ln
∣∣∣w
C

∣∣∣)1/(β+2)

,

where w is a solution (listed in table 1) of the compatible system

�w =
λ

w
, wµwµ = λ.

N �= 1, β �= −2.

�Ψ + λσ2|Ψ|−2

(
1 +

β + 1
β2

|Ψ|−2β

)(
C − (N − 1)β

σ(β + 2)
|Ψ|β+2

)2N/(N−1)

Ψ = 0,

Ψ(x) = u(x) exp[iu(x)β ],

u =
(
σ(β + 2)
(N − 1)β

(C − w1−N )
)1/(β+2)

,

where w is a solution (listed in table 1) of the compatible system

�w =
λN

w
, wµwµ = λ.

If we choose β = −1, N = 2, C = 0, then we find that the wave equation is

�Ψ + λσ−2|Ψ|2Ψ = 0 (26)

with the exact solution

Ψ(x) = u(x) exp
(

i

u(x)

)

and

u(x) = σw(x),

where w solves

�w =
2λ
w
, wµwµ = λ.

Equation (27) is of some interest: of all the possible nonlinearities F (|Ψ|), the
nonlinearity F (|Ψ|) = |Ψ|2 gives the widest possible symmetry group, admitting
the conformal group. Equation (27) (and indeed equation (1)) can be reduced to the
nonlinear Schrödinger equation in (1 + 2)-dimensional time-space (see [1]) with the
same nonlinearity. This equation also admits the widest possible symmetry group
for nonlinearities of the given type. It can be reduced to the (1 + 1)-dimensional
nonlinear Schrödinger equation with the same nonlinearity, and this equation has
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soliton solutions (the well known Zakharov–Shabat soliton). Using this soliton, we
can construct a new type of solution of the hyperbolic wave equation (27). Of course,
this does not imply that (27) has soliton solutions located in three-dimensional space.

3. Conclusion
We have demonstrated an approach which can give new exact solutions of some

nonlinear wave equations of the same type as (1). The novelty in our approach lies
in the fact that we exploit the compatibility conditions for the d’Alembert–Hamilton
system to dictate the type of nonlinearity and the exact solution(s). Moreover, some
of the equations we obtain appear to be of interest in physics, but we are unable to
make any statement about the physical nature of the exact solutions we obtain, as
our approach has not used any physical criteria to single out any type of solution.

Of course, this is not the only approach possible; we could, for instance, reduce (1)
to the Schrödinger equation (as in [1]) and then apply a similar method to this
new equation in the amplitude-phase representation. Also, it is possible to consider
a more general connection between the amplitude and phase, such as u = G(vµvµ)
for some function G. This leads to a system involving the Born–Infeld equation,
which has a very wide symmetry group, and we obtain new exact solutions of (1).
This differential connection between amplitude and phase will of course be important
when we allow nonlinearities dependent on derivatives, such as F (|Ψ|,Ψ∗

µΨµ). We
will report on this work in a forthcoming paper.
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