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On the general solution of the d’Alembert
equation with a nonlinear eikonal constraint
and its applications
R.Z. ZHDANOV, I.V. REVENKO, W.I. FUSHCHYCH

We construct the general solutions of the system of nonlinear differential equations
�nu = 0, uµuµ = 0 in the four- and five-dimensional complex pseudo-Euclidean spaces.
The results obtained are used to reduce the multi-dimensional nonlinear d’Alembert
equation �4u = F (u) to ordinary differential equations and to construct its new exact
solutions.

1 Introduction

Kaluza [1] was the first who put forward an idea of extension of the four-dimensional
Minkowski space in order to use it as a geometric basis for unification of the
electromagnetic and gravitational fields. Nowadays, Kaluza’s idea is well-known and
there are a lot of papers where further development and various generalizations of
this idea are obtained [2].

In [3–5] it was proposed to apply five-dimensional wave equations to describe
particles (fields) having variable spins and masses. Such physical interpretation of the
five-dimensional equations is based on the fact that the generalized Poincaré group
P (1, 4) acting in the five-dimensional de Sitter space contains the Poincaré group
P (1, 3) as a subgroup. It means that the mass and spin Casimir operators have conti-
nuous and discrete spectrum, respectively, in the space of irreducible representations
of the group P (1, 4) [3–6].

The simplest P (1, 4)-invariant scalar linear equation has the form

�5u + χ2u = 0, χ = const, (1)

where �5 is the d’Alembert operator in the five-dimensional Minkowski space with
the signature (+,−,−,−,−).

The problem of construction of exact solutions of the above equation is, in fact,
completely open. One can obtain some its particular solutions applying the symmetry
reduction procedure or the method of separation of variables (both approaches use
essentially symmetry properties of the whole set of solutions of Eq. (1)). In the
present paper we suggest a method for construction of solutions of partial differential
equation (1) which utilizes implicitly the symmetry of a subset of the set of its
solutions. Namely, a special subset of its exact solutions obtained by imposing an
additional constraint

u2
x0

− u2
x1

− u2
x2

− u2
x3

− u2
x4

= 0,

which is the eikonal equation in the five-dimensional space, will be investigated.
As shown in [7, 8], the system obtained is compatible if and only if χ = 0. We
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will construct general solutions of multi-dimensional systems of partial differential
equations (PDE)

�nu = 0, uµuµ = 0 (2)

in the four- and five-dimensional complex pseudo-Euclidean spaces.
In (2) u = u(x0, x1, . . . , xn−1) ∈ C2(Cn, C1). Hereafter, the summation over the

repeated indices in the pseudo-Euclidean space M(1, n − 1) with the metric tensor
gµν = diag (1,−1, . . . ,−1︸ ︷︷ ︸

n−1

) is understood, e.g. �n ≡ ∂µ∂µ = ∂2
0−∂2

1−· · ·−∂2
n−1, ∂µ =

∂/∂xµ.
It occurs that solutions of system of PDE (2), being very interesting by itself, can

be used to reduce the nonlinear d’Alembert equation

�4u = F (u), F (u) ∈ C(R1, R1), (3)

to ordinary differential equations, thus giving rise to families of principally new exact
solutions of (3). More precisely, we will establish that there exists a nonlinear map
from the set solutions of the system of PDE (2) into the set of solutions of the
nonlinear d’Alembert equation, such that each solution of (2) corresponds to a family
of exact solutions of Eq. (3) containing two arbitrary functions of one argument. It
will be shown that solutions of the nonlinear d’Alembert equation obtained in this
way can be related to its conditional symmetry.

The paper is organized as follows. In Section 2 we give assertions describing
the general solution of system of PDE (2) in the n-dimensional real and in the
four- and five-dimensional complex pseudo-Euclidean spaces. In Section 3 we prove
these assertions. Section 4 is devoted to discussion of the connection between exact
solutions of system (2) and the problem of reduction of the nonlinear d’Alembert
equation (3). In Section 5 we construct principally new exact solutions of Eq. (3).

2 Integration of the system (2):
the list of principal results

Below we adduce assertions giving general solutions of the system of PDE (2) with
arbitrary n ∈ N provided u(x) ∈ C2(Rn, R1), and with n = 4, 5, provided u(x) ∈
C2(Cn, C1).
Theorem 1. Let u(x) be a sufficiently smooth real function of n real variables
x0, . . . , xn−1. Then, the general solution of the system of nonlinear PDE (2) is given
by the following formula:

Aµ(u)xµ + B(u) = 0, (4)

where Aµ(u), B(u) are arbitrary real functions which satisfy the condition

Aµ(u)Aµ(u) = 0. (5)

Note 1. As far as we know, Jacobi, Smirnov and Sobolev were the first who obtained
the formulas (4), (5) with n = 3 [9, 10]. That is why, it is natural to call (4), (5)
the Jacoby–Smirnov–Sobolev formulas (JSSF). Later on, in 1944 Yerugin generalized
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JSSF for the case n = 4 [11]. Recently, Collins [12] has proved that JSSF give the
general solution of system (2) for an arbitrary n ∈ N. He applied rather complicated
differential geometry technique. Below we show that to integrate Eqs. (2) it is quite
enough to make use of the classical methods of mathematical physics only.

Theorem 2. The general solution of the system of nonlinear PDE (2) in the class
of functions u = u(x0, x1, x2, x3, x4) ∈ C2(C5, C1) is given by one of the following
formulas:

(1) Aµ(τ, u)xµ + C1(τ, u) = 0, (6)

where τ = τ(u, x) is a complex function determined by the equation

Bµ(τ, u)xµ + C2(τ, u) = 0, (7)

and Aµ, Bµ, C1, C2 ∈ C2(C2, C1) are arbitrary functions satisfying the conditions

AµAµ = AµBµ = BµBµ = 0, Bµ ∂Aµ

∂τ
= 0, (8)

and what is more,

∆ = det

∥∥∥∥∥∥∥∥
xµ ∂Aµ

∂τ
+

∂C1

∂τ
xµ ∂Aµ

∂u
+

∂C1

∂u

xµ ∂Bµ

∂τ
+

∂C2

∂τ
xµ ∂Bµ

∂u
+

∂C2

∂u

∥∥∥∥∥∥∥∥ �= 0; (9)

(2) Aµ(u)xµ + C1(u) = 0, (10)

where Aµ(u), C1(u) are arbitrary smooth functions satisfying the relations

AµAµ = 0 (11)

(in the formulas (6)–(11) the index µ takes the values 0, 1, 2, 3, 4).
Theorem 3. The general solution of the system of nonlinear PDE (2) in the class of
functions u = u(x0, x1, x2, x3) ∈ C2(C4, C1) is given by the formulas (6)–(11), where
the index µ is supposed to take the values 0, 1, 2, 3.
Note 2. Investigating particular solutions of the Maxwell equations, Bateman [13]
arrived at the problem of integrating the d’Alembert equation �4u = 0 with an
additional nonlinear condition (the eikonal equation) uxµ

uxµ = 0. He has obtained the
following class of exact solutions of the said system of PDE:

u(x) = cµ(τ)xµ + c4(τ), (12)

where τ = τ(x) is a complex-valued function determined in implicit way

ċµ(τ)xµ + ċ4(τ) = 0, (13)

and cµ(τ), c4(τ) are arbitrary smooth functions satisfying conditions

cµcµ = ċµċµ = 0. (14)

(hereafter, a dot over a symbol means differentiation with respect to a corresponding
argument).

It is not difficult to check that solutions (12)–(14) are complex (see the Lemma 1
below). An another class of complex solutions of the system (2) with n = 4 was
constructed by Yerugin [11]. But neither the Bateman’s formulas (12)–(14) nor the
Yerugin’s results give the general solution of the system (2) with n = 4.
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3 Proofs of Theorems 1–3

It is well-known that the maximal symmetry group admitted by equation (1) is finite-
dimensional (we neglect a trivial invariance with respect to an infinite-parameter
group u(x) → u(x) + U(x), where U(x) is an arbitrary solution of Eq. (1), which is
due to its linearity). But being restricted to a set of solutions of the eikonal equation
the set solutions of PDE (1) admits an infinite-dimensional symmetry group [14]! It
is this very fact that enables us to construct the general solution of (2).

Proof of the Theorem 1. Let us make in (2) the hodograph transformation

z0 = u(x), za = xa, a = 1, n − 1, w(z) = x0. (15)

Evidently, the transformation (15) is defined for all functions u(x), such that
ux0 �≡ 0. But the system (2) with ux0 = 0 takes the form

n−1∑
a=1

uxaxa
= 0,

n−1∑
a=1

u2
xa

= 0,

whence uxa
≡ 0, a = 1, n − 1 or u(x) = const.

Consequently, the change of variables (9) is defined on the whole set of solutions
of the system (2) with the only exception u(x) = const.

Being rewritten in the new variables z, w(z) the system (2) takes the form

n−1∑
a=1

wzaza
= 0,

n−1∑
a=1

w2
za

= 1. (16)

Differentiating the second equation with respect to zb, zc we get

n−1∑
a=1

(wzazbzc
wza

+ wzazb
wzazc

) = 0.

Choosing in the above equality c = b and summing up we have

n−1∑
a,b=1

(wzazbzb
wza

+ wzazb
wzazb

) = 0,

whence, by force of (16),

n−1∑
a,b=1

w2
zazb

= 0. (17)

Since u(z) is a real-valued function, it follows from (17) that an equality wzazb
= 0

holds for all a, b = 1, n − 1, whence

w(z) =
n−1∑
a=1

αa(z0)za + α(z0). (18)

In (18) αa, α ∈ C2(R1, R1) are arbitrary functions.
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Substituting (18) into the second equation of system (16), we have

n−1∑
a,b=1

α2
a(z0) = 1. (19)

Thus, the formulas (18), (19) give the general solution of the system of nonlinear
PDE (16). Rewriting (18), (19) in the initial variables x, u(x), we get

x0 =
n−1∑
a=1

αa(u)xa + α(u),
n−1∑
a=1

α2
a(u) = 1. (20)

To represent the formulas (20) in a manifestly covariant form (4), (5) we redefine
the functions αa(u) in the following way:

αa(u) =
Aa(u)
A0(u)

, α(u) = − B(u)
A0(u)

, a = 1, n − 1.

Substituting the above expressions into (20) we arrive at the formulas (4), (5).
Next, as u = const is contained in the class of functions u(x) determined by the

formulas (4), (5) under Aµ ≡ 0, µ = 0, n − 1, B(u) = u+const, JSSF (4), (5) give the
general solution of the system of the PDE (2) with an arbitrary n ∈ N. The theorem
is proved.

Let us emphasize that the reasonings used above can be applied to the case of
a real-valued function u(x) only. If a solution of the system (2) is looked for in a class
of complex-valued functions u(x), then JSSF (4), (5) do not give its general solution
with n > 3. Each case n = 4, 5 . . . requires a special consideration.

Proof of the Theorem 2. Case 1: ux0 �= 0. In this case the hodograph transformation
(15) reducing the system (2) with n = 5 to the form

4∑
a=1

wzaza
= 0,

4∑
a=1

w2
za

= 1, wz0 �≡ 0 (21)

is defined.
The general solution of nonlinear complex Eqs. (21) was constructed in [15]. It is

given by one of the following formulas:

(1) w(z) =
4∑

a=1

αa(τ, z0)za + γ1(τ, z0), (22)

where τ = τ(z0, . . . , z4) is a function determined in implicit way

4∑
a=1

βa(τ, z0)za + γ2(τ, z0) = 0 (23)

and αa, βa, γ1, γ2 ∈ C2(C2, C1) are arbitrary smooth functions satisfying the relations

4∑
a=1

α2
a = 1,

4∑
a=1

αaβa =
4∑

a=1

β2
a = 0,

4∑
a=1

αa
∂βa

∂τ
= 0; (24)
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(2) w(z) =
4∑

a=1

αa(z0)za + γ1(z0), (25)

where αa, γ1 ∈ C2(C1, C1) are arbitrary functions satisfying the relation

4∑
a=1

α2
a = 1. (26)

Rewriting the formulas (23), (24) in the initial variables x, u(x), we have

x0 =
4∑

a=1

αa(τ, u)xa + γ1(τ, u), (27)

where τ = τ(u, x) is a function determined in implicit way

4∑
a=1

βa(τ, u)xa + γ2(τ, u) = 0, (28)

and the relations (24) hold.
Evidently, the formulas (27), (28) are obtained from (6)–(8) with a particular

choice of functions Aµ, Bµ, C1, C2

A0 = 1, Aa = αa, C1 = −γ1,

B0 = 0, Ba = βa, C2 = −γ2,
(29)

where a = 1, 4.
Next, by force of inequality wz0 �≡ 0 we get from (22)

4∑
a=1

(αaz0 + αaτ τz0)xa + γ1z0 + γ1τ τz0 �= 0. (30)

Differentiation of (23) with respect to z0 yields the following expression for τz0 :

τz0 = −
(

4∑
a=1

βaz0xa + γ2z0

)(
4∑

a=1

βaτxa + γ2τ

)−1

Substitution of the above result into (30) yields the relation

(
4∑

a=1

βaτxa + γ2τ

)−1

∣∣∣∣∣∣∣∣∣∣

4∑
a=1

αaz0xa + γ1z0

4∑
a=1

αaτxa + γ1τ

4∑
a=1

βaz0xa + γ2z0

4∑
a=1

βaτxa + γ2τ

∣∣∣∣∣∣∣∣∣∣
�= 0.

As the direct check shows, the above inequality is equivalent to (9) provided the
conditions (29) hold.

Now we turn to solutions of the system (21) of the form (25). Rewriting the
formulas (25), (26) in the initial variables x, u(x) we get

x0 =
4∑

a=1

αa(u)xa + γ1(u),
4∑

a=1

α2
a(u) = 1.
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Making in the equalities obtained the change αa = AaA−1
0 , a = 1, 4, γ1 =

−C1A
−1
0 , we arrive at the formulas (10), (11).

Thus, under ux0 �≡ 0 the general solution of the system (2) is contained in the
class of functions u(x) given by the formulas (6)–(9) or (10), (11).

Case 2: ux0 ≡ 0, u �= const. It is a common knowledge that the system of PDE
(2) is invariant under the generalized Poincaré group P (1, n − 1) (see, e.g. [16])

x′
µ = Λµνxν + Λµ, u′(x′) = u(x),

where Λµν , Λµ are arbitrary complex parameters satisfying the relations ΛαµΛα
ν =

gµν , µ, ν = 0, n − 1. Hence, it follows that the transformation

u(x) → u(x′) = u(Λµνxν) (31)

leaves the set of solutions of the system (2) invariant. Consequently, provided u(x) �=
const we can always transform u to such a form that ux0 �= 0. Thus, in the case 2 the
general solution is also given by the formulas (6)–(11) within the transformation (31).

Case 3: u = const. Choosing in (10), (11) Aµ = 0, µ = 0, 4, C1 = u = const we
come to the conclusion that this solution is described by the formulas (6)–(11).

Thus, we have proved that, within a transformation from the group P (1, 4) (31),
the general solution of the system of PDE (2) with n = 5 is given by the formulas
(6)–(11). But these formulas are represented in a manifestly covariant form and are
not altered with the transformation (31). Consequently, to complete the proof of the
theorem it is enough to demonstrate that each function u = u(x) determined by the
equalities (6)–(11) is a solution of the system of equations (2).

Differentiating the relations (6), (7) with respect to xµ, we have

Aµ + τxµ
(Aντxν + C1τ ) + uxµ

(Aνuxν + C1u) = 0,
Bµ + τxµ

(Bντxν + C2τ ) + uxµ
(Bνuxν + C2u) = 0.

Resolving the above system of linear algebraic equations with respect to uxµ
, τxµ

,
we get

uxµ
=

1
∆
(
Bµ(Aντxν + C1τ ) − Aµ(Bντxν + C2τ )

)
,

τxµ
=

1
∆
(
Aµ(Bνuxν + C1u) − Bµ(Aνuxν + C2u)

)
,

(32)

where ∆ �= 0 by force of (9). Consequently,

uxµ
uxµ = ∆−2

(
BµBµ(Aντxν + C1τ )2 − 2AµBµ(Aντxν + C1τ )(Bντxν + C2τ ) +

+ AµAµ(Bντxν + C2τ )2
)

= 0.

Analogously, differentiating (32) with respect to xν and convoluting the expression
obtained with the metric tensor gµν , we get gµνuxµxν

≡ �5u = 0.
Next, differentiating (10) with respect to xµ we have

uxµ
= −Aµ(Ȧνxν + Ċ1)−1, µ = 0, 4,

whence

uxµxν
= −(ȦµAν + ȦνAµ)(Ȧαxα + Ċ1)−2+ AµAν(Äαxα + C̈1)(Ȧαxα + Ċ1)−2.



504 R.Z. Zhdanov, I.V. Revenko, W.I. Fushchych

Consequently,

uxµ
uxµ = AµAµ(Ȧνxµ + Ċ1)−2 = 0,

�5u ≡ uxµxµ = −2(AµȦµ)(Ȧνxν + Ċ1)−2 +

+ AµAµ(Äνxν + C̈1)(Ȧνxν + Ċ1)−2 = 0.

The Theorem 2 is proved.
The Theorem 3 is a direct consequence of the Theorem 2. Really, solutions of the

system of PDE (2) with n = 4 are obtained from solutions of the system of PDE (2)
with n = 5 provided ux4 ≡ 0. Imposing on functions u(x) determined by the formulas
(6)–(11) a condition ux4 ≡ 0 we arrive at the following restrictions on the functions
Aµ, Bµ, C1, C2:

A4 = 0, B4 = 0

the same as what was to be proved.

4 Applications: reduction of the nonlinear
d’Alembert equation

Following [8, 15, 16], we look for a solution of the nonlinear d’Alembert equation

�4w = F (w), F ∈ C1(R1, R1) (33)

in the form

w = ϕ(ω1, ω2), (34)

where ωi = ωi(x) ∈ C2(R4, R1) are supposed to be functionally-independent. The
functions ω1(x), ω2(x) are determined by the requirement that the substitution of
(34) into (33) yields two-dimensional PDE for a function ϕ = ϕ(ω1, ω2). As a result,
we obtain an over-determined system of PDE [16]

�4ω1 = f1(ω1, ω2), �4ω2 = f2(ω1, ω2),
ω1xµ

ω1xµ = g1(ω1, ω2), ω2xµ
ω2xµ = g2(ω1, ω2),

ω1xµ
ω2xµ = g3(ω1, ω2), rank

∥∥∥∥ ∂ωi

∂xµ

∥∥∥∥2 3

i=1µ=0

= 2,

(35)

and besides, the function ϕ(ω1, ω2) satisfies a two-dimensional PDE,

g1ϕω1ω1 + g2ϕω2ω2 + 2g3ϕω1ω2 + f1ϕω1 + f2ϕω2 = F (ϕ). (36)

Consider the following problem: to describe all smooth real functions ω1(x), ω2(x)
such that the Ansatz (34) reduces Eq. (33) to an ordinary differential equation (ODE)
with respect to the variable ω1. It means that one has to put coefficients g2, g3, f2

in (36) equal to zero. In other words, it is necessary to construct a general solution
of the system of nonlinear PDE

�4ω1 = f1(ω1, ω2), ω1xµ
ω1xµ = g1(ω1, ω2),

ω1xµ
ω2xµ = 0, ω2xµω2xµ

= 0, �4ω2 = 0.
(37)
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The above system includes Eqs. (2) as a subsystem. So, the d’Alembert-eikonal
system (2) arises in a natural way when solving the problem of reduction of Eq. (33)
to PDE having a smaller dimension (see, also [15, 17]).

With an appropriate choice of a function G(ω1, ω2) the change of variables

v = G(ω1, ω2), u = ω2

reduces the system (37) to the form

�4v = f(u, v), vxµ
vxµ = λ, (38)

uxµ
vxµ = 0, uxµ

uxµ = 0, �4u = 0, (39)

rank
∥∥∥∥ vx0vx1vx2vx3

ux0ux1ux2ux3

∥∥∥∥ = 2, (40)

where λ is a real parameter taking the values −1, 0, 1.
Before formulating the principal assertion, we will prove an auxiliary lemma.

Lemma 1. Let a = (a0, a1, a2, a3), b = (b0, b1, b2, b3) be four-vectors defined in the
real Minkowski space M(1, 3). Suppose they satisfy the relations

aµbµ = bµbµ = 0,

3∑
µ=0

b2
µ �= 0. (41)

Then, an inequality aµaµ ≤ 0 holds.
Proof. It is known that any isotropic non-null vector b in the space M(1, 3) can be
reduced to the form b′ = (α, α, 0, 0), α �= 0 by means of a transformation from the
group P (1, 3). Substituting b′ = (α, α, 0, 0) into the first equality from (41), we get

α(a′
0 − a′

2) = 0 ⇔ a′
0 = a′

3.

Consequently, the vector a′ has the following components: a′
0, a′

1, a′
2, a′

0. That is
why, a′

µa′µ = a′2
0 − a′2

1 − a′2
2 − a′2

0 = −(a′2
1 + a′2

2 ) ≤ 0. As the quadratic form aµaµ is
invariant with respect to the group P (1, 3), hence it follows that aµaµ ≤ 0.

Let us note that aµaµ = 0 if and only if a2 = a3, i.e. aµaµ = 0 if and only if the
vectors a and b are parallel.

Theorem 4. Eqs. (38)–(40) are compatible if and only if

λ = −1, f = −N
(
v + h(u)

)−1
, (42)

where h ∈ C1(R1, R1) is an arbitrary function, N = 0, 1, 2, 3.
Theorem 4. The general solution of the system of Eqs. (38)–(40) being determined
within a transformation from the group P (1, 3) is given by the following formulas:

a) under f = −3
(
v + h(u)

)−1, λ = −1(
v + h(u)

)2 = (−ȦνȦν)−1(Ȧµxµ + Ḃ)2 +

+ (−ȦνȦν)−3(εµναβAµȦνÄαxβ + C)2,
Aµxµ + B = 0;

(43)
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b) under f = −2
(
v + h(u)

)−1, λ = −1(
v + h(u)

)2 = (−ȦνȦν)−1(Ȧµxµ + Ḃ)2, Aµxµ + B = 0, (44)

where Aµ = Aµ(u), B = B(u), C = C(u) are arbitrary smooth functions satisfying
the relations

AµAµ = 0, ȦµȦµ �= 0, (45)

c) under f = −(v + h(u)
)−1, λ = −1(

v + h(x0 − x3)
)2 =

(
x1 + C1(x0 − x3)

)2 +
(
x2 + C2(x0 − x3)

)2
,

u = C0(x0 − x3),
(46)

where C0, C1, C2 are arbitrary smooth functions;
d) under f = 0, λ = −1

(1) v = (−ȦνȦν)−3/2εµναβAµȦνÄαxβ + C, Aµxµ + B = 0, (47)

where Aµ = Aµ(u), B = B(u), C = C(u) are arbitrary smooth functions satisfying
the relations (45);

(2) v = x1 cos
(
C1(x0 − x3)

)
+ x2 sin

(
C1(x0 − x3)

)
+ C2(x0 − x3),

u = C0(x0 − x3),
(48)

where C0, C1, C2 are arbitrary smooth functions.
In the above formulas (43), (47) we denote by εµναβ the completely anti-symmet-

ric fourth-order tensor (the Levi-Civita tensor), i.e.

εµναβ =




1, (µ, ν, α, β) = cycle (0, 1, 2, 3),
−1, (µ, ν, α, β) = cycle (1, 0, 2, 3),

0, in the remaining cases.

Proof of the Theorems 4, 5. By force of (40) u �= const. Consequently, within
a transformation from the group P (1, 3) ux0 �= 0. That is why, one can apply to
Eqs. (38)–(40) the hodograph transformation

z0 = u(x), za = xa, a = 1, 3, w(z) = x0, v = v(z0, za).

As a result, the system (38), (39) reads

3∑
a=1

w2
za

= 1,

3∑
a=1

wzaza
= 0, (49)

3∑
a=1

vza
wza

= 0, (50)

3∑
a=1

v2
za

= −λ,
3∑

a=1

(vzaza
+ 2w−1

z0
vza

wzaz0) = −f(v, z0). (51)
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As v(z) is a real-valued function, λ ≤ 0. Scaling, if necessary, the function v we
can put λ = −1 or λ = 0.

Case 1: λ = −1. As it is shown in the Section 2, the general solution of the system
(49) in the class of real-valued functions w(z) is given by the formulas (18), (19) with
n = 4. Substituting (18) into (50), we obtain a first-order linear PDE

3∑
a=1

αa(z0)vza
= 0, (52)

whose general solution is represented in the form

v = v(z0, ρ1, ρ2). (53)

In (53),

z0, ρ1 =

(
3∑

a=1

α̇2
a

)−1/2( 3∑
a=1

α̇aza + α̇

)
,

ρ2 =

(
3∑

a=1

α̇2
a

)−3/2 3∑
a,b,c=1

εabczaαbα̇c

are the first integrals of Eq. (52) and what is more,
3∑

a=1
α̇2

a �= 0 (the case αa = const,

a = 1, 3 will be treated separately), εabc is the third-order anti-symmetric tensor with
ε123 = 1.

Substitution the expression (53) into (51) yields the system of two PDE for
a function v = v(z0, ρ1, ρ2)

vρ1ρ1 + vρ2ρ2 + 2ρ−1
1 vρ1 = −f(v, z0), (54)

v2
ρ1

+ v2
ρ2

= 1. (55)

To get rid of an arbitrary element (function) f(v, z0) from (54) we consider instead
of system (54), (55) its differential consequence

vρ2(vρ1ρ1 + vρ2ρ2 + 2ρ−1
1 vρ1)ρ1 − vρ1(vρ1ρ1 + vρ2ρ2 + 2ρ−1

1 vρ1)ρ1 = 0, (56)

v2
ρ1

+ v2
ρ2

= 1, (57)

that is obtained by differentiating the first equation with respect to ρ1, ρ2, multiplying
the expressions obtained by vρ2 and −vρ1 , respectively, and summing.

Further, we will consider the subcases vρ2ρ2 = 0 and vρ2ρ2 �= 0 separately.
Subcase 1.A: vρ2ρ2 = 0. Then,

v = g1(z0, ρ1)ρ2 + g2(z0, ρ1), (58)

where g1, g2 ∈ C2(R1, R1) are arbitrary functions.
Substituting (58) into (57) and splitting an equality obtained by the powers of ρ2,

we have

g1ρ1 = 0, g2
1 + (g2ρ2)

2 = 1,
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whence

v = αρ1 ±
√

1 − α2ρ2 − h(z0). (59)

Here α ∈ R
1, h is an arbitrary smooth function.

Inserting (59) into (56) we get an algebraic equation α
√

1 − α2 = 0, whence
α = 0,±1.

Finally, substitution of (59) into (54) yields the equation for f(v, z0)

2αρ−1
1 = −f

(
αρ1 ±

√
1 − α2ρ2 − h(z0), z0

)
. (60)

From Eq. (60) it follows that, under α = 0,

f = 0, v = ±ρ2 − h(z0) (61)

and under α = ±1,

f = −2
(
v + h(z0)

)−1
, v = ±ρ1 − h(z0). (62)

Subcase 1.B: vρ2ρ2 �= 0. In this case one can apply to Eqs. (56), (57) the Euler–
Ampére transformation

z0 = y0, ρ1 = y1, ρ2 = Gy2 , v + G = ρ2y2, vρ1 = −Gy1 , vρ2 = y2,

vρ2ρ2 = (Gy2y2)
−1, vρ1ρ2 = −Gy1y2(Gy2y2)

−1,

vρ1ρ1 = (G2
y1y2

− Gy1y1Gy2y2)(Gy2y2)
−1.

(63)

Here y0, y1, y2 are new independent variables, G = G(y0, y1, y2) is a new function.
Being rewritten in the new variables y, G(y) the Eq. (57), becomes linear

Gy1 = ±
√

1 − y2
2 ,

whence

G = ±y1

√
1 − y2

2 + H(y0, y2), H ∈ C2(R2, R1). (64)

Making in the Eq. (56) the change of variables (63) and inserting the expression
(64), we transform it as follows(

y2 − (1− y2
2)3/2Hy2y2

)−2(3y2Hy2y2 + (y2
2 − 1)Hy2y2y2

)
+ 2y−2

1 y2Hy2y2 = 0.(65)

Splitting (65) by the powers of y1 and integrating the equations obtained, we get

H = h1(y0)y2 + h2(y0).

Substituting the above result into (64) and returning to the initial variables z0, ρ1,
ρ2, v(z0, ρ1, ρ2) we obtain the general solution of the system of PDE (56), (57)

v + h2(z0) = ±([ρ2 − h1(z0)]2 + ρ2
1

)1/2
. (66)

At last, inserting (66) into the equation (54), we arrive at the conclusion that the
function f is determined by the formula (42) with N = 3.
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If αa = const, a = 1, 3, then the equality α2
1 + α2

2 + α2
3 = 1 holds. Applying, if

necessary, a transformation from the group P (1, 3) one can put α1 = α2 = 0, α3 = 1,
i.e. u = C0(x0 − x3), C0 ∈ C2(R1, R2).

As a consequence of Eqs. (39) we get v = v(ξ, x1, x2), where ξ = x0 − x3, and
what is more, Eqs. (38) take the form

v2
x1

+ v2
x2

= 1, vx1x1 + vx2x2 = −f
(
v, C0(ξ)

)
. (67)

It is known [15, 18] that Eqs. (67) are compatible if and only if f = 0 or f =
−(v + h(u))−1, h ∈ C1(R1, R1). And besides, the general solution of (67) is given by
the formulas (48) and (46), respectively.

Thus, we have completely investigated the case λ = −1.
Case 2: λ = 0. By force of the fact that the function v is a real one, it follows

from (51) that v = v(z0). Consequently, an equality v = v(u) holds that breaks the
condition (40) which means that under λ = 0 the system (38)–(40) is incompatible.

Thus, we have proved that the system of nonlinear PDE (38)–(40) is compatible if
and only if the relations (42) hold and that its general solution is given by one of the
formulas (46), (48), (61), (62), and (66). To complete the proof, one has to rewrite
the expressions (61), (62), (66) in the manifestly covariant from (43), (44), (47).

Consider, as an example, the formula (62)

v = ±ρ1 − h(z0) ≡ ±
(

3∑
a=1

α̇2
a(u)

)−1/2( 3∑
a=1

xaα̇a(u) + α̇(u)

)
− h(u), (68)

the function u(x) being determined by the formula (20),

3∑
a=1

αa(u)xa + α(u) = x0,
3∑

a=1

α2
a(u) = 1. (69)

Let us make in (68), (69) a substitution αa = AaA−1
0 , α = −BA−1

0 , whence

Aµ(u)xµ + B(u) = 0, AµAµ = 0,

v = ±
(

3∑
a=1

(ȦaA−1
0 − AaȦ0A

−2
0 )2

)−1/2

×

×
(

3∑
a=1

xa(ȦaA−1
0 − AaȦ0A

−2
0 ) + BȦ0A

−2
0 − ḂA−1

0

)
− h(u) =

= ±
(

3∑
a=1

(Ȧ2
aA−2

0 + A2
aȦ2

0A
−4
0 − 2ȦaAaȦ0A

−3
0 )−1/2

)
×

×
(

3∑
a=1

xa(ȦaA−1
0 − AaȦ0A

−2
0 ) + BȦ0A

−2
0 − ḂA0

)
− h(u) =

= ±
(
−ȦµȦµA−2

0 − AµAµȦ2
0A

−4
0 + 2ȦµAµȦ0A

−3
0

)−1/2

×
×
(
−A−1

0 (xµȦµ + Ḃ) + A−2
0 Ȧ0(xµAµ + B)

)
− h(u) =

= ∓(−ȦµȦµ)−1/2(xµȦµ + Ḃ) − h(u).
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The only thing left is to prove that ȦµȦµ < 0. Since AµAµ = 0, the equality
ȦµAµ = 0 holds. Consequently, by force of the Lemma −ȦµȦµ ≥ 0, and what is
more, the equality ȦµȦµ = 0 holds if and only if Ȧµ = k(u)Aµ. General solution of
the above system of ordinary differential equations reads Aµ = l(u)θµ, where l(u) is
an arbitrary function, θµ are arbitrary real parameters obeying the equality θµθµ = 0.

Hence it follows that αa = AaA−1
0 = θaθ−1

0 = const, and the condition
3∑

a=1
α̇2

a �= 0

does not hold. We come to the contradiction, whence it follows that ȦµȦµ < 0.
Thus, we have obtained the formula (44). Derivation of the remaining formulas

from (43), (47) is carried out in the same way. The theorems are proved.
Substitution of the results obtained above into the formula (34) yields the following

collection of Ansätze for the nonlinear d’Alembert equation (33):

(1) w(x) = ϕ
([(−Ȧν(u)Ȧν(u)

)−1(
Ȧµ(u)xµ + Ḃ(u)

)2 +

+
(−Ȧν(u)Ȧν(u)

)−3(
εµναβAµ(u)Ȧν(u)Äα(u)xβ + C(u)

)2]1/2
, u
)
;

(2) w(x) = ϕ
((−Ȧν(u)Ȧν(u)

)1/2(
Ȧµ(u)xµ + Ḃ(u)

)
, u
)

;

(3) w(x) = ϕ
([(

x1 + C1(x0 − x3)
)2 +

(
x2 + C2(x0 − x3)

)2]1/2
, x0 − x3

)
;

(4) w(x) = ϕ
((−Ȧν(u)Ȧν(u)

)−3/2(
εµναβAµ(u)Ȧν(u)Äα(u)xβ + C(u)

)
, u
)

;

(5) w(x) = ϕ
(
x1 cos C1(x0 − x3) + x2 sin C1(x0 − x3) + C2(x0 − x3), x0 − x3

)
.

(70)

Here B, C, C1, C2 are arbitrary smooth functions of the corresponding arguments,
Aµ(u) are arbitrary smooth functions satisfying the condition AµAµ = 0 and the
function u = u(x) is determined by JSSF (10) with C1(u) = B(u), n = 4. Note
that arbitrary functions h contained in the functions v(x) (see above the formulas
(43), (44), (46)) are absorbed by the function ϕ(v, u) at the expense of the second
argument.

Substitution of the expressions (70) into (33) gives the following equations for
ϕ = ϕ(u, v):

(1) ϕvv +
3
v
ϕv = −F (ϕ), (71)

(2) ϕvv +
2
v
ϕv = −F (ϕ), (72)

(3) ϕvv +
1
v
ϕv = −F (ϕ), (73)

(4) ϕvv = −F (ϕ), (74)

(5) ϕvv = −F (ϕ), (75)

Equations (4), (5) from (71)–(75) are known to be integrable in quadratures.
Therefore, any solution of the d’Alembert-eikonal system (2) corresponds to some
class of exact solutions of the nonlinear wave equation (33) that contains arbitrary
functions. Saying it in another way, the formulas (70) make it possible to construct
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wide families of exact solutions of the nonlinear PDE (33) using exact solutions of the
linear d’Alembert equation �4u = 0 satisfying an additional constraint uxµ

uxµ = 0.
It is interesting to compare our approach to the problem of reduction of Eq. (33)

with the classical Lie approach. Within the framework of the Lie approach functions
ω1(x), ω2(x) from (34) are looked for as invariants of the symmetry group of the
equation under study (in the case involved it is the Poincaré group P (1, 3)). Since the
group P (1, 3) is a finite-parameter group, its invariants cannot contain an arbitrary
function (a complete description of invariants of the group P (1, 3) had been carried
out in [19]). Therefore, the Ansätze (70) cannot, in principle, be obtained by means
of the Lie symmetry of the PDE (33).

All Ansätze listed in (70) correspond to a conditional invariance of the nonlinear
d’Alembert equation (33). It means that for each Ansatz from (70) there exist two
differential operators Qa = ξaµ(x)∂xµ

, a = 1, 2 such that

Qaw(x) ≡ Qaϕ(ω1, ω2) = 0, a = 1, 2

and besides, the system of PDE

�4w − F (w) = 0, Qaw = 0, a = 1, 2

is invariant in Lie’s sense under the one-parameter groups with the generators Q1, Q2.
For example, the fourth Ansatz from (16) is invariant with respect to the operators:
Q1 = Aµ(u)∂µ, Q2 = Ȧµ(u)∂µ. A direct computation shows that the following rela-
tions hold:

Qi
2

(�4ω) = −(Ȧαxα + Ḃ)−1Aµ∂µQiw, i = 1, 2,

[Q1, Q2] = 0,

where Qi
2

stands for the second prolongation of the operator Qi. Hence it follows

that the nonlinear d’Alembert equation (33) is conditionally-invariant under the two-
dimensional commutative Lie algebra having the basis elements Q1, Q2 (for more
details about conditional symmetry of PDE see [20, 21]). It should be said that the
notion of conditional symmetry of PDE is closely connected with the “non-classical
reduction” [22–24] and “direct reduction” [25] methods.

5 On the new exact solutions
of the nonlinear d’Alembert equation

According to [26], general solutions of Eqs. (74), (75) are given by the following
quadrature:

v + D(u) =
∫ ϕ(u,v)

0

(
−2
∫ τ

0

F (z)dz + C(u)
)−1/2

dτ, (76)

where D(u), C(u) ∈ C2(R1, R1) are arbitrary functions.
Substituting the expressions for u(x), v(x) given by the formulas (4), (5) from

(70) into (76) we obtain two classes of exact solutions of the nonlinear d’Alembert
equation (33) that contain several arbitrary functions of one variable.
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Equations (71) and (72) with F (ϕ) = λϕk are Emden–Fowler type equations. They
were investigated by many authors (see, e.g. [26]). In particular, it is known that the
equations

ϕvv + 2v−1ϕv = −λϕ5, (77)

ϕvv + 3v−1ϕv = −λϕ3 (78)

are integrated in quadratures. In the paper [27] it has been established that Eqs. (77),
(78) possess a Painlevé property. This fact makes it possible to integrate these by
applying rather complicated technique. In [28] we have integrated Eqs. (77), (78) using
a standard technique based on their Lie symmetry. Substituting the results obtained
into the corresponding Ansätze from (70) we get exact solutions of the nonlinear PDE
(33) with F (w) = λw3, λw5, which include an arbitrary solution of the system (2)
with n = 4. Consequently, we have constructed principally new exact solutions of the
nonlinear d’Alembert equation (33) depending on several arbitrary functions. Let us
stress that following the classical Lie symmetry reduction procedure one can not in
principle obtain solutions with arbitrary functions since the maximal symmetry group
of Eq. (33) is finite-dimensional (see, e.g. [16]).

Below we give new exact solutions of the nonlinear d’Alembert equation (33)
obtained with the use of the technique described above. We adduce only those ones
that can be written down explicitly

1. F (w) = λw3

(1) w(x) =
1

a
√

2
(x2

1 + x2
2 + x2

3 − x2
0)

−1/2×

× tan

{
−
√

2
4

ln
(
C(u)(x2

1 + x2
2 + x2

3 − x2
0)
)}

,

where λ = −2a2 < 0,

(2) w(x) =
2
√

2
a

C(u)
(
1 ± C2(u)(x2

1 + x2
2 + x2

3 − x2
0)
)−1

,

where λ = ±a2;

2. F (w) = λw5

(1) w(x) = a−1(x2
1 + x2

2 − x2
0)

−1/4
{

sin ln
(
C(u)(x2

1 + x2
2 − x2

0)
−1/2

)
+ 1
}1/2

×

×
{

2 sin ln
(
C(u)(x2

1 + x2
2 − x2

0)
−1/2

)− 4
}−1/2

,

where λ = a4 > 0,

(2) w(x) =
31/4

√
a

C(u)
(
1 ± C4(u)(x2

1 + x2
2 − x2

0)
)−1/2

,

where λ = ±a2.

In the above formulas C(u) is an arbitrary twice continuously differentiable functi-
on on

u(x) =
x0x1 ± x2

√
x2

1 + x2
2 − x2

0

x2
1 + x2

2

,

a �= 0 is an arbitrary real parameter.
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6 Conclusion

The present paper demonstrates once more that possibilities to construct in explicit
form new exact solutions of the nonlinear d’Alembert equation (33) (as compared
with those obtainable by the standard symmetry reduction technique [16, 19, 27]) are
far from being exhausted. A source of new (non-Lie) reductions is the conditional
symmetry of Eq. (33).

Roughly speaking, a principal idea of the method of conditional symmetries is the
following: to be able to reduce given PDE it is enough to require an invariance of
a subset of its solutions with respect to some Lie transformation group. And what is
more, this subset is not obliged to coincide with the whole set. This specific subsets
can be chosen in different ways: one can fix in some way an Ansatz for a solution to
be found (the method of Ansätze [16, 17] or the direct reduction method [25]) or one
can impose an additional differential constraint (the method of non-classical [22–24]
or conditional symmetries [20, 21]). But all the above approaches have a common
feature: to find new (non-Lie) reduction of a given PDE one has to solve some
nonlinear over-determined system of differential equations. For example, to describe
Ansätze of the form (34) reducing Eq. (33) to ODE one has to integrate system of five
nonlinear PDE (37). This is a “price” to be paid for the new possibilities to reduce a
given nonlinear PDE to equations with less number of independent variables and to
construct its explicit solutions.

As mentioned in the Introduction, the Ansatz (34) can also be interpreted as a map
(more exactly, a family of maps) from the set of solutions of the linear d’Alembert
equation,

�4u = 0 (79)

into the set of solutions of the nonlinear d’Alembert equation (33).
Really, we started with a subset of solutions of Eq. (79) which was chosen by

an additional eikonal constraint uxµ
uxµ = 0. Then, we constructed the functions

v(x) and ϕ(v, u) in such a way that the function w(x) determined by the equality
w = ϕ(v(x), u(x)) satisfied the nonlinear d’Alembert equation (33) (see below the
Fig. 1).

There is an analogy between the map described above and Bäcklund transforma-
tions of partial differential equations. System of PDE (38)–(40) and the Ansatz (34)
(level 2 of the Fig. 1) can be interpreted as a Bäcklund transformation of a set of
solutions of linear PDE (level 1 of the Fig. 1) into a set of solutions of nonlinear
PDE (level 3). A principal difference is that a classical Bäcklund transformation acts
on the whole spaces of solutions of equations under study and the above map acts
on subsets of solutions of the linear and nonlinear d’Alembert equations. It is known
that technique of linearization of PDE with the use of Bäcklund transformations
can be effectively applied to two-dimensional equations only. The results obtained in
the present paper imply the following way of extension of applicability of Bäcklund
transformations: one should consider Bäcklund transformations connecting subsets of
solutions of linear and nonlinear equations. And these subsets may not coincide with
the whole sets of solutions.
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As an illustration we consider the case when in (33) F (w) = 0, i.e. the case when
the map constructed above transforms a subset of solutions of the linear d’Alembert
equation into another subset of solutions of the same equation. Integrating ODE (71)–
(75) we obtain explicit forms of functions ϕ(v, u)

(1) ϕ(v, u) = f1(u)v−2 + f2(u),
(2) ϕ(v, u) = f1(u)v−1 + f2(u),
(3) ϕ(v, u) = f1(u) ln v + f2(u),
(4) ϕ(v, u) = f1(u)v + f2(u),
(5) ϕ(v, u) = f1(u)v + f2(u),

where f1, f2 are arbitrary smooth enough functions. Consequently, we have the
following maps transforming subsets of solutions of the linear d’Alembert equation
(79) into another subsets of its solutions:

(1) u → f1(u)
[(−Ȧν(u)Ȧν(u)

)−1(
Ȧµ(u)xµ + Ḃ(u)

)2 +

+
(−Ȧν(u)Ȧν(u)

)−3(
εµναβAµ(u)Ȧν(u)Äα(u)xβ + C(u)

)2]−1+ f2(u),

(2) u → f1(u)
[(−Ȧν(u)Ȧν(u)

)1/2(
Ȧµ(u)xµ + Ḃ(u)

)]−1 + f2(u),

(3) x0 − x3u → f1(x0 − x3) ln
[(

x1 + C1(x0 − x3)
)2 +

+
(
x2 + C2(x0 − x3)

)2]−1/2 + f2(x0 − x3),

(4) u → (−Ȧν(u)Ȧν(u)
)−3/2(

εµναβAµ(u)Ȧν(u)Äα(u)xβ + C(u)
)
,

(5) x0 − x3 → f1(x0 − x3)(x1 cos C1(x0 − x3) +
+ x2 sin C1(x0 − x3) + C2(x0 − x3).

Note that in the cases 4, 5 function f2 is absorbed by arbitrary functions C, C2.
And one more remark seems to be noteworthy. If one takes as a particular solution

of the system (2) the function u(x) = (x0x1 ± x2

√
x2

1 + x2
2 − x2

0)/(x2
1 + x2

2) and
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substitutes it into the first, second and fourth Ansätze from (70), then the following
Ansätze are obtained:

(1) w(x) = ϕ

(
x2

1 + x2
2 + x2

3 − x2
0,

x0x1 ± x2

√
x2

1 + x2
2 − x2

0

x2
1 + x2

2

)
,

(2) w(x) = ϕ

(
x2

1 + x2
2 − x2

0,
x0x1 ± x2

√
x2

1 + x2
2 − x2

0

x2
1 + x2

2

)
,

(4) w(x) = ϕ

(
x3,

x0x1 ± x2

√
x2

1 + x2
2 − x2

0

x2
1 + x2

2

)
.

Provided the above Ansätze do not depend on the second argument, the usual Lie
Ansätze are obtained which are invariant under some subgroups of the Poincaré group
P (1, 3) [19]. Consequently, if we imagine invariant solutions as dots in a solution
space of the nonlinear d’Alembert equation, then through some of them one can
draw curves which are conditionally-invariant solutions. In this respect a number of
interesting questions arise, let us mention two of these:

(1) Is any invariant solution of the nonlinear d’Alembert equation (33) a particular
case of some more general conditionally-invariant solution?

(2) Does there exist such conditionally-invariant solution of Eq. (33) that all invari-
ant solutions of Eq. (33) are its particular cases? (saying about invariant soluti-
ons we mean solutions invariant under some subgroup of the symmetry group
of Eq. (33)).

An answer to the first question seems to be positive. A positive answer to the
second one would provide us with a concept of a “general invariant solution”. But so
far this problem is completely open and needs further investigation.
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