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On the new approach to variable separation
in the time-dependent Schrödinger equation
with two space dimensions
R.Z. ZHDANOV, I.V. REVENKO, W.I. FUSHCHYCH

We suggest an effective approach to separation of variables in the Schrödinger equation
with two space variables. Using it we classify inequivalent potentials V (x1, x2) such that
the corresponding Schrödinger equations admit separation of variables. Besides that,
we carry out separation of variables in the Schrödinger equation with the anisotropic
harmonic oscillator potential V = k1x

2
1 + k2x

2
2 and obtain a complete list of coordinate

systems providing its separability. Most of these coordinate systems depend essentially
on the form of the potential and do not provide separation of variables in the free
Schrödinger equation (V = 0).

1 Introduction

The problem of separation of variables (SV) in the two-dimensional Schrödinger
equation

iut + ux1x1 + ux2x2 = V (x1, x2)u (1)

as well as the most of classical problems of mathematical physics can be formulated
in a very simple way (but this simplicity does not, of course, imply an existence
of easy way to its solution). To separate variables in Eq. (1) one has to construct
such functions R(t,x), ω1(t,x), ω2(t,x) that the Schrödinger equation (1) after being
rewritten in the new variables

z0 = t, z1 = ω1(t,x), z2 = ω2(t,x),
v(z0,z) = R(t,x)u(t,x)

(2)

separates into three ordinary differential equations (ODEs). From this point of view
the problem of SV in Eq. (1) is studied in [1–4].

But no less of an important problem is the one of description of potentials V (x1, x2)
such that the Schrödinger equation admits variable separation. That is why saying
about SV in Eq. (1) we imply two mutually connected problems. The first one is to
describe all such functions V (x1, x2) that the corresponding Schrödinger equation (1)
can be separated into three ODEs in some coordinate system of the form (2) (classi-
fication problem). The second problem is to construct for each function V (x1, x2)
obtained in this way all coordinate systems (2) enabling us to carry out SV in Eq. (1).

Up to our knowledge, the second problem has been solved provided V = 0 [2,
3] and V = αx−2

1 + βx−2
2 [1]. The first one was considered in a restricted sense

in [4]. Authors using symmetry approach to classification problem obtained some
potentials providing separability of Eq. (1) and carried out SV in the corresponding
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Schrödinger equation. But their results are far from being complete and systematic.
The necessary and sufficient conditions imposed on the potential V (x1, x2) by the
requirement that the Schrödinger equation admits symmetry operators of an arbitrary
order are obtained in [5]. But so far there is no systematic and exhaustive description
of potentials V (x1, x2) providing SV in Eq. (1).

To be able to discuss the description of all potentials and all coordinate systems
making it possible to separate the Schrödinger equation one has to give a definition
of SV. One of the possible definitions of SV in partial differential equations (PDEs)
is proposed in our article [6]. It is based on the concept of Ansatz suggested by
Fushchych [7] and on ideas contained in the article by Koornwinder [8]. The said
definition is quite algorithmic in the sense that it contains a regular algorithm of
variable separation in partial differential equations which can be easily adapted to
handle both linear [6, 9] and nonlinear [10] PDEs. In the present article we apply the
said algorithm to solve the problem of SV in Eq. (1).

Consider the following system of ODEs:

i
dϕ0

dt
= U0(t, ϕ0;λ1, λ2),

d2ϕ1

dω2
1

= U1

(
ω1, ϕ1,

dϕ1

dω1
;λ1, λ2

)
,

d2ϕ2

dω2
2

= U2

(
ω2, ϕ2,

dϕ2

dω2
;λ1, λ2

)
,

(3)

where U0, U1, U2 are some smooth functions of the corresponding arguments, λ1, λ2 ⊂
R

1 are arbitrary parameters (separation constants) and what is more

rank
∥∥∥∥ ∂Uµ

∂λa

∥∥∥∥
2 2

µ=0 a=1

= 2 (4)

(the last condition ensures essential dependence of the corresponding solution with
separated variables on λ1, λ2, see [8]).

Definition 1. We say that Eq. (1) admits SV in the system of coordinates t, ω1(t,x),
ω2(t,x) if substitution of the Ansatz

u = Q(t,x)ϕ0(t)ϕ1

(
ω1(t,x)

)
ϕ2

(
ω2(t,x)

)
(5)

into Eq. (1) with subsequent exclusion of the derivatives dϕ0/dt, d2ϕ1/dω2
1, d2ϕ2/dω2

2

according to Eqs. (3) yields an identity with respect to ϕ0, ϕ1, ϕ2, dϕ1/dω1,
dϕ2/dω2, λ1, λ2.

Thus, according to the above definition to separate variables in Eq. (1) one has

(i) to substitute the expression (5) into (1),

(ii) to exclude derivatives dϕ0/dt, d2ϕ1
dω2

1
, d2ϕ2/dω2

2 with the help of Eqs. (3),

(iii) to split the obtained equality with respect to the variables ϕ0, ϕ1, ϕ2, dϕ1/dω1,
dϕ2/dω2, λ1, λ2 considered as independent.

As a result one gets some over-determined system of PDEs for the functions
Q(t,x), ω1(t,x), ω2(t,x). On solving it one obtains a complete description of all
coordinate systems and potentials providing SV in the Schrödinger equation. Natural-
ly, an expression complete description makes sense only within the framework of our
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definition. So if one uses a more general definition it may be possible to construct new
coordinate systems and potentials providing separability of Eq. (1). But all solutions
of the Schrödinger equation with separated variables known to us fit into the scheme
suggested by us and can be obtained in the above described way.

2 Classification of potentials V (x1, x2)

We do not adduce in full detail computations needed because they are very cumber-
some. We shall restrict ourselves to pointing out main steps of the realization of the
above suggested algorithm.

First of all we make a remark, which makes life a little bit easier. It is readily
seen that a substitution of the form

Q → Q′ = QΨ1(ω1)Ψ2(ω2),
ωa → ω′

a = Ωa(ωa), a = 1, 2, λa → λ′
a = Λa(λ1, λ2), a = 1, 2,

(6)

does not alter the structure of relations (3), (4), and (5). That is why, we can introduce
the following equivalence relation:

(ω1, ω2, Q) ∼ (ω′
1, ω

′
2, Q

′)

provided Eq. (6) holds with some Ψa, Ωa, Λa.
Substituting Eq. (5) into Eq. (1) and excluding the derivatives dϕ0/dt, d2ϕ1/dω2

1 ,
d2ϕ2/dω2

2 with the use of equations (3) we get

i(Qtϕ0ϕ1ϕ2 + QU0ϕ1ϕ2 + Qω1tϕ0ϕ̇1ϕ2 + Qω2tϕ0ϕ1ϕ̇2) + (�Q)ϕ0ϕ1ϕ2 +
+ 2Qxa

ω1xa
ϕ0ϕ̇1ϕ2 + 2Qxa

ω2xa
ϕ0ϕ1ϕ̇2 + Q

(
(�ω1)ϕ0ϕ̇1ϕ2 +

+ (�ω2)ϕ0ϕ1ϕ̇2 + ω1xa
ω1xa

ϕ0U1ϕ2 + ω2xa
ω2xa

ϕ0ϕ1U2 +
+ 2ω1xa

ω2xa
ϕ0ϕ̇1ϕ̇2

)
= V Qϕ0ϕ1ϕ2,

where the summation over the repeated index a from 1 to 2 is understood. Hereafter
an overdot means differentiation with respect to a corresponding argument and � =
∂2

x1
+ ∂2

x2
.

Splitting the equality obtained with respect to independent variables ϕ1, ϕ2,
dϕ1/dω1, dϕ2/dω2, λ1, λ2 we conclude that ODEs (3) are linear and up to the
equivalence relation (6) can be written in the form

i
dϕ0

dt
=
(
λ1R1(t) + λ2R2(t) + R0(t)

)
ϕ0,

d2ϕ1

dω2
1

=
(
λ1B11(ω1) + λ2B12(ω1) + B01(ω1)

)
ϕ1,

d2ϕ2

dω2
2

=
(
λ1B21(ω2) + λ2B22(ω2) + B02(ω2)

)
ϕ2

and what is more, functions ω1, ω2, Q satisfy an over-determined system of nonlinear
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PDEs

(1) ω1xb
ω2xb

= 0,

(2) B1a(ω1)ω1xb
ω1xb

+ B2a(ω2)ω2xb
ω2xb

+ Ra(t) = 0, a = 1, 2,

(3) 2ωaxb
Qxb

+ Q(iωat + �ωa), a = 1, 2,

(4)
(
B01(ω1)ω1xb

ω1xb
+ B02(ω1)ω2xb

ω2xb

)
Q + iQt + �Q + R0(t)Q −

− V (x1, x2)Q = 0.

(7)

Thus, to solve the problem of SV for the linear Schrödinger equation it is necessary
to construct general solution of system of nonlinear PDEs (7). Roughly speaking, to
solve a linear equation one has to solve a system of nonlinear equations! This is the
reason why so far there is no complete description of all coordinate systems providing
separability of the four-dimensional wave equation [3].

But in the case involved we have succeeded in integrating system of nonlinear
PDEs (7). Our approach to integration of it is based on the following change of
variables (hodograph transformation)

z0 = t, z1 = Z1(t, ω1, ω2), z2 = Z2(t, ω1, ω2), v1 = x1, v2 = x2,

where z0, z1, z2 are new independent and v1, v2 are new dependent variables corres-
pondingly.

Using the hodograph transformation determined above we have constructed the
general solution of Eqs. (1)–(3) from Eq. (7). It is given up to the equivalence relation
(6) by one of the following formulas:

(1) ω1 = A(t)x1 + W1(t), ω2 = B(t)x2 + W2(t),

Q(t,x) = exp

{
− i

4

(
Ȧ

A
x2

1 +
Ḃ

B
x2

2

)
− i

2

(
Ẇ1

A
x1 +

Ẇ2

B
x2

)}
;

(2) ω1 =
1
2

ln(x2
1 + x2

2) + W (t), ω2 = arctan
x1

x2
,

Q(t,x) = exp

{
− iẆ

4
(x2

1 + x2
2)

}
;

(3) x1 =
1
2
W (t)(ω2

1 − ω2
2) + W1(t), x2 = W (t)ω1ω2 + W2(t),

Q(t,x) = exp

{
iẆ

4W

(
(x1 − W1)2 + (x2 − W2)2

)
+

i

2
(Ẇ1x1 + Ẇ2x2)

}
;

(4) x1 = W (t) cosh ω1 cos ω2 + W1(t), x2 = W (t) sinh ω1 sin ω2 + W2(t),

Q(t,x) = exp

{
iẆ

4W

(
(x1 − W1)2 + (x2 − W2)2

)
+

i

2
(Ẇ1x1 + Ẇ2x2)

}
;

(8)

Here A, B, W , W1, W2 are arbitrary smooth functions on t.
Substituting the obtained expressions for the functions Q, ω1, ω2 into the last

equation from the system (7) and splitting with respect to variables x1, x2 we get
explicit forms of potentials V (x1, x2) and systems of nonlinear ODEs for unknown
functions A(t), B(t), W (t), W1(t), W2(t). We have succeeded in integrating these
and in constructing all coordinate systems providing SV in the initial equation (1).
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Here we consider in detail integration of the fourth equation of system (7) for the
case 2 from Eq. (8), since computations needed are not so lengthy as for other cases.

First, we make several important remarks which introduce an equivalence relation
on the set of potentials V (x1, x2).

Remark 1. The Schrödinger equation with the potential

V (x1, x2) = k1x1 + k2x2 + k3 + V1(k2x1 − k1x2), (9)

where k1, k2, k3 are constants, is transformed to the Schrödinger equation with the
potential

V ′(x′
1, x

′
2) = V1(k2x

′
1 − k1x

′
2) (10)

by the following change of variables:

t′ = t, x′ = x + t2k,

u′ = u exp
{

i

3
(k2

1 + k2
2)t

3 + it(k1x1 + k2x2) + ik3t

}
.

(11)

It is readily seen that the class of Ansätze (5) is transformed into itself by the
above change of variables. That is why, potentials (9) and (10) are considered as
equivalent.

Remark 2. The Schrödinger equation with the potential

V (x1, x2) = k(x2
1 + x2

2) + V1

(
x1

x2

)
(x2

1 + x2
2)

−1 (12)

with k = const is reduced to the Schrödinger equation with the potential

V ′(x1, x2) = V1

(
x′

1

x′
2

)
(x′2

1 + x′2
1 )−1 (13)

by the change of variables

t′ = α(t), x′ = β(t)x, u′ = u exp
{
iγ(t)(x2

1 + x2
2) + δ(t)

}
,

where
(
α(t), β(t), γ(t), δ(t)

)
is an arbitrary solution of the system of ODEs

γ̇ − 4γ2 = k, β̇ − 4γβ = 0, α̇ − β2 = 0, δ̇ + 4γ = 0

such that β �= 0.
Since the above change of variables does not alter the structure of the Ansatz (5),

when classifying potentials V (x1, x2) providing separability of the corresponding
Schrödinger equation, we consider potentials (12), (13) as equivalent.

Remark 3. It is well-known (see e.g. [11, 12]) that the general form of the invariance
group admitted by Eq. (1) is as follows

t′ = F (t,θ), x′
a = ga(t,x,θ), a = 1, 2, u′ = h(t,x,θ)u + U(t,x),

where θ = (θ1, θ2, . . . , θn) are group parameters and U(t,x) is an arbitrary solution
of Eq. (1).
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The above transformations also do not alter the structure of the Ansatz (5). That
is why, systems of coordinates t′, x′

1, x′
2 and t, x1, x2 are considered as equivalent.

Now we turn to the integration of the fourth equation of system (7). Substituting
into it the expressions for the functions ω1, ω2, Q given by formulas (2) from Eq. (8)
we get

V (x1, x2) =
(
B01(ω1) + B02(ω2)

)
exp{−2(ω1 − W )} +

1
4
(Ẅ − Ẇ 2) ×

× exp{2(ω1 − W )} + R0(t) − iẆ .
(14)

In the above equality B01, B02, R0(t), W (t) are unknown functions to be determi-
ned from the requirement that the right-hand side of (14) does not depend on t.

Differentiating Eq. (14) with respect to t and taking into account the equalities

ω1t = Ẇ , ω2t = 0

we have

Ẇ exp{−2(ω1 − W )}Ḃ01 + α̇(t) exp{2(ω1 − W )} + β̇(t) = 0, (15)

where α(t) = 1
4 (Ẅ − Ẇ 2), β(t) = R0 − iẆ .

Cases Ẇ = 0 and Ẇ �= 0 have to be considered separately.
Case 1. Ẇ = 0. In this case W = C = const, R0 = 0. Since coordinate systems

ω1, ω2 and ω1 +C1, ω2 +C2 are equivalent with arbitrary constants C1, C2, choosing
C1 = −C, C2 = 0 we can put C = 0. Hence it immediately follows that

V (x1, x2) =
[
B01

(
1
2

ln(x2
1 + x2

2)
)

+ B02

(
arctan

x1

x2

)]
(x2

1 + x2
2)

−1,

where B01, B02 are arbitrary functions. And what is more, the Schrödinger equa-
tion (1) with such potential separates only in one coordinate system

ω1 =
1
2

ln(x2
1 + x2

2), ω2 = arctan
x1

x2
. (16)

Case 2. Ẇ �= 0. Dividing Eq. (14) into Ẇ exp{−2(ω1−W )} and differentiating the
equality obtained with respect to t we get

exp{4ω1} d

dt

(
α̇(Ẇ )−1 exp{−4W})+ exp{2ω1} d

dt

(
β̇(Ẇ )−1 exp{−2W}) = 0,

whence

d

dt

(
α̇(Ẇ )−1 exp{−4W}) = 0,

d

dt

(
β̇(Ẇ )−1 exp{−2W}) = 0.

Integration of the above ODEs yields the following result:

α = C1 exp{4W} + C2, β = C3 exp{2W} + C4,

where C,  = 1, 4 are arbitrary real constants.
Inserting the result obtained into Eq. (15) we get an equation for B01

Ḃ01 = −4C1 exp{4ω1} − 2C3 exp{2ω1},



486 R.Z. Zhdanov, I.V. Revenko, W.I. Fushchych

which general solution reads

B01 = −C1 exp{4ω1} − C3 exp{2ω1} + C5.

In the above equality C5 is an arbitrary real constant.
Substituting the expressions for α, β, B01 into Eq. (14) we have the explicit form

of the potential V (x1, x2)

V (x1, x2) =
[
B02

(
arctan

x1

x2

)
+ C5

]
(x2

1 + x2
2)

−1 + C2(x2
1 + x2

2) + C4,

where B02 is an arbitrary function.
By force of the Remarks 1, 2 we can choose C2 = C4 = 0. Furthermore, due to

arbitrariness of the function B02 we can put C5 = 0.
Thus, the case Ẇ �= 0 leads to the following potential:

V (x1, x2) = B02

(
arctan

x1

x2

)
(x2

1 + x2
2)

−1. (17)

Substitution of the above expression into Eq. (14) yields second-order nonlinear
ODE for the function W = W (t)

Ẅ − Ẇ 2 = 4C1 exp{4W}, (18)

while the function R0 is given by the formula

R0 = iẆ + C3 exp{2W}.
Integration of ODE (18) is considered in detail in the Appendix A. Its general

solution has the form
under C1 �= 0

W = −1
2

ln
(
(at − b)2 − 4C1

)
+

1
2

ln a,

under C1 = 0

W = a − ln(t + b).

Substituting obtained expressions for W into formulas (2) from (8) and taking into
account the Remark 3 we arrive at the conclusion that the Schrödinger equation (1)
with the potential (17) admits SV in two coordinate systems. One of them is the polar
coordinate system (16) and another one is the following:

ω1 =
1
2

ln(x2
1 + x2

2) −
1
2

ln(t2 ± 1), ω2 = arctan
x1

x2
. (19)

Consequently, the case 2 from Eq. (8) gives rise to two classes of the separable
Schrödinger equations (1).

Cases 1, 3, 4 from Eq. (8) are considered in an analogous way but computations
involved are much more cumbersome. As a result, we obtain the following list of
inequivalent potentials V (x1, x2) providing separability of the Schrödinger equation.
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(1) V (x1, x2) = V1(x1) + V2(x2);
(a) V (x1, x2) = k1x

2
1 + k2x

−2
1 + V2(x2), k2 �= 0;

(i) V (x1, x2) = k1x
2
1 + k2x

2
2 + k3x

−2
1 + k4x

−2
2 , k3k4 �= 0,

k2
1 + k2

2 �= 0, k1 �= k2;
(ii) V (x1, x2) = k1x

2
1 + k2x

−2
1 , k1k2 �= 0;

(iii) V (x1, x2) = k1x
−2
1 + k2x

−2
2 ;

(b) V (x1, x2) = k1x
2
1 + V2(x2);

(i) V (x1, x2) = k1x
2
1 + k2x

2
2 + k3x

−2
2 , k1k3 �= 0, k1 �= k2;

(ii) V (x1, x2) = k1x
2
1 + k2x

2
2, k1k2 �= 0, k1 �= k2;

(iii) V (x1, x2) = k1x
2
1 + k2x

−2
2 , k1 �= 0;

(2) V (x1, x2) = V1(x2
1 + x2

2) + V2(x1/x2)(x2
1 + x2

2)
−1;

(a) V (x1, x2) = V2(x1/x2)(x2
1 + x2

2)
−1;

(b) V (x1, x2) = k1(x2
1 + x2

2)
−1/2, k1 �= 0;

(3) V (x1, x2) = (V1(ω1) + V2(ω2))(ω2
1 + ω2

2)−1, where ω2
1 − ω2

2 = 2x1, ω1ω2 = x2;
(4) V (x1, x2) = (V1(ω1) + V2(ω2))(sinh2 ω1 + sin2 ω2)−1, where cosh ω1 cos ω2 = x1,
sinh ω1 sin ω2 = x2;

(5) V (x1, x2) = 0.

In the above formulas V1, V2 are arbitrary smooth functions, k1, k2, k3, k4 are
arbitrary constants.

It should be emphasized that the above potentials are not inequivalent in a usual
sense. These potentials differ from each other by the fact that the coordinate systems
providing separability of the corresponding Schrödinger equations are different. As
an illustration, we give the Fig. 1, where r = (x2

1 + x2
2)

1/2 and by the symbol V (),
 = 1, 4 we denote the potential given in the above list under the number . Down
arrows in the Fig. 1 indicate specifications of the potential V (x1, x2) providing new
possibilities to separate the corresponding Schrödinger equation (1).

The Schrödinger equation (1) with arbitrary function V (x1, x2) (level 1 of the
Fig. 1) admits no separation of variables. Next, Eq. (1) with the “root” potentials
V () (level 2), V1, V2 being arbitrary smooth functions, separates in the Cartesian
( = 1), polar ( = 2), parabolic ( = 3) and elliptic ( = 4) coordinate systems,
correspondingly. Specifying the functions V1, V2 (i.e. going down to the lower levels)
new possibilities to separate variables in the Schrödinger equation (1) arise. For
example, Eq. (1) with the potential V2(x1/x2)r−2, which is a particular case of the
potential V (2), separates not only in the polar coordinate system (16) but also in
the coordinate systems (19). The Schrödinger equation with the Coulomb potential
k1r

−1, which is a particular case of the potentials V (2), V (3), separates in two coordi-
nate systems (namely, in the polar and parabolic coordinate systems, see below the
Theorem 4). An another characteristic example is a transition from the potential V (1)

to the potential k1x
2
1 + V2(x2). The Schrödinger equation with the potential V (1) ad-

mits SV in the Cartesian coordinate system ω0 = t, ω1 = x1, ω2 = x2 only, while the
one with the potential k1x

2
1 + V2(x2) separates in seven (k1 < 0) or in three (k1 > 0)

coordinate systems.
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A complete list of coordinate systems providing SV in the Schrödinger equations
with the above given potentials takes two dozen pages. Therefore, we restrict ourself
to considering the Schrödinger equation with anisotropic harmonic oscillator potential
V (x1, x2) = k1x

2
1 +k2x

2
2, k1 �= k2 and Coulomb potential V (x1, x2) = k1(x2

1 +x2
2)

−1/2.

3 Separation of variables in the Schrödinger
equation with the anisotropic harmonic
oscillator and the Coulomb potentials

Here we will obtain all coordinate systems providing separability of the Schrödinger
equation with the potential V (x1, x2) = k1x

2
1 + k2x

2
2

iut + ux1x1 + ux2x2 = (k1x
2
1 + k2x

2
2)u. (20)

In the following, we consider the case k1 �= k2, because otherwise Eq. (1) is
reduced to the free Schrödinger equation (see the Remark 2) which has been studied
in detail in [1–3].
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Explicit forms of the coordinate systems to be found depend essentially on the
signs of the parameters k1, k2. We consider in detail the case, when k1 < 0, k2 > 0
(the cases k1 > 0, k2 > 0 and k1 < 0, k2 < 0 are handled in an analogous way). It
means that Eq. (20) can be written in the form

iut + ux1x1 + ux2x2 +
1
4
(a2x2

1 − b2x2
2)u = 0, (21)

where a, b are arbitrary non-null real constants (the factor 1
4 is introduced for further

convenience).
As stated above to describe all coordinate systems t, ω1(t,x), ω2(t,x) providing

separability of Eq. (20) one has to construct the general solution of system (8) with
V (x1, x2) = − 1

4 (a2x2
1 − b2x2

2). The general solution of Eqs. (1)–(3) from Eq. (7) splits
into four inequivalent classes listed in Eq. (8). Analysis shows that only solutions
belonging to the first class can satisfy the fourth equation of (7).

Substituting the expressions for ω1, ω2, Q given by the formulas (1) from (8) into
the equation 4 from (7) with V (x1, x2) = − 1

4 (a2x2
1 − b2x2

2) and splitting with respect
to x1, x2 one gets

B01(ω1) = α1ω
2
1 + α2ω1, B02(ω2) = β1ω

2
2 + β2ω2,(

Ȧ

A

)·
−
(

Ȧ

A

)2

− 4α1A
4 + a2 = 0, (22)

(
Ḃ

B

)·
−
(

Ḃ

B

)2

− 4β1B
4 − b2 = 0, (23)

θ̈1 − 2θ̇1
Ȧ

A
− 2(2α1θ1 + α2)A4 = 0, (24)

θ̈2 − 2θ̇2
Ḃ

B
− 2(2β1θ2 + β2)B4 = 0. (25)

Here α1, α2, β1, β2 are arbitrary real constants.
Integration of the system of nonlinear ODEs (22)–(25) is carried out in the

Appendix A. Substitution of the formulas (A.2), (A.4)–(A.6), (A.8)–(A.11) into the
corresponding expressions 1 from (8) yields a complete list of coordinate systems
providing separability of the Schrödinger equation (21). These systems can be trans-
formed to canonical form if we use the Remark 3.

The invariance group of Eq. (21) is generated by the following basis operators [11]:

P0 = ∂t, I = u∂u, M = iu∂u, Q∞ = U(t,x)∂u,

P1 = cosh at∂x1 +
ia

2
(x1 sinh at)u∂u,

P2 = cos bt∂x2 −
ib

2
(x2 sin bt)u∂u,

G1 = sinh at∂x1 +
ia

2
(x1 cosh at)u∂u,

G2 = sin bt∂x2 +
ib

2
(x2 cos bt)u∂u,

(26)

where U(t,x) is an arbitrary solution of Eq. (21).
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Using the finite transformations generated by the infinitesimal operators (26) and
the Remark 3 we can choose in the formulas (A.4)–(A.6), (A.8), (A.10), (A.11)
C3 = C4 = D1 = 0, D3 = D4 = 0, C2 = D2 = 1. As a result, we come to the
following assertion.

Theorem 1. The Schrödinger equation (21) admits SV in 21 inequivalent coordinate
systems of the form

ω0 = t, ω1 = ω1(t,x), ω2 = ω2(t,x), (27)

where ω1 is given by one of the formulas from the first and ω2 by one of the formulas
from the second column of the Table 1.

Table 1. Coordinate systems proving SV in Eq. (21).

ω1(t,x) ω2(t,x)

x1

(
sinh a(t + C)

)−1+α
(
sinh a(t + C)

)−2
x2(sin bt)−1 + β(sin bt)−2

x1

(
cosh a(t + C)

)−1+α
(
cosh a(t + C)

)−2
x2(β + sin 2bt)−1/2

x1 exp(±at) + α exp(±4at) x2

x1

(
α + sinh 2a(t + C)

)−1/2

x1

(
α + cosh 2a(t + C)

)−1/2

x1

(
α + exp(±2at)

)−1/2

x1

Here C, α, β are arbitrary real constants.

There is no necessity to consider specially the case when in Eq. (20) k1 > 0,
k2 < 0, since such an equation by the change of independent variables u(t, x1, x2) →
u(t, x2, x1) is reduced to Eq. (21).

Below we adduce without proof the assertions describing coordinate systems provi-
ding SV in Eq. (20) with k1 < 0, k2 < 0 and k1 > 0, k2 > 0.
Theorem 2. The Schrödinger equation

iut + ux1x1 + ux2x2 +
1
4
(a2x2

1 + b2x2
2)u = 0 (28)

with a2 �= 4b2 admits SV in 49 inequivalent coordinate systems of the form (27),
where ω1 is given by one of the formulas from the first and ω2 by one of the formulas
from the second column of the Table 2. Provided a2 = 4b2 one more coordinate
system should be included into the above list, namely

ω0 = t, ω2
1 − ω2

2 = 2x1, ω1ω2 = x2. (29)
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Table 2. Coordinate systems proving SV in Eq. (28).

ω1(t,x) ω2(t,x)

x1

(
sinh a(t + C)

)−1+α
(
sinh a(t + C)

)−2
x2(sinh bt)−1 + β(sinh bt)−2

x1

(
cosh a(t + C)

)−1+α
(
cosh a(t + C)

)−2
x2(cosh bt)−1 + β(cosh bt)−2

x1 exp(±at) + α exp(±4at) x2 exp(±bt) + β exp(±4bt)

x1

(
α + sinh 2a(t + C)

)−1/2
x2(β + sinh 2bt)−1/2

x1

(
α + cosh 2a(t + C)

)−1/2
x2(β + cosh 2bt)−1/2

x1

(
α + exp(±2at)

)−1/2
x2

(
β + exp(±2bt)

)−1/2

x1 x2

Here C, α, β are arbitrary constants.

Table 3. Coordinate systems proving SV in Eq. (30).

ω1(t,x) ω2(t,x)

x1

(
sin a(t + C)

)−1+α
(
sin a(t + C)

)−2
x2(sin bt)−1 + β(sin bt)−2

x1

(
β + sin 2a(t + C)

)−1/2
x2(β + sin 2bt)−1/2

x1 x2

Here C, α, β are arbitrary constants.

Theorem 3. The Schrödinger equation

iut + ux1x1 + ux2x2 −
1
4
(a2x2

1 + b2x2
2)u = 0 (30)

with a2 �= 4b2 admits SV in 9 inequivalent coordinate systems of the form (27),
where ω1 is given by one of the formulas from the first and ω2 by one of the
formulas from the second column of the Table 3. Provided a2 = 4b2, the above list
should be supplemented by the coordinate system (29).
Remark 4. If we consider Eq. (1) as an equation for a complex-valued function u of
three complex variables t, x1, x2, then the cases considered in the Theorems 1–3 are
equivalent. Really, replacing, when necessary, a with ia and b by ib we can always
reduce Eqs. (21), (28) to the form (30). It means that coordinate systems presented
in the Tables 1, 2 are complex equivalent to those listed in the Table 3. But if u is
a complex-valued function of real variables t, x1, x2 it is not the case.

Theorem 4. The Schrödinger equation with the Coulomb potential

iut + ux1x1 + ux2x2 − k1(x2
1 + x2

2)
−1/2u = 0

admits SV in two coordinate systems (16), (29).
It is important to note that explicit forms of coordinate systems providing separabi-

lity of Eqs. (21), (28), (30) depend essentially on the parameters a, b contained in
the potential V (x1, x2). It means that the free Schrödinger equation (V = 0) does not
admit SV in such coordinate systems. Consequently, they are essentially new.
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4 Conclusion

In the present paper we have studied the case when the Schrödinger equation (1)
separates into one first-order and two second-order ODEs. It is not difficult to prove
that there are no functions Q(t,x), ωµ(t,x), µ = 0, 1, 2 such that the Ansatz

u = Q(t,x)ϕ0(ω0(t,x))ϕ1

(
ω1(t,x)

)
ϕ2

(
ω2(t,x)

)
separates Eq. (1) into three second-order ODEs (see Appendix B). Nevertheless, there
exists a possibility for Eq. (1) to be separated into two first-order and one second-order
ODEs or into three first-order ODEs. This is a probable source of new potentials and
new coordinate systems providing separability of the Schrödinger equation. It should
be said that separation of the two-dimensional wave equation

utt − uxx = V (x)u

into one first-order and one second-order ODEs gives no new potentials as compared
with separation of it into two second-order ODEs. But for some already known
potentials new coordinate system providing separability of the above equation are
obtained [9].

Let us briefly analyze a connection between separability of Eq. (1) and its symmet-
ry properties. It is well-known that each solution of the free Schrödinger equation with
separated variables is a common eigenfunction of two mutually commuting second-
order symmetry operators of the said equation [2, 3]. And what is more, separation
constants λ1, λ2 are eigenvalues of these symmetry operators.

We will establish that the same assertion holds for the Schrödinger equation (1).
Let us make in Eq. (1) the following change of variables:

u = Q(t,x)U
(
t, ω1(t,x), ω2(t,x)

)
, (31)

where (Q,ω1, ω2) is an arbitrary solution of the system of PDEs (7).
Substituting the expression (31) into (1) and taking into account equations (7) we

get

Q
(
iUt +

(
Uω1ω1 −B01(ω1)U

)
ω1xa

ω1xa
+
(
Uω2ω2 −B02(ω2)U

)
ω2xa

ω2xa

)
= 0.(32)

Resolving Eqs. (2) from the system (7) with respect to ω1xa
ω1xa

and ω2xa
ω2xa

we
have

ω1xa
ω1xa

=
1
δ

(
R2(t)B21(ω2) − R1(t)B22(ω2)

)
,

ω2xa
ω2xa

=
1
δ

(
R1(t)B12(ω1) − R2(t)B11(ω1)

)
,

where δ = B11(ω1)B22(ω2) − B12(ω1)B21(ω2) (δ �= 0 by force of the condition (4)).
Substitution of the above equalities into Eq. (32) with subsequent division by

Q �= 0 yields the following PDE:

iUt +
R1(t)

δ

(
B12(ω1)

(
Uω2ω2 − B02(ω2)U

)− B22(ω2)
(
Uω1ω1 − B01(ω1)U

))
+

+
R2(t)

δ

(
B21(ω2)

(
Uω1ω1 − B01(ω1)U

)− B11(ω1)
(
Uω2ω2 − B02(ω2)U

))
= 0.

(33)
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Thus, in the new coordinates t, ω1, ω2, U(t, ω1, ω2) Eq. (1) takes the form (33).
By direct (and very cumbersome) computation one can check that the following

second-order differential operators:

X1 =
B22(ω2)

δ

(
∂2

ω1
− B01(ω1)

)− B12(ω1)
δ

(
∂2

ω2
− B02(ω2)

)
,

X2 = −B21(ω2)
δ

(
∂2

ω1
− B01(ω1)

)
+

B11(ω1)
δ

(
∂2

ω2
− B02(ω2)

)
,

commute under arbitrary B0a, Bab, a, b = 1, 2, i.e.

[X1,X2] ≡ X1X2 − X2X1 = 0. (34)

After being rewritten in terms of the operators X1, X2 Eq. (33) reads(
i∂t − R1(t)X1 − R2(t)X2

)
U = 0.

Since the relations[
i∂t − R1(t)X1 − R2(t)X2,Xa

]
= 0, a = 1, 2 (35)

hold, operators X1, X2 are mutually commuting symmetry operators of Eq. (33).
Furthermore, solution of Eq. (33) with separated variables U = ϕ0(t)ϕ1(ω1)ϕ2(ω2)
satisfies the identities

XaU = λaU, a = 1, 2. (36)

Consequently, if we designate by X ′
1, X ′

2 the operators X1, X2 written in the
initial variables t, x, u, then we get from (34)–(36) the following equalities:[

i∂t + �− V (x1, x2),X ′
a

]
= 0, a = 1, 2,[

X ′
1,X

′
2

]
= 0, X ′

au = λau, a = 1, 2.

where u = Q(t,x)ϕ0(t)ϕ1(ω1)ϕ2(ω2).
It means that each solution with separated variables is a common eigenfunction of

two mutually commuting symmetry operators X ′
1, X ′

2 of the Schrödinger equation (1),
separation constants λ1, λ2 being their eigenvalues.

Detailed study of the said operators as well as analysis of separated ODEs for
functions ϕµ, µ = 0, 2 (in the way as it is done for the free Schrödinger equation in
[2, 3]) is in progress and will be a topic of our future publications.
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Appendix A. Integration of nonlinear ODEs (22)–(25)

Evidently, equations (22)–(25) can be rewritten in the following unified form:(
ẏ

y

)·
−
(

ẏ

y

)2

− 4αy4 = k, z̈ − 2ż
ẏ

y
− 2(2αz + β)y4 = 0. (A1)
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Provided k = −a2 < 0, system (A.1) coincides with Eqs. (22), (24) and under
k = b2 > 0 – with Eqs. (23), (25).

First of all, we note that the function z = z(t) is determined up to addition of an
arbitrary constant. Really, the coordinate functions ωa have the following structure:

ωa = yxa + z, a = 1, 2.

But the coordinate system t, ω1, ω2 is equivalent to the coordinate system t,
ω1 + C1, ω2 + C2, Ca ∈ R

1. Hence it follows that the function z(t) is equivalent to
the function z(t) + C with arbitrary real constant C. Consequently, provided α �= 0,
we can choose in (A.1) β = 0.

The case 1. α = 0. On making in (A.1) the change of variables

w = ẏ/y, v = z/y (A2)

we get

ẇ = w2 + k, v̈ + kv = 2βy3. (A3)

First, we consider the case k = −a2 < 0. Then the general solution of the first
equation from (A.3) is given by one of the formulas

w = −a coth a(t + C1), w = −a tanh a(t + C1), w = ±a, C1 ∈ R
1,

whence

y = C2 sinh−1 a(t + C1), y = C2 cosh−1 a(t + C1),
y = C2 exp(±at), C2 ∈ R

1.
(A4)

The second equation of system (A.3) is a linear inhomogeneous ODE. Its general
solution after being substituted into (A.2) yields the following expression for z(t):

(C3 cosh at + C4 sinh at) sinh−1 a(t + C1) +
βC4

2

a2
sinh−2 a(t + C1),

(C3 cosh at + C4 sinh at) cosh−1 a(t + C1) +
βC4

2

a2
cosh−2 a(t + C1),

(C3 cosh at + C4 sinh at) exp(±at) +
βC4

2

4a2
exp(±4at), C3, C4 ⊂ R

1.

(A5)

The case k = b2 > 0 is treated in an analogous way, the general solution of (A.1)
being given by the formulas

y = D2 sin−1 b(t + D1),

z = (D3 cos bt + D4 sin bt) sin−1 b(t + D1) +
βD4

2

b2
sin−2 b(t + D1),

(A6)

where D1, D2, D3, D4 are arbitrary real constants.
The case 2. α �= 0, β = 0. On making in Eq. (A.1) the change of variables

y = expw, v = z/y

we have

ẅ − ẇ2 = k + α exp 4w, v̈ + kv = 0. (A7)
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The first ODE from Eq. (A.7) is reduced to the first-order linear ODE

1
2

dp(w)
dw

− p(w) = k + α exp 4w

by the substitution ẇ = (p(w))1/2, whence

p(w) = α exp 4w + γ exp 2w − k, γ ∈ R
1.

Equation ẇ = (p(w))1/2 has a singular solution w = C = const such that p(C) = 0.
If ẇ �= 0, then integrating the equation ẇ = p(w) and returning to the initial variable
y we get∫ y(t) dτ

τ(ατ4 + γτ2 − k)1/2
= t + C1.

Taking the integral in the left-hand side of the above equality we obtain the general
solution of the first ODE from Eq. (A.1). It is given by the following formulas:
under k = −a2 < 0

y = C2

(
α + sinh 2a(t + C1)

)−1/2
,

y = C2

(
α + cosh 2a(t + C1)

)−1/2
,

y = C2

(
α + exp(±2at)

)−1/2
,

(A8)

under k = b2 > 0

y = D2

(
α + sin 2b(t + D1)

)−1/2
. (A9)

Here C1, C2, D1, D2 are arbitrary real constants.
Integrating the second ODE from Eq. (A.7) and returning to the initial variable z

we have
under k = −a2 < 0

z = y(t)(C3 cosh at + C4 sinh at) (A10)

under k = b2 > 0

z = y(t)(D3 cos bt + D4 sin bt), (A11)

where C3, C4, D3, D4 are arbitrary real constants.
Thus, we have constructed the general solution of the system of nonlinear ODEs

(A.1) which is given by the formulas (A.5)–(A.11).

Appendix B. Separation of Eq. (1)
into three second-order ODEs

Suppose that there exists an Ansatz

u = Q(t,x)ϕ0(ω0(t,x))ϕ1

(
ω1(t,x)

)
ϕ2

(
ω2(t,x)

)
(A12)
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which separates the Schrödinger equation into three second-order ODEs

d2ϕ0

dω2
0

= U0

(
ω0, ϕ0,

dϕ0

dω0
;λ1, λ2

)
,

d2ϕ1

dω2
1

= U1

(
ω1, ϕ1,

dϕ1

dω1
;λ1, λ2

)
,

d2ϕ2

dω2
2

= U2

(
ω2, ϕ2,

dϕ2

dω2
;λ1, λ2

) (A13)

according to the Definition 1.
Substituting the Ansatz (A.12) into Eq. (1) and excluding the second derivatives

d2ϕµ/dω2
µ, µ = 0, 2 according to Eqs. (A.13) we get

i(Qtϕ0ϕ1ϕ2 + Qω0tϕ̇0ϕ1ϕ2 + Qω1tϕ0ϕ̇1ϕ2 + Qω2tϕ0ϕ1ϕ̇2) + (�Q)ϕ0ϕ1ϕ2 +
+ 2Qxa

ω0xa
ϕ̇0ϕ1ϕ2 + 2Qxa

ω1xa
ϕ0ϕ̇1ϕ2 + 2Qxa

ω2xa
ϕ0ϕ1ϕ̇2 +

+ Q
(
(�ω0)ϕ̇0ϕ1ϕ2 + (�ω1)ϕ0ϕ̇1ϕ2 + (�ω2)ϕ0ϕ1ϕ̇2 + ω0xa

ω0xa
U0ϕ1ϕ2 +

+ ω1xa
ω1xa

ϕ0U1ϕ2 + ω2xa
ω2xa

ϕ0ϕ1U2 + 2ω0xa
ω1xa

ϕ̇0ϕ̇1ϕ2 +
+ 2ω0xa

ω2xa
ϕ̇0ϕ1ϕ̇2 + 2ω1xa

ω2xa
ϕ0ϕ̇1ϕ̇2

)
= V Qϕ0ϕ1ϕ2.

Splitting the above equality with respect to ϕ̇0ϕ̇1, ϕ̇0ϕ̇2, ϕ̇1ϕ̇2 we obtain the
equalities:

ω0xa
ω1xa

= 0, ω0xa
ω2xa

= 0, ω1xa
ω2xa

= 0. (A14)

Since the functions ωµ, µ = 0, 2 are real-valued, equalities (A.14) mean that there
are three real two-component vectors which are mutually orthogonal. This is possible
only if one of them is a null-vector. Without loss of generality we may suppose that
(ω0x1 , ω0x2) = (0, 0), whence ω0 = f(t) ∼ t.

Consequently, Ansatz (A.12) necessarily takes the form (5). But Ansatz (5) can
not separate Eq. (1) into three second-order ODEs, since it contains no second-order
derivative with respect to t.

Thus, we have proved that the Schrödinger equation (1) is not separable into three
second-order ODEs.
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