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Reduction of the seli-dual Yang—Mills
equations. I. The Poincaré group

R.Z. ZHDANOV, V.I. LAHNO, W.I. FUSHCHYCH

We have obtained a complete description of ansatzes for the vector-potential of the
Yang—Mills field invariant under 3-parameter P(1, 3)-inequivalent subgroups of the Poi-
ncaré group. Using these, we carry out a reduction of the self-dual Yang-Mills equations
to system of ordinary differential equations.

Ins Bekrtop-moteHuiany mnoas dura-Minnca nobynoBaHo MOBHUK Habip iHBapiaHTHHX
BigHocHO P(1,3)-HeekBiBaseHTHUX miarpyn rpynu IlyaHkape aHsalis, 3 BUKOPHCTAHHSIM
SKMX [IPOBEJEHO PeNyKLilo caMopya/lbHUX piBHAHb fHra—Misnca 1o cucreM 3BUYalHHX
nudepeHLialbHUX PiBHSAHb.

Classical SU(2) Yang-Mills equations form a system of twelve nonlinear second-
order partial differential equations (PDE) in the Minkowski space R(1,3). But one
can obtain an important subclass of solutions by considering the following first-order
system of PDE:

N 7 =0
FNV = EE;UJQBF 57 (1)

where F,, = 9"A, — VA, + eA, x A, is a tensor of the Yang—Mills field; 8, =
0/0x,, €,ap is the antisymmetric fourth-order tensor; u,v,o,8 = 0,3. Hereafter,
the summation over the repeated indices from 0 to 3 is understood, rising and
lowering of the tensor indices is carried out with the help of the metric tensor
g = diag (1,—1,—1,—1) of the Minkowski space.

Equations (1) are called self-dual Yang—Mills equations. They are very interesting
because of the fact that any solution of equations (1) automatically satisfies Yang—
Mills equations (see, e.g. [1]). Moreover, symmetry groups of the Yang—Mills and of
the self-dual Yang—Mills equations are the same. Maximal symmetry group admitted
by equations (1) is the conformal group C(1,3) supplemented by the gauge group
SU(2) [2].

In the present paper, we carry out a symmetry reduction of the self-dual Yang-
Mills equations (1) by using ansatzes for the vector-potential of the Yang-Mills
A'u(x) invariant under the three-parameter subgroups of the Poincaré group P(1,3) C
C(1,3).

It is known that the problem of classification of inequivalent subgroups of a Lie
transformation group is equivalent to the one of classification of inequivalent sub-
algebras of the Lie algebra (see, e.g. [3, 4]). Complete description of P(1, 3)-inequiva-
lent three-dimensional subalgebras of the Poincaré algebra AP(1,3) had been obtained
in [3].
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To establish correspondence between the three-dimensional subalgebra of the
symmetry algebra of equations (1) having the basis elements

o
= Eapla, A)D, +bzl’7a“x’4)aAb’ a=1,3, 2)

where {A% a = 1,3, = 0,3}, and the ansatz for /Tu(a:) reducing equations (1) to
a system of ordinary differential equations, one has:

(1) to construct a complete system of functionally-different invariants of the
operators (2) w = {w;(z, A),i =1,13};

(2) to resolve the relations

Fj(wi(z, A),...,wi3(z,A)) =0, j=1,13 3)

with respect to the functions Af.
As proved in [5], the above procedure can be significantly simplified if coefficients
of operators (2) have the following structure:

3

gau = gau ($), 772# = Z Rziw( )Axc/ (4)

c=1

The ansatz for A, can be searched for in the form

3

A(x) =Y Qp (@) Bl (w(x), ()
c=1
where B (w) are arbitrary smooth and the functions w(z), Q4 (z) satisfy the system
of PDE
gau(m)wxu =0,
3
6
3 (a0, — Q5 = 0. ©
c=1

Here, §¢ is the Kronecker symbol, a,b,d = 1,3, a =0, 3.
On the set of solutions of equations (1), the following representation of the Poincaré
algebra is realized:

0
PH:au’ JI‘«V_J"H xVP +Z( uaAaV_ ’C’LaAal‘>’ MaV:073(7)

Consequently, relations (4) hold true. Moreover, expression for nfm has the form

= Rap(z) A

v

,'73” a, b= 17—3a n= a3' (8)

That is why formulae (5), (6) can be rewritten in a simpler way. Namely, an ansatz

for the vector-potential of the Yang—Mills field A(x) invariant under a subalgebra of
the algebra AP(1,3) with basis operators (7) should be searched for in the form

Aj(2) = Quv (z) B (w(2)), (9)
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where BY(w) are arbitrary smooth functions and functions w(x), Q. () satisfy the
system of PDE

§ap ()W, =0,
gaa (x)aOtQ},Ll/ - Raua(x)QaV =0,

where a =1,3, u,v =0, 3.

Thus, to get a complete description of P(1, 3)-inequivalent ansatzes invariant under
three-dimensional subalgebras of the Poincaré algebra, one has to integrate over-
determined system of PDE (10) for each subalgebra. Let us note that compatibility of
equations (10) is guaranteed by the fact that the operators X;, Xo, X3 form a Lie
algebra.

Bellow, we adduce a complete list of C(1,3)-inequivalent three-dimensional subal-
gebras of the Poincaré algebra AP(1,3) following [4]:

(10)

= (Po, P1, P»), = (P, P, P),
= (Py + P3, P, P), L4 (Joz + aJi2, P1, Py),
= (Jo3, Po + P3, Py), L6 (Jos + Pr, Py, Ps),
L7* (Joz + Pr, Po + P3, P1), = (J12 + aJosz, Po, P3),
= (Ji2 + Po, P1, P»), L10— Jio + Ps, Pi, P»),

(

L11 = (Jizo+ Py — P3,P1, Py), L3 = (G1, Py + P3, P, + aPy),
L3 = (G + Py, Py + Ps, P), Liy={(G1+Py— P5,Py+ P3, P»),
Lis =(G1+ Py — P3, P, +aP,,Py+ P3), Lig = (Ji2,Jo3, P + P3),

Li7 ={(G1 + P3,Gs — Py + Py, Py + P3), Lig = (G, Jos, Pa),
Lig = (Jos, G1, Py + Ps3), Loy = (Joz + P2, G, Py + Ps),
Loy = (G1, Jo3 + P1 + aP,, Py + P3), Loy = (G1, G, Joz + aJi2),

Ly = (G1, Py + Ps3, P1), Loy = (J12, P1, P2),

Las = (Jos, Po, Ps), Lag = (Jo1, Joz, J12),

La7 = (J12, J23, J13),

Here, G; = Jo; — Jis (i =1,2), a € R.

Let us consider, as an example, the procedure of construction of ansatz (9) invari-
ant under subalgebra Ly (o = 0). In this case, system (10) reads

Wy =Wz, =0, Towg, + Tawy, =0, (11a)
Qz, = Qu, =0, 10Qz, +23Q,, — SQ =0, (11b)
where Q = |Quu ()2, = 0,
0 0 01
5=lo 0 0 o
1 0 0 O

The first integral of system (1la) has the form w = 23 — 22. Next, from first two
equations of system (11b), it follows that Q@ = Q(x¢, z3). Since S is a constant matrix,
solutions of the third equation from (I1b) can be looked for in the form (see, e.g. [6])

Q = exp{f(xo,x3)S}.
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By substituting this expression into (11b), we get
(:EofwsvxSfmo - 1) exp{fS} =0,

where f = 111(1‘0 + 56‘3).
Consequently, a particular solution of equations (lib) can be chosen in the following
way:

Q = exp{ln(zo + x3)S}.
By using evident identity S = S3, we obtain the equality
Q =TI+ Ssh(In(xg + z3)) + S*(ch(In(zg + 23)) — 1), (12)

where T is a unit (4 x 4)-matrix.
_ By substituting the obtained expressions into formula (9), we get an ansatz for
A, (x) which is invariant under the algebra L,
A§ = Bfj(xf — 2) ch(In(zo + z3)) + BS (2§ — 23) sh(In(wo + 23)),
Af = Bi(f —a8), A3 = B§(af — o), (13)
A% = B$(x3 — 23) ch(In(2 — 23)) + Bd(2% — 23) sh(In(2 — 23)), a=1,3.
The above ansatz has such an unpleasant feature as an asymmetric dependence
on independent variables x,. To remove this asymmetry, one has to use a solution

generation procedure [7]. As a result, we arrive at the following representation of the
Poincaré invariant ansatz for the vector-potential of the Yang-Mills field:

A () = Qu(x) B (w) = {(apa, — d,d,) ch 8y + (dya, — dya,)shby +
+ 2k, [(61 cos O3 + 62 sin 03)b,, + (02 cos O3 — 61 sinb3)c, +
+ (9% + Hg)k,, exp(—bo)] + (bucy, — byc,)sinbs — (cuc — buby) cos O3 —
— 2(01b,, + O2¢,)ky exp(—@o)]}g”(w).
Here, a,, by, cu, d,, are arbitrary constants satisfying the following equalities:
ayatt = —b,b* = —c,ct = —d,d* =1,
a,bt = a,ct = a,dt = b, = b,d" = c,dt =0,
ky = ay +dy, Qp, w are some functionals of z whose explicit form depends on the
choice of the algebra AP(1,3), u =0, 3. Below, we adduce a complete list of functions

Qu, 1 = 0,3, w co corresponding to three-dimensional subalgebras of the Poincaré
algebra (7).

Li: 6,=0, w=dz;
Ly: 0,=0, w=axz;
Ly: 0,=0, w=az+dz;

Ly: 6p=—Inlax+dz|, 61 =02=0, 05=alnlax+ dx|,
w = (az)? — (dz)?;

Ls: 6p=—Inlax+dz|, 0, =0=03=0, w=cx;

Lg: 0g=bx, 0,=0,=03=0, w=cz;

L7: Og=bx, 01=0,=05=0, w=—bzx+Inlax+ dz|;
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Ls: 0y = aarctgbz(cz)™l], 61 =0,=0, 03=—arctg[bz(cr)™}],
w = (bz)? + (cx)?;

Ly: 6Oyg=0,=0,=0, 03=—ax, w=dx;

Lig: 6p=61=0,=0, 063

|
Q.
8
€

|
e
8

1
Lii: 6p=0;=0,=0, 03:—§(dx—|—aa:), w = ax + d;

1
Lis: 6p=0,=03=0, 0= E(bx —acz)(ax +dr)™t,  w=az+dx;

1
Liz: 6y=0,=103=0, 9125030, w = ax + dx;

1
Liy: 6p=06,=105=0, 91:—Z(aaz:—&—daz:)7 w = 4bx — (ax + dr)?;

1
Lis: 0y=0,=05=0, le—i(ax—&—de

w = 4(abx — cx) — alax + dx)?;

Lig: 6p=—Inlax+dz|, 6 =0,=0, 03=—arctglbr(cx) ],
w = (bx)? + (cx)?;

1 cx+ (a+azx+ dx)bx

Liz: 6p=0, 6=
T 07" VT 91 4 (ax + da) (o + ax + da)’

O Tl GGy 0 et
Lig: 6= —1Inlaz + dz|, elzéwbﬁ, 0y =05 =0,

w = (az)? = (bo)? — (do)?;
Lig: 0p=—1Inlax + dz|, elzéaxlfdx b =03=0, w=cuz;
Lo : 6y =—1Inlax + dz|, elzéa:cb—ig-ﬁdx’ b =03 =0,

w=cx + Inl|azx + dzx|;
1 —bx + In|az — dz|

L21 : 90 = 71H|a13+d17|, 91 == 9 a_’1,‘+d_’L‘ 5 92 :93 :0,
w=cz+ aln|ax + dz|;
Loy : 6y = —1In|ax + dx|, lelb—x, 2:1L7
2 axr — dx 2 axr — dx

03 = alnlax + dz|, w= (ax)? - (bz)* — (cz)? — (dx)>.

Here, ax = a,z#, bx = b2, cx = ¢z, do = dyat, p=0,3.
Note. Ansatzes invariant under subalgebras Los, Laog, Las, Log, Laor yield so-called

partially-invariant solutions (the term was introduced by L.V. Ovsyannikov [8]) which
cannot be represented in the form (13) and are not considered here.

Substitution of ansatzes (13), (14) into system of PDE (1) demands very cumberso-
me computations. This is why we omit these and adduce only the final result-system
of ordinary differential equations for B, (w).
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General form of the reduced system is the following:

—

1 -
Ty = 55W5TO‘B, w,v=0,3, (14)

where
f,w = Gu(w)gu - G,B, — H,Wn,(w)é”* + egﬂ x B,

and functions G, (w), H,~(w) are calculated according to the following formulae:

Gu(w) = Quywwuv
H#V’Y(w) = QﬁQa’ym@Qﬁu - QS - Qa'ymBQﬂ;u
In the above formulae, overdot means differentiation with respect to w.
Thus, the form of the reduced equations for functions B,(w) depends on the

explicit forms of functions G,,(w), H,,~(w). Below, we adduce a list of these functions
corresponding to ansatzes (13), (14).

Li: Gu=-d,, Hu~=0;
Ly: Gu=au,, Hu,=0
Ly: Gu=ky, Huy=0;
Ly: G,=c¢la, —d, + k],
Hypry = —€l(apdy, — dyay )by + a(ky (bycy — cyby) — ku(byc, — cyby))l;
Ls: Gu=cu Huyy=—c(aud, —dya,)ky;
Lo: Gu=cu Huy=(audy —aydy)by + (avdy — aydy)by;
Ly: G,=-b,+ck,, Huy=—(audy—ayd,)b, + (aydy — ayd,)by;
Ly: Gu=2c,\/w,
1
Hyy = ﬁ{(cubv — cubu)by + af(dpay — apdy)by — (dyay — aydy)bul};
Lo G, =—d,, H,y=—a,(bycy —cyby) + ay(bucy — cuby);
Lio: Gu=au, Huy = (bucy—cuby)dy, — (bucy — cuby)dy;
1
Liw: Gu=a,—dy, Hyuy= 5[(b,,cy — cuby)by — (bucy — cuby)bul;
L12 GH = I{/’M,
1
Hyy = ;{(kubv — kubu)by — al(kuby — kybyu)ew — (kuby — kyby)epl}s
Liz: Gu=ku, Hpypy = (kuby —kybu)ey — (kuey — kyby)ey;
1
Liy: G,=4b,, H,,= §(b“ky —byky)ky;
1
Lis: G,=4(cy,—aby), Hyy= é(b#ky —byky)ky;
L16 : GH = 2CH\/J,
1 1
H, =c(aud, —ayd,)ky — ﬁk,y — ﬁ(bucy —cuby)by;
L17 : GH = kl“
1
H {2(byc, — bucy)ky + (kucw — kuey)by +

Y = 1+ w(w+ a)
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+ (kyby — kuby)ey + (a4 w)(kuby — kuby )by +
+w(kucy — kvey)ey b

Lig: G,=c¢lkyw+a,—d,),

vy = €l(kuby — kubu)by + (apdy — kubp)ky s

=cu,  Hyuwy = e[(kpby — kubu)by + (apdy — avdy)ky];

b‘
o
:Q :m

Lao: Gu=cu+eky, Huy=el(audy, — aydy)ky + (kuby — kybu)byl;
Ly 1 G, =cy +eaky,
Hyy = €l(apdy — avdy)ky + (kuby — kubu)by — (kuby — kubp)kyl;

h
N
D

p = clkyw +ay —dy),
vy = e{(kpby — kubu)by + (ke — kuey)ey +
+ af(bucy — cubu)ky — (bucy — cuby] + (audy — avdy)ky}.

=

Here, k, = a, +d,, e =1 for ax +dx > 0 and e = —1 for ax 4 dz < 0.

Thus, using symmetry properties of the self-dual Yang—-Mills equations and sub-
algebraic structure of the Poincaré algebra, we reduced system of PDE (1) to the
system of ordinary differential equations (15). Let us emphasize that system (15)
contains nine equations for twelve functions, which means that it is underdetermined.
This fact simplifies essentially finding its particular solutions.

If one constructs a solution of one of equations (15) (general or particular), then
substitution of the obtained result into the corresponding ansatz from (13). (14) yields
an exact solution of the nonlinear self-dual Yang—Mills equations (1). We intend to
study in detail the reduced system of ordinary differential equations (15) and construct
new classes of exact solutions of equations (1) but this will be a topic of our future
publication.
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