
W.I. Fushchych, Scientific Works 2003, Vol. 5, 461–467.

On non-Lie ansatzes and new exact solutions
of the classical Yang–Mills equations
R.Z. ZHDANOV, W.I. FUSHCHYCH

We suggest an effective method for reducing Yang–Mills equations to systems of ordi-
nary differential equations. With the use of this method, we construct wide families
of new exact solutions of the Yang–Mills equations. Analysis of the solutions obtained
shows that they correspond to conditional symmetry of the equations under study.

1 Introduction

The majority of papers devoted to construction of the explicit form of exact solutions
of the SU(2) Yang–Mills equations (YME)

∂ν∂ν �Aµ − ∂µ∂ν
�Aν + e[(∂ν

�Aν) × �Aµ − 2(∂ν
�Aµ) × �Aν + (∂µ �Aν) × �Aν ] +

+ e2 �Aν × ( �Aν × �Aµ) = �0
(1)

is based on the ansatzes for the Yang–Mills field �Aµ(x) suggested by Wu and Yang,
Rosen, ’t Hooft, Corrigan and Fairlie, Wilczek, Witten (see [1] and references therein).
And what is more, the above ansatzes were obtained in a non-algorithmic way, i.e.,
there was no regular and systematic method for constructing such ansatzes.

Since one has only a few distinct exact solutions of YME, it is difficult to give
their reliable and self-consistent physical interpretation. That is why, the problem of
prime importance is the development of an effective regular approach for constructing
new exact solutions of the system of nonlinear partial differential equations (PDE) (1)
(see also [1]).

A natural approach to construction of particular solutions of YME (1) is to uti-
lize their symmetry properties in the way as it is done in [2–4, 13]. Apparatus
of the theory of Lie transformation groups makes it possible to reduce the system
of PDE (1) to systems of nonlinear ordinary differential equations (ODE) by using
special ansatzes (invariant solutions) [5, 6]. If one succeeds in constructing general
or particular solutions of the said ODE (which is extremely difficult problem), then
substituting results into the corresponding ansatzes, one gets exact solutions of the
initial system of PDE (1).

Another possibility of construction of exact solutions of YME is to use their condi-
tional (non-Lie) symmetry (for more details about conditional symmetry of equations
of mathematical physics, see [7, 8] and also [9]). But the prospects of a systematic
and exhaustive study of conditional symmetry of the system of twelve second-order
nonlinear PDE (1) seem to be rather obscure. It should be said that so far we have
no complete description of conditional symmetry of a nonlinear wave equation even
in the case of one space variable.

In [9] we suggested an effective approach to study of conditional symmetry of
the nonlinear Dirac equation based on its Lie symmetry. We have observed that all
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Poincaré-invariant ansatzes can be represented in the unified form by introducing
several arbitrary elements (functions) u1(x), u2(x), . . . , uN (x). As a result, we get an
ansatz for the Dirac field which reduces the nonlinear Dirac equation to a system
of ODE provided functions ui(x) satisfy some compatible over-determined system of
nonlinear PDE. After integrating it, we have obtained a number of new ansatzes that
cannot in principle be obtained within the framework of the classical Lie approach.

In the present paper we construct a number of new exact solutions of YME (1)
with the aid of the above described approach.

2 Reduction of YME

In the papers [2, 13] we adduce a complete list of P (1, 3)-inequivalent ansatzes for the
Yang–Mills field which are invariant under three-parameter subgroups of the Poincaré
group P (1, 3). Analyzing these ansatzes, we come to the conclusion that they can be
represented in the following unified form:

�Aµ(x) = Rµν(x) �Bν(ω), (2)

where �Bν(ω) are new unknown vector-functions, ω = ω(x) is a new independent
variable, functions Rµν(x) are given by

Rµν(x) = (aµaν − dµdν) ch θ0 + (aµdν − dµaν) ch θ0 +
+ 2(aµdµ)[(Θ1 cos θ3 + θ2 sin Θ3)bν + (θ2 cos θ3 − θ1 sin θ3)cν +

+ (θ2
1 + θ2

2)e
−θ0(aν + dν)] − (cµcν + bµbν) cos θ3 −

− (cµbν − bµcν) sin θ3 − 2e−θ0(θ1bµ + θ2cµ)(aν + dν).

(3)

In (3) θµ(x) are some smooth functions and what is more, θa = θa(ξ, bµxµ, cµxµ),
a = 1, 2, ξ = 1

2kµxµ = 1
2 (aµxµ + dµxµ); aµ, bµ, cµ, dµ are arbitrary constants

satisfying the following relations:

aµaµ = −bµbµ = −cµcµ = −dµdµ = 1,

aµbµ = aµcµ = aµdµ = bµcµ = bµdµ = cµdµ = 0.

Hereafter, summation over the repeated indices from 0 to 3 is understood. Risi-
ng and lowering of the indices is performed with the help of the tensor gµν =
diag (1,−1,−1,−1), i.e. Rα

µ = gαβRβµ.
The choice of the functions ω(x), θµ(x) is determined by the requirement that

substitution of the ansatz (2) into YME yields a system of ordinary differential equati-
ons for the vector function �Bµ(ω).

By a direct check, one can become convinced of that the following assertion holds
true.

Lemma. Ansatz (2), (3) reduces YME (1) to a system of ODE if the functions ω(x),
θµ(x) satisfy the system of PDE

1. ωxµ
ωxµ = F1(ω),

2. �ω = F2(ω),
3. Rαµωxα

= Gµ(ω),
4. Rαµxα

= Hµ(ω),

(4)
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5. Rα
µRανxβ

ωxβ = Qµν(ω),
6. Rα

µ�Rαν = Sµν(ω),
7. Rα

µRανxβ
Rβγ + Rα

ν Rαγxβ
Rβµ + Rα

γ Rαµxβ
Rβν = Tµνγ(ω),

where F1, F2, Gµ, . . . , Tµνγ are some smooth functions, µ, ν, γ = 0, 3. And what is
more, the reduced equation has the form

kµγ
�̈Bγ + lµγ

�̇Bγ + mµγ
�Bγ + eqµνγ

�̇Bν × �Bγ +

+ ehµνγ
�Bν × �Bγ + e2 �Bγ × ( �Bγ × �Bµ) = �0,

(5)

where

kµγ = gµγF1 − Gµgγ ,

lµγ = gµγF2 + 2Qµγ − GµHγ − GµĠγ ,

mµγ = Sµγ − GµḢγ ,

qµνγ = gµγGν + gνγGµ − 2gµνGγ ,

hµνγ =
1
2
(gµγHν − gµνHγ) − Tµνγ .

(6)

Thus, to describe all ansatzes of the form (2), (3) reducing YME to a system of
ODE, one has to construct the general solution of the over-determined system of PDE
(3), (4). Let us emphasize that system (3), (4) is compatible, since ansatzes invariant
under the Poincaré group satisfy equations (3), (4) with some specific choice of the
functions F1, F2, . . . , Tµνγ .

Integration of the system of nonlinear PDE (3), (4) demands a huge amount of
computations. That is why, we present here only the principal idea of our approach
to solving system (3), (4). When integrating it, we use essentially the fact that the
general solution of the system of equations 1, 2 from (4) is known [10]. With already
known ω(x), we proceed to integration of the linear PDE 3, 4 from (4). Next, we
substitute the results obtained into the remaining equations and get the final form of
the functions ω(x), θµ(x).

Before presenting the results of integration of the system of PDE (3), (4), we
make a remark. As a direct check shows, the structure of the ansatzes (2), (7) is not
altered by the change of variables

ω → ω′ = T (ω), θ0 → θ′0 = θ0 + T0(ω),

θ1 → θ′1 = θ1 + eθ0(T1(ω) cos θ3 + T2(ω) sin θ3),

θ2 → θ′2 = θ2 + eθ0(T2(ω) cos θ3 − T1(ω) sin θ3),
θ3 → θ′3 = θ3 + T3(ω),

(7)

where T (ω), Tµ(ω) are arbitrary smooth functions. That is why, solutions of system
(3), (4) connected by the relations (7) are considered as equivalent.

It occurs that new (non-Lie) ansatzes are obtained, if functions ω(x), θµ(x) up to
the equivalence relations (7) have the form

θµ = θµ(ξ, bνxν , cνxν), µ = 0, 3,

ω = ω(ξ, bνxν , cνxν),
(8)

where ξ = 1
2kνxν , kν = aν + dν .
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The list of inequivalent solutions of the system of PDE (3), (4) satisfying (8) is
exhausted by the following solutions:

1. θ0 = θ3 = 0, ω =
1
2
kνxν ,

θ1 = w0(ξ)bµxµ + w1(ξ)cµxµ, θ2 = w2(ξ)bµxµ + w3(ξ)cµxµ;
2. ω = bµxµ + w1(ξ), θ0 = α

(
cµxµ + w2(ξ)

)
,

θa = −1
4
ẇa(ξ), a = 1, 2, θ3 = 0;

3. θ0 = T (ξ), θ3 = w1(ξ),
ω = bµxµ cos w1 + cµxµ sin w1 + w2(ξ),

θ1 =
[
1
4
(εeT + Ṫ )(bµxµ sin w1 − cµxµ cos w1) + w3(ξ)

]
sin w1 +

+
1
4
[
ẇ1(bµxµ sin w1 − cµxµ cos w1) − ẇ2

]
cos w1,

θ2 = −
[
1
4
(εeT + Ṫ )(bµxµ sinw1 − cµxµ cos w1) + w3(ξ)

]
cos w1 +

+
1
4
[
ẇ1(bµxµ sin w1 − cµxµ cos w1) − ẇ2

]
sin w1;

4. θ0 = 0, θ3 = arctg
[(

cµxµ + w2(ξ)
)(

bµxµ + w1(ξ)
)−1]

,

θa = −1
4
ẇa(ξ), a = 1, 2, ω =

[(
bµxµ + w1(ξ)

)2 +
(
cµxµ + w2(ξ)

)2]1/2
.

(9)

Here α �= 0, ε are arbitrary constants, w0, w1, w2, w3 are arbitrary smooth functions
of ξ = 1

2kµxµ, T = T (ξ) is a solution of the nonlinear ODE
(
Ṫ + εeT

)2 + ẇ2
1 = κe2T , κ ∈ R

1. (10)

Substitution of the ansatz (2), where Rµν(x) are given by formulae (3), (9), into
YME yields systems of nonlinear ODE of the form (5), where

1. kµγ = −1
4
kµkγ , lµγ = −(w0 + w3)kµkγ ,

mµγ = −4(w2
0 + w2

1 + w2
2 + w2

3)kµkγ − (ẇ0 + ẇ3)kµkγ ,

qµνγ =
1
2
(gµγkν + gνγkµ − 2gµνkγ),

hµνγ = (w0 + w3)(gµγkν − gµνkγ) + 2 (w1 − w2)
[
(kµbν − kνbµ)cγ +

+ (bµcν − bνcµ)kγ + (cµkν − cνkµ)bγ

]
;

2. kµγ = −gµγ − bµbγ , lµγ = 0, mµγ = −α2(aµaγ − dµdγ),
qµνγ = gµγbν + gνγbµ − 2gµνbγ ,

hµνγ = α
[
(aµdν − aνdµ)cγ + (dµcν − dνcµ)aγ + (cµaνcνaµ)dγ

]
;

3. kµγ = −gµγ − bµbγ , lµγ = −ε

2
bµkγ , mµγ = −κ

4
kµkγ ,

qµνγ = gµγbν + gνγbµ − 2gµνbγ , hµνγ =
ε

4
(gµγkν − gµνkγ);

4. kµγ = −gµγ − bµbγ , lµγ = −ω−1(gµγ + bµbγ), mµγ = −ω−2cµcγ ,

qµνγ = gµγbν + gνγbµ − 2gµνbγ , hµνγ =
1
2
ω−1(gµγbν − gµνbγ).

(11)
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3 Exact solutions of the nonlinear
Yang–Mills equations

Systems (5), (11) are systems of twelve nonlinear second-order ODE with variable
coefficients. That is why, there is a little hope to construct their general solutions.
But it is possible to obtain particular solutions of system (5), which coefficients are
given by the formulae 2–4 from (11).

Consider, as an example, the system of ODE (5) with coefficients given by the
formulae 2 from (11). We look for its solutions in the form

�Bµ = kµ�e1f(ω) + bµ�e2g(ω), fg �= 0, (12)

where �e1 = (1, 0, 0), �e2 = (0, 1, 0).
Substituting the expression (12) into the above mentioned system, we get

f̈ + (α2 − e2g2)f = 0, f ġ + 2ḟg = 0. (13)

The second ODE from (13) is easily integrated

g = λ f−2, λ ∈ R
1, λ �= 0. (14)

Substitution of the result obtained into the first ODE from (13) yields the Ermakov-
type equation for f(ω)

f̈ + α2f − e2λ2 f−3 = 0,

which is integrated in elementary functions [11]

f =
[
α−2C2 + α−2

(
C4 − α2e2λ2

)1/2 sin 2|α|ω]1/2
. (15)

Here C �= 0 is an arbitrary constant.
Substituting (12), (14), (15) into the corresponding ansatz for �Aµ(x), we get the

following class of exact solutions of YME (1):

�Aµ = �e1kµ exp
(−αcx − αw2

)[
α−2C2 + α−2

(
C4 − α2e2λ2

)1/2 ×
× sin 2|α|(bx + w1)

]1/2 + �e2λ
[
α−2C2 + α−2

(
C4 − α2e2λ2

) ×
× sin 2|α|(bx + w1)

]−1
(

bµ +
1
2

kµẇ1

)
.

In a similar way, we have obtained five other classes of exact solutions of the
Yang–Mills equations

�Aµ = �e1kµe−T
(
bx cos w1 + cx sin w1 + w2

)1/2
Z1/4

( ieλ

2
(
bx cos w1 +

+ cx sinw1 + w2

)2
)

+ �e2λ(bx cos w1 + cx sinw1 + w2) ×

×
[
cµ cos w1− bµ sin w1 + 2kµ

(1
4
(
εeT + Ṫ

)(
bx sin w1 − cx cos w1

)
+ w3

)]
;

�Aµ = �e1kµe−T
[
C1 ch eλ

(
bx cos w1 + cx sin w1 + w2

)
+ C2 sh eλ

(
bx cos w1 +

+ cx sinw1 + w2

)]
+ �e2λ

[
Cµ cos w1 − bµ sin w1 +

+ 2kµ

(1
4
(
εeT + Ṫ

)
(bx sin w1 − cx cos w1) + w3

)]
;
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�Aµ = �e1kµe−T
[
C2

(
bx cos w1 + cx sin w1 + w2

)2 + λ2e2C−2
]1/2 +

+ �e2λ
[
C2(bx cos w1 + cx sin w1 + w2)2 + λ2e2C−2

]−1 ×
×

{
bµ cos w1 + Cµ sinw1 − 1

2
kµ

[
ẇ1(bx sin w1 − cx cos w1) − ẇ2

]}
;

�Aµ = �e1kµZ0

( ieλ

2
[
(bx + w1)2 + (cx + w2)2

])
+ �e2λ ×

×
{

cµ(bx + w1) − bµ(cx + w2) − 1
2
kµ

[
ẇ1(cx + w2) − ẇ2(bx + w1)

]}
;

�Aµ = �e1kµ

[
C1

(
(bx + w1)2 + (cx + w2)2

)eλ/2 +

+ C2

(
(bx + w1)2 + (cx + w2)2

)−eλ/2 + �e2λ
[
(bx + w1)2 + (cx + w2)2

]−1×
×

{
cµ(bx + w1) − bµ(cx + w2) − 1

2
kµ

[
ẇ1(cx + w2) − ẇ2(bx + w1)

]}
.

Here C1, C2, C �= 0, ε, λ are arbitrary parameters; w1, w2, w3 are arbitrary smooth
functions of ξ = 1

2kx, T = T (ξ) is a solution of ODE (10).
Besides that, we use the following notations:

kx = kµxµ, bx = bµxµ, cx = cµxµ,

Zs(ω) = C1Js(ω) + C2Ys(ω), �e1 = (1, 0, 0), �e2 = (0, 1, 0),

where Js, Ys are Bessel functions. Thus, we have obtained the wide families of exact
non-Abelian solutions of YME (1).

In conclusion we say a few words about a symmetry interpretation of the ansatzes
(2), (7), (10). Let us consider, as an example, the ansatz determined by the formulae 1
from (9). As a direct computation shows, generators of the three-parameter Lie group
leaving it invariant are of the form

Q1 = kα∂α,

Q2 = bα∂α −
{[

w0(kµbν − kνbµ) + w2(kµcν − kνcµ)
] 3∑

a=1

Aaν
}

∂Aaµ ,

Q3 = cα∂α − 2
{[

w1(kµbν − kνbµ) + w3(kµcν − kνcµ)
] 3∑

a=1

Aaν
}

∂Aaµ .

(16)

Evidently, the system of PDE (1) is invariant under the one-parameter group having
the generator Q1. But it is not invariant under the groups having the generators Q2,
Q3. At the same time, the system of PDE

∂ν∂ν �Aµ − ∂µ∂ν
�Aν + e

[
(∂ν

�Aν) × �Aµ − 2(∂ν
�Aµ) × �Aν + (∂µ �Aν) × �Aν

]
+

+ e2 �Aν × ( �Aν × �Aµ) = �0,

Q0
�Aµ ≡ kα∂α

�Aµ = �0,

Q1
�Aµ ≡ bα∂α

�Aµ + 2
[
w0(kµbν − kνbµ) + w2(kµcν − kνcµ)

]
�Aν = �0,

Q2
�Aµ ≡ cα∂α

�Aµ + 2
[
w1(kµbν − kνbµ) + w3(kµcν − kνcµ)

]
�Aν = �0

is invariant under the said group. Consequently, YME (1) are conditionally-invariant
under the Lie algebra (16). It means that the solutions of YME obtained with the help
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of the ansatz invariant under the group with the generators (16) can not be found by
the classical symmetry reduction procedure.

As rather tedious computations show, the ansatzes determined by the formulae
2–4 from (9) also correspond to conditional symmetry of YME. Hence it follows,
in particular, that YME should be included into the long list of mathematical and
theoretical physics equations possessing a nontrivial conditional symmetry [12].
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