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Conditional symmetry and new classical
solutions of the Yang–Mills equations
R.Z. ZHDANOV, W.I. FUSHCHYCH

We suggest an effective method for reducing the Yang–Mills equations to systems of
ordinary differential equations. With the use of this method we construct the extensive
families of new exact solutions of the Yang–Mills equations. Analysis of the solutions
thus obtained shows that they correspond to the conditional (non-classical) symmetry
of the equations under study.

1 Introduction

A majority of papers devoted to construction of explicit form of the exact solutions of
SU(2) Yang–Mills equations (YMEs)

∂ν∂
νAµ − ∂µ∂νAν + e

(
(∂νAν) × Aµ − 2(∂νAµ) × Aν +

+(∂µAν) × Aν
)

+ e2Aν × (Aν × Aµ) = 0
(1)

are based on the ansätze for the Yang–Mills field Aµ(x) suggested by Wu and
Yang, Rosen, ’t Hooft, Corrigan and Fairlie, Wilczek, Witten (see [1] and references
therein). There were further developments for the self-dual YMEs (which form the
first-order system of nonlinear partial differential equations such that system (1) is its
differential consequence). Let us mention the Atiyah–Hitchin–Drinfeld–Manin method
for obtaining instanton solutions [2] and its generalization due to Nahm. However,
the solution set of the self-dual YMEs is only a subset of solutions of YMEs (1)
and the problem of construction of new non self-dual solutions of system (1) is, in
fact, completely open (see, also [1]). As the development of new approaches to the
construction of exact solutions of YMEs is a very interesting mathematical problem,
it may also be of importance for physics. The reason is that all famous mathematical
models of elementary particles such as solitons, instantons, merons are quite simply
particular solutions of some nonlinear partial differential equations.

A natural approach to construction of particular solutions of YMEs (1) is to utilize
their symmetry properties in the way as it is done in [9, 10, 16] (see, also [15],
where the reduction of the Euclidean self-dual YMEs is considered). The apparatus
of the theory of Lie transformation groups makes it possible to reduce system of
partial differential equations (PDEs) (1) to systems of nonlinear ordinary differential
equations (ODEs) by using special ansätze (invariant solutions) [10, 18, 20]. If one
succeeds in constructing general or particular solutions of the said ODEs (which is
an extremely difficult problem), then on substituting the results in the corresponding
ansätze one gets exact solutions of the initial system of PDEs (1).

Another possibility of construction of exact solutions of YMEs is to use their condi-
tional (non-Lie) symmetry (for more details about conditional symmetry of equations
of mathematical physics, see [6, 8] and also [10, 12]) which has much in common with
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a “non-classical symmetry” of PDEs by Bluman and Cole [3] (see also [17, 19]) and
“direct method of reduction of PDEs” by Clarkson and Kruskal [4]. But the prospects
of a systematic and exhaustive study of conditional symmetry of system of twelve
second-order nonlinear PDEs (1) seem to be rather remote. It should be said that so
far there is no complete description of conditional symmetry of the nonlinear wave
equation even in the case of one space variable.

A principal idea of the method of ansätze, as well as of the direct method of
reduction of PDEs, is a special choice of the class of functions to which a possible
solution should belong. Within the framework of the above methods, a solution of
system (1) is sought in the form

Aµ = Hµ

(
x,Bν(ω(x))

)
, µ = 0, 3,

where Hµ are smooth functions chosen in such a way that substitution of the above
expressions into the Yang–Mills equations results in a system of ODEs for “new”
unknown vector-functions Bν of one variable ω. However, the problem of reduction
of YMEs posed in this way seemed to be hopeless. Really, if we restrict ourselves to
the case of a linear dependence of the above ansatz on Bν

Aµ(x) = Rµν(x)Bν(ω), (2)

where Bν(ω) are new unknown vector-functions, ω = ω(x) is a new independent
variable, then a requirement of reduction of (1) to a system of ODEs by virtue of (2)
gives rise to a system of nonlinear PDEs for 17 unknown functions Rµν , ω. What is
more, the system obtained is no way simpler than the initial Yang–Mills equations (1).
It means that some additional information about the structure of the matrix function
Rµν should be input into the ansatz (2). This can be done in various ways. But the
most natural one is to use the information about the structure of solutions provided
by the Lie symmetry of the equation under study.

In [11] we suggest an effective approach to the study of conditional symmetry of
the nonlinear Dirac equation based on its Lie symmetry. We have observed that all
Poincaré-invariant ansätze for the Dirac field ψ(x) can be represented in the unified
form by introducing several arbitrary elements (functions) u1(x), u2(x), . . . , uN (x).
As a result, we get an ansatz for the field ψ(x) which reduces the nonlinear Dirac
equation to system of ODEs provided functions ui(x) satisfy some compatible over-
determined system of nonlinear PDEs. After integrating it, we have obtained a number
of new ansätze that cannot in principle be obtained within the framework of the
classical Lie approach.

In the present paper we will demonstrate that the same idea proves to be fruitful
for obtaining new (non-Lie) reductions of YMEs and for constructing new exact
solutions of system (1).

2 Reduction of YMEs

In the paper [16] we have obtained a complete list of P (1,3)-inequivalent ansätze
for the Yang–Mills field which are invariant under the three-parameter subgroups of
the Poincaré group P (1,3). Analyzing these ansätze we come to conclusion that they
can be represented in the unified form (2), where Bν(ω) are new unknown vector
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functions, ω = ω(x) is a new independent variable and functions Rµν(x) are given by
the formulae

Rµν(x) = (aµaν − dµdν) cosh θ0 + (aµdν − dµaν) sinh θ0 + 2(aµ + dµ) ×
× [(θ1 cos θ3 + θ2 sin θ3)bν + (θ2 cos θ3 − θ1 sin θ3)cν +
+ (θ21 + θ22)e

−θ0(aν + dν)] − (cµcν + bµbν) cos θ3 −
− (cµbν − bµcν) sin θ3 − 2e−θ0(θ1bµ + θ2cµ)(aν + dν).

(3)

In (3) θµ(x) are some smooth functions and what is more θa = θa(ξ, bµxµ, cµx
µ),

a = 1, 2; ξ = 1
2kµx

µ = 1
2 (aµx

µ + dµx
µ); aµ, bµ, cµ, dµ are arbitrary constants

satisfying the following relations:

aµa
µ = −bµbµ = −cµcµ = −dµd

µ = 1,
aµb

µ = aµc
µ = aµd

µ = bµc
µ = bµd

µ = cµd
µ = 0.

Hereafter, summation over the repeated indices from 0 to 3 is understood. Rai-
sing and lowering of the indices is performed with the help of the tensor gµν =
diag(1,−1,−1,−1), e.g. Rα

µ = gαβRβµ.
A choice of the functions ω(x), θµ(x) is determined by the requirement that

substitution of the ansatz (2) in the YMEs yields a system of ODEs for the vector
function Bµ(ω).

By the direct check one can convince one self that the following assertion holds
true.
Lemma. Ansatz (2), (3) reduces YMEs (1) to system of ODEs iff the functions ω(x),
θµ(x) satisfy the following system of PDEs:

ωxµ
ωxµ = F1(ω), (4a)

�ω = F2(ω), (4b)

Rαµωxα
= Gµ(ω), (4c)

Rαµxα
= Hµ(ω), (4d)

Rα
µRανxβ

ωxβ = Qµν(ω), (4e)

Rα
µ�Rαν = Sµν(ω), (4f)

Rα
µRανxβ

Rβγ +Rα
νRαγxβ

Rβµ +Rα
γRαµxβ

Rβν = Tµνγ(ω), (4g)

where F1, F2, Gµ, . . ., Tµνγ are some smooth functions, µ, ν, γ = 0, 3. And what is
more, a reduced equation has the form

kµγB̈γ + lµγḂγ +mµγBγ + eqµνγḂν × Bγ + ehµνγBν × Bγ +
+ e2Bγ × (Bγ × Bµ) = 0,

(5)

where
kµγ = gµγF1 −GµGγ ,

lµγ = gµγF2 + 2Qµγ −GµHγ −GµĠγ ,

mµγ = Sµγ −GµḢγ ,

qµνγ = gµγGν + gνγGµ − 2gµνGγ ,

hµνγ =
1
2
(gµγHν − gµνHγ) − Tµνγ .

(6)
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Thus, to describe all ansätze of the form (2), (3) reducing the YMEs to a system
of ODEs one has to construct the general solution of the over-determined system of
PDEs (3), (4). Let us emphasize that system (3), (4) is compatible, since the ansätze
for the Yang–Mills field Aµ(x) invariant under the three-parameter subgroups of the
Poincaré group satisfy equations (3), (4) with some specific choice of the functions
F1, F2, . . . , Tµνγ [16].

Integration of system of nonlinear PDEs (3), (4) demands a huge amount of
computations. That is why we present here only the principal idea of our approach to
solving the system (3), (4). When integrating it we use essentially the fact that the
general solution of system of equations (4a), (4b) is known [13]. With ω(x) already
known we proceed to integration of linear PDEs (4c), (4d). Next, we substitute the
results obtained in the remaining equations (4) and get the final form of the functions
ω(x), θµ(x).

Before presenting the results of integration of system of PDEs (3), (4) we make
a remark. As the direct check shows, the structure of the ansatz (2), (3) is not altered
by the change of variables

ω → ω′ = T (ω), θ0 → θ′0 = θ0 + T0(ω),
θ1 → θ′1 = θ1 + eθ0

(
T1(ω) cos θ3 + T2(ω) sin θ3

)
,

θ2 → θ′2 = θ2 + eθ0
(
T2(ω) cos θ3 − T1(ω) sin θ3

)
,

θ3 → θ′3 = θ3 + T3(ω),

(7)

where T (ω), Tµ(ω) are arbitrary smooth functions. That is why, solutions of system
(3), (4) connected by the relations (7) are considered as equivalent.

Integrating the system of PDEs within the above equivalence relations we obtain
the set of ansätze containing the ones equivalent to the Poincaré-invariant ansätze.
We list below the corresponding expressions for the functions θµ, ω:

θµ = 0, ω = d · x; (8a)

θµ = 0, ω = a · x; (8b)

θµ = 0, ω = k · x; (8c)

θ0 = − ln |k · x|, θ1 = θ2 = 0, θ3 = α ln |k · x|,
ω = (a · x)2 − (d · x)2; (8d)

θ0 = − ln |k · x|, θ1 = θ2 = θ3 = 0, ω = c · x; (8e)

θ0 = −b · x, θ1 = θ2 = θ3 = 0, ω = c · x; (8f)

θ0 = −b · x, θ1 = θ2 = θ3 = 0, ω = b · x− ln |k · x|; (8g)

θ0 = α arctan(b · x/c · x), θ1 = θ2 = 0,
θ3 = − arctan(b · x/c · x), ω = (b · x)2 + (c · x)2; (8h)

θ0 = θ1 = θ2 = 0, θ3 = −a · x, ω = d · x; (8i)

θ0 = θ1 = θ2 = 0, θ3 = d · x, ω = a · x; (8j)
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θ0 = θ1 = θ2 = 0, θ3 = −1
2
k · x, ω = a · x− d · x; (8k)

θ0 = 0, θ1 =
1
2
(b · x− αc · x)(k · x)−1, θ2 = θ3 = 0, ω = k · x; (8l)

θ0 = θ2 = θ3 = 0, θ1 =
1
2
c · x, ω = k · x; (8m)

θ0 = θ2 = θ3 = 0, θ1 = −1
4
k · x, ω = 4b · x+ (k · x)2; (8n)

θ0 = θ2 = θ3 = 0, θ1 = −1
4
k · x, ω = 4(αb · x− c · x) + α(k · x)2; (8o)

θ0 = − ln |k · x|, θ1 = θ2 = 0,
θ3 = − arctan(b · x/c · x), ω = (b · x)2 + (c · x)2; (8p)

θ0 = θ3 = 0, θ1 =
1
2
(c · x+ (α+ k · x)b · x)(1 + k · x(α+ k · x))−1,

θ2 = −1
2
(b · x− c · xk · x)(1 + k · x(α+ k · x))−1, ω = k · x;

(8q)

θ0 = − ln |k · x|, θ1 =
1
2
b · x(k · x)−1, θ2 = θ3 = 0,

ω = (a · x)2 − (b · x)2 − (d · x)2;
(8r)

θ0 = − ln |k · x|, θ1 =
1
2
b · x(k · x)−1, θ2 = θ3 = 0, ω = c · x; (8s)

θ0 = − ln |k · x|, θ1 =
1
2
b · x(k · x)−1, θ2 = θ3 = 0,

ω = ln |k · x| − c · x;
(8t)

θ0 = − ln |k · x|, θ1 =
1
2
(b · x− ln |k · x|)(k · x)−1,

θ2 = θ3 = 0, ω = α ln |k · x| − c · x;
(8u)

θ0 = − ln |k · x|, θ1 =
1
2
b · x(k · x)−1, θ2 =

1
2
c · x(k · x)−1,

θ3 = α ln |k · x|, ω = (a · x)2 − (b · x)2 − (c · x)2 − (d · x)2,
(8v)

where a · x stands for aµx
µ and α is an arbitrary real constant.

We do not consider reduction of YMEs with the help of the above ansätze, because
it is studied in a great detail in [16].

We concentrate on the cases when the new (non-Lie) ansätze are obtained. It
occurs that the procedure described gives rise to non-Lie ansätze provided the func-
tions ω(x), θµ(x) within the equivalence relations (7) have the form

θµ = θµ(ξ, bνxν , cνx
ν), ω = ω(ξ, bνxν , cνx

ν). (9)
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The list of inequivalent solutions of system of PDEs (3), (4) satisfying (9) is
exhausted by the following solutions:

θ0 = θ3 = 0, ω =
1
2
k · x, θ1 = w0(ξ)b · x+ w1(ξ)c · x,

θ2 = w2(ξ)b · x+ w3(ξ)c · x;
(10a)

ω = b · x+ w1(ξ), θ0 = α
(
c · x+ w2(ξ)

)
,

θa = −1
4
ẇa(ξ), a = 1, 2, θ3 = 0,

(10b)

θ0 = T (ξ), θ3 = w1(ξ), ω = b · x cosw1 + c · x sinw1 + w2(ξ),

θ1 =
(

1
4
(εeT + Ṫ )(b · x sinw1 − c · x cosw1) + w3(ξ)

)
sinw1 +

+ +
1
4
(
ẇ1(b · x sinw1 − c · x cosw1) − ẇ2

)
cosw1,

θ2 = −
(

1
4
(εeT + Ṫ )(b · x sinw1 − c · x cosw1) + w3(ξ)

)
cosw1 +

+
1
4
(
ẇ1(b · x sinw1 − c · x cosw1) − ẇ2

)
sinw1;

(10c)

θ0 = 0, θ3 = arctan
(
[c · x+ w2(ξ)][b · x+ w1(ξ)]−1

)
,

θa = −1
4
ẇa(ξ), a = 1, 2, ω =

(
[b · x+ w1(ξ)]2 + [c · x+ w2(ξ)]2

)1/2
.

(10d)

Here α �= 0 is an arbitrary constant, ε = ±1, w0, w1, w2, w3 are arbitrary smooth
functions on ξ = 1

2k · x, T = T (ξ) is a solution of the nonlinear ODE

(Ṫ + εeT )2 + ẇ2
1 = κe2T , κ ∈ R

1, (11)

where a dot over the symbol denotes differentiation with respect to ξ.
Substitution of the ansatz (2), where Rµν(x) are given by formulae (3), (10), in

the YMEs yields systems of nonlinear ODEs of the form (5), where

kµγ = −1
4
kµkγ , lµγ = −(w0 + w3)kµkγ ,

mµγ = −4 (w2
0 + w2

1 + w2
2 + w2

3)kµkγ − (ẇ0 + ẇ3)kµkγ ,

qµνγ =
1
2
(gµγkν + gνγkµ − 2gµνkγ),

hµνγ = (w0 + w3)(gµγkν − gµνkγ) +
+ 2(w1 − w2)

(
(kµbν − kνbµ) cγ + (bµcν − bνcµ)kγ + (cµkν − cνkµ)bγ

)
;

(12a)

kµγ = −gµγ − bµbγ , lµγ = 0, mµγ = −α2(aµaγ − dµdγ),
qµνγ = gµγbν + gνγbµ − 2gµνbγ ,

hµνγ = α
(
(aµdν − aνdµ)cγ + (dµcν − dνcµ)aγ + (cµaν − cνaµ)dγ

)
;

(12b)

kµγ = −gµγ − bµbγ , lµγ = −ε
2
bµkγ , mµγ = −κ

4
kµkγ ,

qµνγ = gµγbν + gνγbµ − 2gµνbγ , hµνγ =
ε

4
(gµγkν − gµνkγ);

(12c)
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kµγ = −gµγ − bµbγ , lµγ = −ω−1(gµγ + bµbγ), mµγ = −ω−2cµcγ ,

qµνγ = gµγbν + gνγbµ − 2gµνbγ , hµνγ =
1
2
ω−1(gµγbν − gµνbγ).

(12d)

3 Exact solutions of the nonlinear
Yang–Mills equations

The systems (5), (12) are systems of twelve nonlinear second-order ODEs with vari-
able coefficients. That is why there is a little hope to construct their general solutions.
But it is possible to obtain particular solutions of system (5) whose coefficients are
given by expressions (12b)–(12d).

Consider, as an example, system of ODEs (5) with coefficients given by the
expressions (12b). We seek its solutions in the form

Bµ = kµe1f(ω) + bµe2g(ω), fg �= 0, (13)

where e1 = (1, 0, 0), e2 = (0, 1, 0).
On substituting the expression (13) into the above mentioned system we get

f̈ + (α2 − e2g2)f = 0, f ġ + 2ḟg = 0. (14)

The second ODE from (14) is easily integrated to give

g = λf−2, λ ∈ R
1, λ �= 0. (15)

Substitution of the result obtained in the first ODE from (14) yields the Ermakov-
type equation for f(ω)

f̈ + α2f − e2λ2f−3 = 0,

which is integrated in elementary functions [14]

f =
(
α−2C2 + α−2(C4 − α2e2λ2)1/2 sin 2|α|ω)1/2

. (16)

Here C �= 0 is an arbitrary constant.
Substituting (13), (15), (16) into the corresponding ansatz for Aµ(x) we get the

following class of exact solutions of YMEs (1):

Aµ = e1kµ exp (−αc · x− αw2)
(
α−2C2 + α−2(C4 − α2e2λ2)1/2 ×

× sin 2|α|(b · x+ w1)
)1/2 + e2λ

(
α−2C2 + α−2(C4 − α2e2λ2)1/2 ×

× sin 2|α|(b · x+ w1)
)−1

(
bµ +

1
2
kµẇ1

)
.

In a similar way we have obtained five other classes of exact solutions of the
Yang–Mills equations

Aµ = e1kµe
−T (b · x cosw1 + c · x sinw1 + w2)1/2Z1/4

(
(ieλ/2)(b · x cosw1 +

+ c · x sinw1 + w2)2
)

+ e2λ (b · x cosw1 + c · x sinw1 + w2) ×
× (

cµ cosw1 − bµ sinw1 + 2kµ[(1/4)(εeT + Ṫ )(b · x sinw1 −
− c · x cosw1) + w3]

)
;
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Aµ = e1kµe
−T

(
C1 cosh[eλ(b · x cosw1 + c · x sinw1 + w2)] + C2 sinh[eλ×

× (b · x cosw1 + c · x sinw1 + w2)]
)

+ e2λ
(
cµ cosw1 − bµ sinw1 +

+ 2kµ[(1/4)(εeT + Ṫ )(b · x sinw1 − c · x cosw1) + w3]
)
;

Aµ = e1kµe
−T

(
C2(b · x cosw1 + c · x sinw1 + w2)2 + λ2e2C−2

)1/2+

+ e2λ
(
C2(b · x cosw1 + c · x sinw1 + w2)2 + λ2e2C−2

)−1×
× (

bµ cosw1 + cµ sinw1 − (1/2)kµ[ẇ1(b · x sinw1 − c · x cosw1) − ẇ2]
)
;

Aµ = e1kµZ0

(
(ieλ/2)[(b · x+ w1)2 + (c · x+ w2)2]

)
+ e2λ

(
cµ(b · x+ w1) −

− bµ(c · x+ w2) − (1/2)kµ[ẇ1(c · x+ w2) − ẇ2(b · x+ w1)]
)
;

Aµ = e1kµ

(
C1[(b · x+ w1)2 + (c · x+ w2)2]eλ/2 + C2[(b · x+ w1)2 +

+ (c · x+ w2)2]−eλ/2
)

+ e2λ[(b · x+ w1)2 + (c · x+ w2)2]−1 ×
× (

cµ(b · x+ w1) − bµ(c · x+ w2) − (1/2)kµ[ẇ1(c · x+ w2) −
− ẇ2(b · x+ w1)]

)
.

Here C1, C2, C �= 0, λ are arbitrary parameters; w1, w2, w3 are arbitrary smooth
functions on ξ = 1

2k · x; T = T (ξ) is a solution of ODE (11). In addition, we use the
following notations:

k · x = kµx
µ, b · x = bµx

µ, c · x = cµx
µ,

Zs(ω) = C1Js(ω) + C2Ys(ω), e1 = (1, 0, 0), e2 = (0, 1, 0),

where Js, Ys are the Bessel functions.
Thus, we have obtained broad families of exact non-Abelian solutions of YMEs (1).

It can be verified by direct and rather involved computation that the solutions obtained
are not self-dual, i.e. that they do not satisfy self-dual YMEs.

4 Conclusion

Let us say a few words about symmetry interpretation of the ansätze (2), (3), (10).
Consider as an example, the ansatz determined by expressions (10a). As a direct
computation shows, generators of a three-parameter Lie group G leaving it invariant
are of the form

Q1 = kα∂α, Q2 = bα∂α − 2[w0(kµbν − kνbµ) + w2(kµcν − kνcµ)]
3∑

a=1

Aaν∂Aaµ ,

Q3 = cα∂α − 2[w1(kµbν − kνbµ) + w3(kµcν − kνcµ)]
3∑

a=1

Aaν∂Aaµ .

(17)

Evidently, the system of PDEs (1) is invariant under the one-parameter group G1 ha-
ving the generator Q1. But it is not invariant under the groups having the generators
Q2, Q3. Consider, as an example, the generator Q2. Acting by the second prolongation
of the operator Q2 (which is constructed in a standard way, see e.g. [18, 20]) on the
system of PDEs (1), after some tedious algebra we obtain the following equality:

Q2
2

Lµ = 2
(
w0(kµbν − kνbµ) + w2(kµcν − kνcµ)

)
Lν +

+ 2
(
ẇ0(kµbν − kνbµ) + ẇ2(kµcν − kνcµ)

)
Q1A

ν − (18)
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− ∂µ
(
(w0bν + w2cν)Q1A

ν − kν(w0Q2A
ν + w2Q3A

ν)
) −

− (w0bµ + w2cµ)∂νQ1Aν − kµ

(
w0(w0bν + w2cν) +

+ w2(w1bν + w3cν)
)
Q1A

ν + e
(
(w0bν + w2cν)Q1A

ν−
− kν(w0Q2A

ν + w2Q3A
ν)

) × Aµ + 2e(w0bνAν + w2cνAν)×Q1Aµ −
− 2ekνAν × (w0Q2Aµ + w2Q3Aµ) + eAν × (w0bµ + w2cµ)Q1A

ν −
− ekµAν × (w0Q2A

ν + w2Q3A
ν).

In the above expressions we use the designations

Lµ ≡ ∂ν∂
νAµ − ∂µ∂νAν + e

(
(∂νAν) × Aµ − 2(∂νAµ) × Aν +

+ (∂µAν) × Aν
)

+ e2Aν × (Aν × Aµ),
Q1Aµ ≡ kα∂αAµ,

Q2Aµ ≡ bα∂αAµ + 2
(
w0(kµbν − kνbµ) + w2(kµcν − kνcµ)

)
Aν ,

Q3Aµ ≡ cα∂αAµ + 2
(
w1(kµbν − kνbµ) + w3(kµcν − kνcµ)

)
Aν

and by the symbol Q2
2

we denote the second prolongation of the operator Q2.

As underlined terms in (18) do not vanish on the set of solutions of YMEs,
system of PDEs (1) is not invariant under the Lie transformation group G2 having
the generator Q2. On the other hand, system

Lµ = 0, QaAµ = 0, a = 1, 2, 3

is evidently invariant under the group G2. The same assertion holds for the Lie
transformation group G3 having the generator Q3. Consequently, the YMEs are con-
ditionally-invariant with respect to the three-parameter Lie transformation group G =
G1 ⊗G2 ⊗G3. This means that solutions of the YMEs obtained with the help of the
ansatz invariant under the group with generators (17) can not be found by means of
the classical symmetry reduction procedure.

As rather tedious computations show, the ansätze determined by the expressions
(10b)–(10d) also correspond to conditional symmetry of YMEs. Hence it follows, in
particular, that the YMEs should be included into the long list of mathematical and
theoretical physics equations possessing non-trivial conditional symmetry [7].

Another interesting observation is that specifying the arbitrary functions contained
in non-Lie ansätze in an appropriate way, one can obtain some Lie ansätze. Really,
expressions (8c), (8l), (8m), (8q) are particular cases of expressions (10a), expressions
(8a), (8e), (8f), (8g), (8n), (8o), (8s), (8t), (8u) are particular cases of expressions
(10b), (10c) and expressions (8h), (8p) are particular cases of the expressions (10d).
So if we denote the invariant solutions of the Yang–Mills equations symbolically by
the dots in some space of solutions of system of PDEs (1), then some of them can be
connected by curves which are conditionally-invariant solutions! Thus, at the first the
distinct glance solutions are the particular cases of more general solutions. A similar
assertion holds for the nonlinear wave [13] and the Dirac [11] equations. On the other
hand, some invariant solutions (namely those determined by expressions (8b), (8d),
(8i), (8j), (8k), (8r), (8v)) can not be connected with other solutions by the curve
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which is a conditionally-invariant solution of the form (10). A possible explanation of
this fact is that there exist more general conditionally-invariant solutions of YMEs.

The above picture admits an analogy with a case when equation under study has
general solution. In that case, each two solutions can be connected by a curve which
is a solution of the equation. The only exceptions are the singular solutions which
are obtained by some asymptotic procedure. So one can guess that there exists such
collection of conditionally-invariant solutions of YMEs that the majority of invariant
solutions are their particular cases and the remaining ones are obtained from these by
an asymptotic procedure. However, this problem so far is completely open and needs
further investigation.

One last remark is that the procedure suggested yields also some well-known exact
solutions of YMEs. For example, the ansatz for the Yang–Mills field determined by
expressions (2), (3) and (8v) gives rise to the meron and instanton solutions of the
system (1), originally obtained with the help of the Ansatz suggested by ’t Hooft [21],
Corrigan and Fairlie [5] and Wilczek [22] (for more details, see [16]).
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