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Symmetry properties, reduction and exact
solutions of biwave equations
W.I. FUSHCHYCH, R.Z. ZHDANOV, O.V. ROMAN

We have studied symmetry properties of the biwave equations �2u = F (u) and the
systems of wave equations which are equivalent to them. Reduction of the nonlinear
biwave equations with the use of subalgebras of the extended Poincaré algebra ÃP (1, 1)
and the conformal algebra C(1, 1) was carried out. Some exact solutions of these equati-
ons were obtained.

It was suggested in [1] to describe different physical processes with the help of
nonlinear partial equations of high order, namely

�lu = F
(
u,

∂u

∂xµ

∂u

∂xµ

)
. (1)

Here and further � = ∂2/∂x0 − ∂2/∂x1 − · · · − ∂2/∂xn is d’Alembertian in (n + 1)-
dimensional pseudo-Euclidean space R(1, n) with metric tensor gµν = diag(1,−1, . . .,
−1), µ, ν = 0, n; �l = �(�l−1), l ∈ N; xµ = xνgµν ; F (·, ·) is an arbitrary smooth
function; u = u(x) is a real function; the summation over the repeated indices from 0
to n is understood.

Equations (1) were considered from different points of view in [2, 3, 4], where the
pseudodifferential equations of type (1) were also studied (in this case l is fractional
or negative).

Assuming l = 1 and F = F (u) in (1) we obtain the standard wave equation

�u = F (u) (2)

which describes a scalar spinless uncharged particle in quantum field theory. Sym-
metry properties of equation (2) were studied in [4, 5, 6] and wide classes of its
exact solutions with certain concrete values of the function F (u) were obtained in
[4, 5, 7, 8, 9].

In this paper we restrict ourselves by considering the biwave equation

�2u = F (u) (3)

which is one of the simplest equations of type (1) of high order (l = 2, F = F (u)).

1 Symmetry classification of the biwave equation

In order to carry out a symmetry classification of equation (3) we shall establish
at first the maximal transformation group admitted by equation (3) provided F (u)
is an arbitrary function. After that we shall determine all the functions F (u) when
equation (3) admits more extended symmetry.

Results of symmetry classification of equation (3) are cited in the following
statements.
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Lemma 1 The maximal invariance group of equation (3) with an arbitrary function
F (u) is the Poincaré group P (1, n) generated by the operators

Pµ =
∂

∂xµ
, Jµν = xµ ∂

∂xν
− xν ∂

∂xµ
, µ, ν = 0, n. (4)

Theorem 1 All the equations of type (3) admitting more extended invariance algeb-
ra than the Poincaré algebra AP (1, n) are equivalent one of the following:

1. �2u = λ1u
k, λ1 �= 0, k �= 0, 1; (5)

2. �2u = λ2e
u, λ2 �= 0; (6)

3. �2u = λ3u, λ3 �= 0; (7)

4. �2u = 0. (8)

Here λ1, λ2, λ3 are arbitrary constants.

Theorem 2 The symmetry of the equations (5)–(8) is described in the following
way:

1. (a) The maximal invariance group of equation (5) when k �= (n + 5)/(n − 3),
k �= 0, 1 is the extended Poincaré group P̃ (1, n) generated by the operators (4) and

D = xµ
∂

∂xµ
+

4
1 − k

u
∂

∂u
.

(b) The maximal invariance group of equation (5) when k = (n + 5)/(n − 3),
n �= 3 is the conformal group C(1, n) generated by the operators (4) and

D(1) = xµ
∂

∂xµ
+

3 − n

2
u

∂

∂u
,

K(1)
µ = 2xµD(1) − (xνxν)

∂

∂xµ
.

(9)

2. (a) The maximal invariance group of equation (6) when n �= 3 is the extended
Poincaré group P̃ (1, n) generated by the operators (4) and

D(2) = xµ
∂

∂xµ
− 4

∂

∂u
. (10)

(b) The maximal invariance group of equation (6) when n = 3 is the conformal
group C(1, n) generated by the operators (4) and

K(2)
µ = 2xµD(2) − (xνxν)

∂

∂xµ
. (11)

3. The maximal invariance group of equation (7) is generated by the operators (4)
and

Q = h(x)
∂

∂u
, I = u

∂

∂u
,

where h(x) is an arbitrary solution of equation (7).
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4. The maximal invariance group of equation (8) is generated by the operators
(4), (9) and

Q = q(x)
∂

∂u
, I = u

∂

∂u
,

where q(x) is an arbitrary solution of equation (8).

The proof of Lemma 1 and Theorems 1, 2 is carried out by means of the infinitesi-
mal algorithm of S. Lie [4, 10]. Since it requires very cumbersome computations we
only give a general scheme of the proof.

In the Lie approach the infinitesimal operator of equation (3) invariance group is
of the form

X = ξµ(x, u)
∂

∂xµ
+ η(x, u)

∂

∂u
. (12)

The invariance criterion of equation (3) under group generated by the opera-
tors (12) is

X
4

(�2u − F (u))
∣∣∣
�2u=F (u)

= 0, (13)

where X
4

is the 4-th prolongation of the operator X.

Splitting equation (13) with respect to the independent variables, we come to the
system of partial differential equations for functions ξµ(x, u) and η(x, u):

ξµ
u = 0, ηuu = 0, µ = 0, n,

ξi
0 = ξ0

i , ξi
j = −ξj

i , i �= j, i, j = 1, n,

ξ0
0 = ξ1

1 = · · · = ξn
n ,

2ηνu = (3 − n)ξν
00, ν = 0, n,

(14)

�2η − ηF ′(u) + F (u)(ηu − 4ξ0
0) = 0. (15)

Besides, when n = 1, there are additional equations:

η00u = 0, η01u = 0, (16)

that do not follow from equations (14) and (15).
In the above formulae we use the notations ξµ

ν = ∂ξµ/∂xν , ηµ = ∂η/∂xµ and so
on.

System (14) is a system of Killing equations. The general solution of equations
(14), (16) is of the form:

ξν = 2xνxµcµ − xµxµcν + bνµxµ + dxν + aν ,

η = ((3 − n)cµxµ + p)u + κ(x),
(17)

where cµ, bνµ = −bµν , d, aν , p are arbitrary constants, κ(x) is an arbitrary smooth
function.

Substituting (17) into the classifying equation (15) and splitting it with respect
to u we obtain statements of Lemma 1 and Theorems 1, 2 according to the form
of F (u).
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It follows from the statements proved that the equation of type (1) is invariant
under the extended Poincaré group P̃ (1, n) iff it is equivalent one of equations (5), (6)
or (8). Let us note that the analogous result was obtained for the wave equations (2)
in [5].

The following statement also is the consequence of the Theorems but since it is
important we adduce it as a Theorem.

Theorem 3 Equation (3) is invariant under the conformal group C(1, n) iff it is
equivalent to the following:

1. �2u = λ1u
(n+5)/(n−3), n �= 3; (18)

2. �2u = λ2e
u, n = 3. (19)

Let us note that conformal invariance of equation (18) was first ascertained in [11]
and that of equation (19) was done in [4] by means of Baker–Campbell–Hausdorff
formulae.

In conclusion of the Section let us emphasize an important property of the linear
biwave equation (8), when n = 3, which is the consequence of Theorems 2 and 3.

Corollary There exist two nonequivalent representations of the Lie algebra of the
conformal group C(1, n) on the set of solutions of equation (8) [1, 3, 4]:

1. P (1)
µ = Pµ, J (1)

µν = Jµν ,

D(1) = xµ
∂

∂xµ
, K(1)

µ = 2xµD(1) − (xνxν)
∂

∂xµ
;

2. P (2)
µ = Pµ, J (2)

µν = Jµν ,

D(2) = xµ
∂

∂xµ
+

∂

∂u
, K(2)

µ = 2xµD(2) − (xνxν)
∂

∂xµ
,

where the operators Pµ, Jµν are determined in (4).

2 Symmetry classification of system
of wave equations

Introducing a new variable v = �u in (3) we get the system of partial differential
equations

�u = v,

�v = F (u),
(20)

which is equivalent to the biwave equation (3).
Symmetry properties of the system (20) are investigated by analogy with the

previous Section. So we only formulate statements analogous to the preceding ones
without proving them.

Lemma 2 The maximal invariance group of the system (20) with an arbitrary
function F (u) is the Poincaré group P (1, n) generated by the operators (4).



424 W.I. Fushchych, R.Z. Zhdanov, O.V. Roman

Theorem 4 All the systems of type (20) admitting more extended invariance algebra
than the Poincaré algebra AP (1, n) are equivalent one of the following:

1. �u = v,

�v = λ1u
k, λ1 �= 0, k �= 0, 1;

(21)

2. �u = v,

�v = λ2u, λ2 �= 0;
(22)

3. �u = v,

�v = 0.
(23)

Theorem 5 The symmetries of the systems (21)–(23) is described in the following
way:

1. The maximal invariance group of the system (21) is the extended Poincaré
group P̃ (1, n) generated by the operators (4) and

D = xµ
∂

∂xµ
+

4
1 − k

u
∂

∂u
+

2(1 + k)
1 − k

v
∂

∂v
.

2. The maximal invariance group of the system (22) is generated by the opera-
tors (4) and

Q1 = u
∂

∂u
+ v

∂

∂v
, Q2 = v

∂

∂u
+ λ2u

∂

∂v
, Q3 = h1(x)

∂

∂u
+ h2(x)

∂

∂v
,

where (h1(x), h2(x)) is an arbitrary solution of the system (22).
3. The maximal invariance group of the system (23) is generated by the opera-

tors (4) and

D = xµ
∂

∂xµ
+ 2u

∂

∂u
, Q1 = u

∂

∂u
+ v

∂

∂v
,

Q2 = v
∂

∂u
, Q3 = q1(x)

∂

∂u
+ q2(x)

∂

∂v
,

where (q1(x), q2(x)) is an arbitrary solution of the system (23).

It follows from the foregoing statements that unlike the biwave equations, the
extended Poincaré group P̃ (1, n) is the invariance group of the system (20) only in
two cases, namely, when (20) is equivalent to (21) or (23). Moreover, the system
(20) is not invariant under the conformal group for any functions F (u). Therefore,
in the class of Lie operators, the invariance algebras of the biwave equations and the
corresponding systems of wave equations are essentially different.

3 Reduction and exact solutions
of the equation �2u = λeu

As follows from Theorem 2 the maximal invariance group of the equation (6), when
n = 1 is the extended Poincaré group P̃ (1, 1) with generators

P0 =
∂

∂x0
, P1 =

∂

∂x1
, J01 = x0 ∂

∂x1
− x1 ∂

∂x0
, (24)
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D(2) = x0
∂

∂x0
+ x1

∂

∂x1
− 4

∂

∂u
. (25)

It is known that if an equation admits the symmetry operator

X = ξµ(x)
∂

∂xµ
+ η(x)

∂

∂u
(26)

then its solutions can be found in the form [4]:

u(x) = ϕ(ω) + g(x). (27)

For the substitution (27) to be an ansatz for the equation with the symmetry
operator (26), the functions ω(x) and g(x) are to satisfy the following conditions:

ξµ(x)
∂ω

∂xµ
= 0, ξµ(x)

∂g(x)
∂xµ

= η(x).

To obtain all the P̃ (1, 1)-nonequivalent ansatzes (27) we have to describe all the
nonequivalent one-dimensional subalgebras of the Lie algebra ÃP (1, 1) spanned by the
operators (24) and (25) (see [4, 9]). In the paper we make use of classification given
in [9] and omitting rather cumbersome computations we write P̃ (1, 1)-nonequivalent
ansatzes in Table 1.

Table 1.
N Algebra Invariant variables ω Ansatz

1◦ D − J01 x0 + x1 u = ϕ(ω) − 2 ln(x0 − x1)

2◦ D + αJ01, α �= −1
(1 + α) ln(x1 − x0)−

− (1 − α) ln(x0 + x1)
u = ϕ(ω) − 4

α + 1
ln(x0 + x1)

3◦ D − J01 + P0
ln(x0 − x1 + 1/2)−

− 2(x0 + x1)
u = ϕ(ω) − 2 ln(x0 − x1 + 1/2)

4◦ J01 x2
0 − x2

1 u = ϕ(ω)

5◦ P0 x1 u = ϕ(ω)

6◦ P0 + P1 x0 − x1 u = ϕ(ω)

Remark. Inequivalent subalgebras listed in Table 1 are built by taking account of the
obvious fact that equation (6) is invariant under the transformations of the form:

x′
0 → x0,

x′
1 → −x1;

and
x′

0 → x1,

x′
1 → x0.

(28)

Substituting ansatzes obtained in (6) we get the following equations for the functi-
on ϕ(ω):

1◦ 0 = λeϕ,

2◦ ϕ(4)(α2 − 1)2 + 2ϕ(3)α(1 − α2) − ϕ(2)(1 − α2) =
λ

16
exp

(
ϕ +

2ω

α + 1

)
,

3◦ ϕ(4) − ϕ(3) =
λ

64
eϕ,

4◦ ϕ(4)ω2 + 4ϕ(3)ω + 2ϕ(2) =
λ

16
eϕ,

5◦ ϕ(4) = λeϕ,

6◦ 0 = λeϕ.
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Equation 5◦ has the partial solution

ϕ = ln
(

24
λ

(ω + c)−4

)
, λ > 0,

that leads us to the following exact solutions of equation (6):

u = ln
(

24
λ

(x0 + c1)−4

)
, λ > 0,

u = ln
(

24
λ

(x1 + c2)−4

)
, λ > 0.

(29)

Here c, c1, c2 are arbitrary constants. This solutions are invariant under the operators
P0 and P1 accordingly.

To finish the Section let us note that the solutions (29) can be obtained by making
use of the ansatz in Liouville form [4]:

u = ln

24
λ

(
ϕ̇1(ω1)ϕ̇2(ω2)

)2

(ϕ1(ω1) + ϕ2(ω2))
4

 , ω1 = x0 + x1, ω2 = x0 − x1,

which reduces equation (6) to one of the following systems:

1. ϕ̈1 = 0, ϕ̈2 = 0;

2. ϕ̈1 =
2ϕ̇2

1

ϕ1
, ϕ̈2 =

2ϕ̇2
2

ϕ2
.

Here ϕ̇ and ϕ̈ mean the first derivative and the second one of the corresponding
argument.

Finding the general solution of the systems we get the following exact solutions
of equation (6):

u = ln
(

24
λ

(a2 − b2)2

(ax0 + bx1 + c)4

)
, (30)

where a, b, c are arbitrary constants.
Solution (30) can be obtained from (29) by the transformations of the extended

Poincaré group with the generators (24) and (25).

4 Reduction and exact solutions
of the equation �2u = λuk

It follows from Theorem 2 that when n = 1 the equation (5) is invariant under the
extended Poincaré group P̃ (1, 1) with the generators (24) and

D = x0
∂

∂x0
+ x1

∂

∂x1
+

4
1 − k

u
∂

∂u
. (31)

If an equation admits the symmetry operator

X = ξµ(x)
∂

∂xµ
+ η(x)u

∂

∂u
(32)
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then its solutions can be found in the form [4]:

u(x) = f(x)ϕ(ω) (33)

provided functions ω(x) and f(x) satisfy the following system:

ξµ(x)
∂ω

∂xµ
= 0, ξµ(x)

∂f(x)
∂xµ

= η(x)f(x). (34)

With an allowance for invariance of equation (5) under the changes of variables
(28) we write P̃ (1, 1)-nonequivalent ansatzes of the form (33) in Table 2.

Table 2.
N Algebra Invariant variables ω Ansatz

1◦ D − J01 x0 + x1 u = (x0 − x1)
2

1−k ϕ(ω)

2◦ D + αJ01, α �= −1 (x0 − x1)(x0 + x1)
α−1
α+1 u = (x0 + x1)

4
(1−k)(α+1) ϕ(ω)

3◦ D + J01 + P0

(x0 + x1 + 1
2
)×

× exp

(
2(x1 − x0)

)
u = exp

(
4

k−1
(x1 − x0)

)
ϕ(ω)

4◦ J01 x2
0 − x2

1 u = ϕ(ω)

5◦ P0 x1 u = ϕ(ω)

6◦ P0 + P1 x0 + x1 u = ϕ(ω)

Let us note that analogous ansatzes were obtained in [4] for the nonlinear wave
equation

�u = λuk. (35)

Substituting the ansatzes obtained to equation (5) we get the following equations
for the function ϕ(ω):

1◦
1 + k

(1 − k)2
ϕ(2) =

λ

32
ϕk,

2◦ (α − 1)2ϕ(4)ω2 + 2(α − 1)(α + 1)2
(

3k + 1
1 − k

+ 2α

)
ωϕ(3) +

+ 2
(

α2 − 4α + 3 +
6α − 10
1 − k

+
8

(1 − k)2

)
ϕ(2) =

λ

16
(α + 1)2ϕk,

3◦ ϕ(4)ω2 +
5k − 1
k − 1

ϕ(3)ω +
4k2

(1 − k)2
ϕ(2) =

λ

64
ϕk,

4◦ ϕ(4)ω2 + 4ϕ(3)ω + 2ϕ(2) =
λ

16
ϕk,

5◦ ϕ(4) = λϕk,

6◦ λϕk = 0.

Equations 1◦, 2◦, 4◦ have the partial solutions of the form:

ϕ =
(

64
λ

(k + 1)2

(k − 1)4

) 1
k−1

ω− 2
k−1 , k �= −1,
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and equation 5◦ has the partial solution of the form

ϕ =
(

8
λ

(k + 1)(k + 3)(3k + 1)
(k − 1)4

) 1
k−1

ω− 4
k−1 , k �= −1,−3,−1

3

which lead us to the following solutions of equation (5):

u =
(

64
λ

(k + 1)2

(k − 1)4

) 1
k−1 (

(x0 + x1 + c1)(x0 − x1 + c2)
)− 2

k−1
, k �= −1,

u =
(

8
λ

(k + 1)(k + 3)(3k + 1)
(k − 1)4

) 1
k−1

(x0 + c3)
4

1−k , k �= −1,−3,−1
3
,

u =
(

8
λ

(k + 1)(k + 3)(3k + 1)
(k − 1)4

) 1
k−1

(x1 + c4)
4

1−k , k �= −1,−3,−1
3
,

where c1, c2, c3, c4 are arbitrary constants.
Note that equation (35) has analogous solutions (see [4]).

5 Reduction and exact solutions
of the equation �2u = λu−3

It follows from Theorems 2 and 3 that when n = 1 the equation

�2u = λu−3 (36)

is invariant under the conformal group C(1, 1) with the generators (24) and

D(1) = x0
∂

∂x0
+ x1

∂

∂x1
+ u

∂

∂u
,

K(1)
µ = 2xµD(1) − (xνxν)

∂

∂xµ
, µ, ν = 0, 1.

(37)

By analogy with the previous Section solutions of equation (36) can be found in
the form (33) where functions ω(x) and f(x) are the solutions of the system (34)
provided the operator (32) belongs to the invariance algebra of equation (36).

To obtain all the C(1, 1)–nonequivalent ansatzes we use the one-dimensional
nonequivalent subalgebras of the conformal algebra AC(1, 1) adduced in [9].

Omitting rather cumbersome computations and taking account of equation (36)
being invariant under the changes of variables (28) we write nonequivalent ansatzes
in Table 3.

We omit subalgebras not containing conformal the operator (37) since they were
considered in the previous Section.

Substituting ansatzes obtained in (36) we get the following equations for the
function ϕ(ω):

1◦ ϕ(4) + 2ϕ(2) + ϕ =
λ

16
ϕ−3;

2◦ (α2 − 1)2ϕ(4) + 2(α2 + 1)ϕ(2) + ϕ =
λ

16
ϕ−3;
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Table 3.

N Algebra Invariant variables ω Ansatz

1◦ P0 + K
(1)
0

arctg(x1 − x0)+
+arctg(x1 + x0)

u =
(
(x0−x1)

2 + 1
)1/2

×
×

(
(x0+x1)

2 + 1
)1/2

ϕ(ω)

2◦ P0 + K
(1)
0 + α(K

(1)
1 − P1)

0 < α < 1

(α − 1)arctg(x0 − x1)+
+(α + 1)arctg(x1 + x0)

u =
(
(x0−x1)

2 + 1
)1/2

×
×

(
(x0+x1)

2 + 1
)1/2

ϕ(ω)

3◦ P0 + K
(1)
0 + K

(1)
1 − P1 x0 + x1

u =
(
(x0 − x1)

2 + 1
)1/2

×
×ϕ(ω)

4◦ 2P1 + K
(1)
0 + K

(1)
1

x0 + x1+

+
1

2
ln

1 + x0 − x1

1 − x0 + x1

u =
(
(x0 − x1)

2 + 1
)1/2

×
×ϕ(ω)

5◦ 2P1 − K
(1)
0 − K

(1)
1

x0 + x1+
+arctg(x0 − x1)

u =
(
(x0 − x1)

2 + 1
)1/2

×
×ϕ(ω)

6◦ P0 + K
(1)
0 + K

(1)
1 − P1−

−β(J01 + D(1)), β > 0

ln(x0 + x1)−
−βarctg(x1 − x0)

u =
(
(x0 − x1)

2 + 1
)1/2

×
×

(
x0 + x1

)1/2

ϕ(ω)

3◦ ϕ(2) =
λ

16
ϕ−3;

4◦ ϕ(4) − ϕ(2) =
λ

16
ϕ−3;

5◦ ϕ(4) + ϕ(2) =
λ

16
ϕ−3;

6◦ 4β2ϕ(4) + (4 − β2)ϕ(2) − ϕ = λ
4 ϕ−3.

The general solution of equation 3◦ is of the form

ϕ = ±
√

(c1ω + c2)2

c1
+

λ

16c1
, c1 �= 0;

ϕ = ±
√

1
2

√−λω + c,

where c, c1, c2 are arbitrary constants.
Hence we obtain the following exact solutions of equation (36):

1. u = ± 1√
2

(
λ

a1

)1/4 ∣∣(x0 + x1 + a2)2 − a1

∣∣1/2∣∣x0 − x1 + a3

∣∣1/2
,

2. u = ± 1√
2

(
λ

b1

)1/4 ∣∣(x0 − x1 + b2)2 − b1

∣∣1/2∣∣x0 + x1 + b3

∣∣1/2
,

3. u = ±1
2

(
λ

c1c2

)1/4 ∣∣(x0 − x1 + c3)2 + c1

∣∣1/2∣∣(x0 + x1 + c4)2 + c2

∣∣1/2
,

where ai, bi, cj , i = 1, 3, j = 1, 4 are arbitrary constants.
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Besides, the expression

u = ±λ1/4
∣∣(x0 − x1 + c1)(x0 + x1 + c2)

∣∣1/2

(c1, c2 are arbitrary constants) was proved in Section 4 to be the exact solution of
equation (36).

In conclusion let us note that we can obtain the same solutions using the following
ansatz

u = ϕ1(ω1)ϕ2(ω2), ω1 = x0 + x1, ω2 = x0 − x1,

which reduces equation (36) to the system of ordinary differential equations for the
unknown functions ϕ1(ω1) and ϕ2(ω2), namely

ϕ̈1 =
c

4
ϕ−3

1 ,

ϕ̈2 =
λ

4c
ϕ−3

2 ,
(38)

where c is an arbitrary constant.
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