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Symmetry and some exact solutions
of non-linear polywave equations
W.I. FUSHCHYCH, O.V. ROMAN, R.Z. ZHDANOV

We have studied the maximal symmetry group admitted by the non-linear polywave
equation �lu = F (u). In particular, we establish that equation in question ad-
mits the conformal group C(1, n) if and only if F (u) = λeu, n + 1 = 2l or
F (u) = λu(n+1+2l)/(n+1−2l), n + 1 �= 2l. Symmetry reduction for the biwave equation
�2u = λu−3 is carried out and some exact solutions are obtained.

Recently a number of works (see, e.g., [1, 2, 3]) have appeared pointing out the
possibility to choose linear and non-linear polywave equations

�lu = F (u) (1)

as possible mathematical models describing an uncharged scalar particle in quantum
field theory.

Here �l = �(�l−1), l ∈ N; � = ∂2
x0

− ∂2
x1

− · · · − ∂2
xn

is d’Alembertian in (n + 1)-
dimensional pseudo-Euclidean space R(1, n) with metric tensor gµν = diag(1,−1, . . . ,
−1), µ, ν = 0, n; F (u) is an arbitrary smooth function and u = u(x) is a real function
(the case l = 1, n = 1 has been studied earlier [4], that is why we put l + n > 2).
In the following, a summation over the repeated indices from 0 to n is understood,
rising and lowering of the vector indices is performed by means of the tensor gµν , i.e.
xµ = gµνxν .

But the fact that the non-linear partial differential equation (PDE) in question is
of high order makes the prospects of studying such a model rather obscure. Using
group properties of equation (1) seems to be the only way to get some non-trivial
information about the said equation and its solutions. It occurs that PDE (1) admits
wide symmetry group which, in fact, is the same as the one of the standard wave
equation

�u = F (u). (2)

The main tool used is the infinitesimal Lie method (see, e.g., [5]). But an appli-
cation of it to study of symmetry properties of equation (1) is by itself a non-trivial
problem in the case l > 1. It should be emphasized that because of arbitrariness
of the order (l) and of the number of independent variables (n) one can not apply
symbolic manipulation programs [6, 7]. We have succeeded in constructing the maxi-
mal symmetry group admitted by equation (1) using the remarkable combinatorial
properties of the prolongation formulae.

Theorem 1. The maximal invariance group of PDE (1) with arbitrary smooth func-
tion F (u) is the Poincaré group P (1, n) generated by the operators

Pµ = ∂xµ
, Jµν = xµ∂xν

− xν∂xµ
, µ, ν = 0, n. (3)
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It is established below that the equation of the type (1) admitting the group, which
is more extensive than the Poincaré group, is equivalent up to the change of variables
to one of the following equations:

1. �lu = λ1u
k, λ1 �= 0, k �= 0, 1; (4)

2. �lu = λ2e
u, λ2 �= 0; (5)

3.�lu = λ3u, λ3 �= 0; (6)

4. �lu = 0. (7)

Here λ1, λ2, λ3, k are arbitrary constants.
Maximal invariance groups of the equations (4)–(7) are described by the following

statements.

Theorem 2. Equation (4) has the following symmetry:
Case 1. k �= (n + 1 + 2l)/(n + 1 − 2l), k �= 0, 1. The maximal invariance group of

(4) is the extended Poincaré group P̃ (1, n) generated by the operators (3) and

D = xµ∂xµ
+

2l

1 − k
u∂u.

Case 2. k = (n + 1 + 2l)/(n + 1 − 2l), n + 1 �= 2l. The maximal invariance group
of (4) is the conformal group C(1, n) generated by the operators (3) and operators

D(1) = xµ∂xµ
+

(2l − n − 1)
2

u∂u,

K(1)
µ = 2xµD(1) − (xνxν)∂xµ

, µ, ν = 0, n.
(8)

Theorem 3. Equation (5) has the following symmetry:
Case 1. n �= 2l−1. The maximal invariance group of (5) is the extended Poincaré

group P̃ (1, n) generated by the operators (3) and

D(2) = xµ∂xµ
− 2l∂u. (9)

Case 2. n = 2l − 1. The maximal invariance group of (5) is the conformal group
C(1, n) generated by the operators (3) and operators

K(2)
µ = 2xµD(2) − (xνxν)∂xµ

, µ, ν = 0, n. (10)

Theorem 4. The maximal invariance group of the equation (6) is generated by the
operators (3) and

Q∞ = f(x)∂u, I = u∂u,

where f(x) is an arbitrary solution of PDE (6).
Theorem 5. The maximal invariance group of the equation (7) is generated by the
operators (3), (8) and

Q∞ = q(x)∂u, I = u∂u,

where q(x) is an arbitrary solution of PDE (7).
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The proof of the Theorems 1–5 carried out by means of the infinitesimal algorithm
of S. Lie [5] requires very cumbersome computations. That is why, we omit it.

An important consequence of the Theorems 1–5 is the following statement.

Theorem 6. The non-linear PDE (1) is invariant under the conformal group C(1, n)
iff it is equivalent to the following

1.�lu = λ1u
n+1+2l
n+1−2l , n + 1 �= 2l; (11)

2. �lu = λ2e
u, n + 1 = 2l. (12)

Remark 1. Conformal invariance of the equation (11) was first ascertained in [8]
and that of equation (12) was done in [3] by means of Baker–Campbell–Hausdorff
formulae.

Assuming l = 1 in (11) we obtain the well-known result [3]; that non-linear wave
equation (2) admits the conformal group if it is equivalent to the PDE

�u = λu
n+3
n−1 when n �= 1.

Remark 2. When l = 2 it follows from the Theorem 6 that in the four-dimensional
space R(1, 3) there is only one C(1, 3)-invariant equation

�2u = λeu.

One of the important applications of the Lie groups in mathematical physics is
the finding exact solutions of non-linear PDE. To this end one has to construct so
called invariant solutions [2, 3, 5] which reduce PDE under study to equations with
less number of independent variables (in particular, to ordinary differential equations).
Integrating these one gets exact solutions of the initial PDE. A procedure described
is called symmetry (or group-theoretical) reduction of differential equations. Here
we perform symmetry reduction of the conformally-invariant biwave equation in the
two-dimensional space R(1, 1):

�2u = λu−3. (13)

Making use of inequivalent one-dimensional subalgebras of the conformal algebra
AC(1, 1) [9] one can obtain the following C(1, 1)-inequivalent Ansätze which reduce
the equation (13) to ordinary differential equations. For each case the reduced equati-
ons are given:

1. u = ϕ(ω), ω = x0 or ω = x1,

ϕ(4) = λϕ−3;
2. u = ϕ(ω), ω = x2

0 − x2
1,

ϕ(4)ω2 + 4ϕ(3)ω + 2ϕ(2) =
λ

16
ϕ−3;

3. u = (x0 + x1)1/2ϕ(ω), ω = x0 − x1,

ϕ(2) = −λ

4
ϕ−3;

4. u = (x0 + x1)1/(α+1)ϕ(ω), ω = (x0 − x1)(x0 + x1)(α−1)/(α+1);

ϕ(4)ω2 + 4ϕ(3)ω +
(α − 2)(2α − 1)

(α − 1)2
ϕ(2) =

λ

16
(α + 1)2

(α − 1)2
ϕ−3, α > 1;
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5. u = exp(x0 − x1)ϕ(ω), ω =
(

x0 + x1 +
1
2

)
exp

(−2(x0 − x1)
)
,

ϕ(4)ω2 + 4ϕ(3)ω +
9
4
ϕ(2) =

λ

64
ϕ−3;

6. u =
(
(x0 − x1)2 + 1

)1/2
ϕ(ω), ω = x0 + x1,

ϕ(2) =
λ

16
ϕ−3;

7. u =
(
(x0 − x1)2 + 1

)1/2
ϕ(ω), ω = x0 + x1 + arctan(x0 − x1),

ϕ(4) + ϕ(2) =
λ

16
ϕ−3;

8. u =
(
(x0 − x1)2 + 1

)1/2
ϕ(ω), ω = x0 + x1 +

1
2

ln
1 + x0 − x1

1 − x0 + x1
,

ϕ(4) − ϕ(2) =
λ

16
ϕ−3;

9. u =
(
(x0 − x1)2 + 1

)1/2(
x0 + x1

)1/2
ϕ(ω),

ω = ln(x0 + x1) − β arctan(x1 − x0),

4β2ϕ(4) + (4 − β2)ϕ(2) − ϕ =
λ

4
ϕ−3, β > 0;

10. u =
(
(x0 − x1)2 + 1

)1/2((x0 + x1)2 + 1
)1/2

ϕ(ω),
ω = (γ − 1) arctan(x0 − x1) + (γ + 1) arctan(x0 + x1),

(γ2 − 1)2ϕ(4) + 2(γ2 + 1)ϕ(2) + ϕ =
λ

16
ϕ−3, 0 ≤ γ < 1.

Integration of the reduced equations gives rise to exact solutions of the non-linear
biwave equation (13). Here we present some exact solutions of this equation obtained
with the use of Ansätze 3 and 6:

u = ±λ1/4
(
x2

0 − x2
1

)1/2
,

u = ± 1√
2

(
λ

c1

)1/4 ∣∣(x0 − x1)2 − c1

∣∣1/2(x0 + x1)1/2,

u = ±1
2

(
λ

c2

)1/4 (
(x0 − x1)2 + 1

)1/2∣∣(x0 + x1)2 + c2

∣∣1/2
,

(14)

where c1, c2 are arbitrary constants.
Since the conformal group C(1, 1) is a maximal symmetry group of equation (13),

formulae 1–10 give “maximal” information about its solutions which can be obtained
within the framework of the Lie approach. It means that any solution invariant under
a subgroup of the symmetry group of PDE (13) can be reduced by a transformation
from the group C(1, 1) to one of the Ansätze 1–10.
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