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New solutions of the wave equation
by reduction to the heat equation
P. BASARAB-HORWATH, L. BARANNYK, W.I. FUSHCHYCH

In this article we make a new connection between the linear wave equation and the
linear heat equation. In this way we are able to construct new solutions of the linear
wave equation, using symmetries and conditional symmetries of the heat equation.

1. Introduction
The linear wave equation in (1 + n)-dimensional timespace R(1, n)

�u =
∂2u

∂x2
0

− ∂2u

∂x2
1

− · · · − ∂2u

∂x2
n

= −m2u (1)

is fundamental to mathematical physics: it describes spinless mesons when n = 3,
and is the paradigm of a hyperbolic equation. Its symmetry properties are also known
[1, 2], and one has the following result concerning the Lie point symmetries of (1):

Proposition 1. The maximal Lie point symmetry algebra of equation (1) has basis

Pµ = ∂µ, I = u∂u, Jµν = xµ∂ν − xν∂µ (2)

when m �= 0 and

Pµ = ∂µ, I = u∂u, Jµν = xµ∂ν − xν∂µ,

D = xµ∂µ, Kµ = 2xµD − x2∂µ − 2xµu∂u

(3)

when m = 0, where

∂u =
∂

∂u
, ∂µ =

∂

∂xµ
, xµ = gµνx

ν ,

gµν = diag (1,−1, . . . ,−1), µ, ν = 0, 1, 2, . . . , n.

The symmetries can be used to build ansatzes for exact solutions of (1), which then
reduce the equation to a partial differential equation with fewer independent variables
or even to an ordinary differential equation [1, 2]. These ansatzes and reductions
are based on a subalgebra analysis of parts of the symmetry algebra. The reduced
equations do not always have nice symmetry properties, so that a full analysis of the
resulting equations has not been carried out to this date. In this article we study
a reduction which, as far as we know, has not been done before, and which links up
solutions of the wave equation (1) in R(1, n) with those of the linear heat equation in
R(1, n−1). We consider equation (1) with real u: the complex case with nonlinearities
is studied in [3].

In [1, 2, 4], the reduction of the nonlinear wave equation

�u = F (u) (1a)
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is considered and its reduction (to equations with a smaller number of independent
variables) is studied with respect to the following algebras: AP (1, n) = 〈Pµ, Jµν〉
when F (u) is arbitrary; AP̃ (1, n) = 〈Pµ, Jµν ,D〉 when F (u) = λup with p an arbitrary
constant; AC(1, 3) = 〈Pµ, Jµν ,D,Kµ〉 when F (u) = λu3.

The linear equation (1), unlike the nonlinear one (1a), admits a new symmetry
operator: I = u∂u so that (1) is invariant under the algebras 〈Pµ, Jµν , I〉 for m �= 0
and 〈Pµ, Jµν , I,D,Kµ〉 for m = 0. However, until now, reductions of (1) have been
based only on subalgebras of 〈Pµ, Jµν〉 and 〈Pµ, Jµν ,D,Kµ〉. In this paper we take
the subalgebra 〈Pµ, I〉 in both cases, it allows us to reduce the hyperbolic equation (1)
to the parabolic heat equation and, in this way, we are then able to exploit the
exact solutions of the heat equation to construct solutions of the wave equation. This
is the central result of our paper. It may at first sight seem rather strange that a
Poincaré-invariant equation is reducible (with an appropriate ansatz) to one that is
Galilei-invariant. However, it is known (see [5]) that the Galilei algebra can be found
within the Poincaré algebra, so that one may even expect the original equation to
‘contain’ a Galilei-invariant one.

2. Reduction to the heat equation
In this paper we limit ourselves to (1 + 3)-dimensional time-space R(1, 3), but the

generalization of our result to higher dimensions is obvious as the reduction remains
the same.

We now turn to the construction of the ansatz which reduces (1) to the heat
equation. Equation (1) is invariant under the operators Pµ, I and is therefore also
invariant under any constant linear combination of them:

τµ∂µ + ku∂u,

where k, τµ are constants. This latter operator then gives us the following invariant-
surface condition

τµuµ = ku

which gives the Lagrangian system

dxµ

τµ
=
du

ku

and it is not difficult to show that this, in turn, is equivalent to the Lagrangian system

d(cx)
cτ

=
du

ku
(4)

for any constant four-vector c, with cx = cµxµ, cτ = cµτµ. Choose now τ so that
τ2 = τµτµ = 0, namely τ is light-like, and choose four-vectors β, δ, ε so that

β2 = δ2 = −1, ε2 = −m
2

k2
, τβ = τδ = βδ = βε = δε = 0, τε = 1. (5)

On choosing c in (4) to be τ , β, δ, ε we obtain the system

d(τx)
0

=
d(βx)

0
=
d(δx)

0
=
d(εx)

1
=
du

ku
. (6)
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The general integral of (6) is given by

u = ek(εx)v(τx, βx, δx), (7)

where v is a smooth function of its arguments (we assume that all our operations
are smooth, at least locally). Treating (7) as an ansatz for equation (1), we find,
on substituting (7) into (1), writing t = τx, y1 = βx, y2 = δx, performing some
elementary computations and using (5), that v satisfies the linear heat equation (we
have chosen k = 1

2 for convenience)

∂v

∂t
=
∂2v

∂y2
1

+
∂2v

∂y2
2

. (8)

The Cauchy problem for equation (8) is well posed for t > 0, and (8) has solutions
which are singular for t = 0. This then leads to a similar problem for the wave
equation when τx = 0, which is a characteristic (τ2 = 0), so that the initial-value
problem for (8) at t = 0 is related to the initial-value problem of (1) on a characteristic.
This latter is known as Goursat’s problem, and has been studied in [12], to which we
refer the reader for more details.

The linear heat equation in (1+1) spacetime dimensions has been studied extensi-
vely: its symmetry properties [2, 6, 7] and its conditional symmetries (also known
as non-classical symmetries [6], Q-conditional symmetries in [2]) are known. The
symmetry algebra of the linear heat equation in 1 + 2 timespace can be found in [7]
but for the sake of completeness, we give it in the following proposition.

Proposition 2. The maximal Lie point symmetry algebra of equation (8) is the
extended Galilei algebra AG3(1, 2) with a basis given by the following vector fields

T = ∂t Pa = −∂ya
, Ga = t∂ya

− 1
2
yav∂v, M = −1

2
v∂v,

J12 = y1∂y2 − y2∂y1 , D = 2t∂t + y1∂y1 + y2∂y2 − v∂v,

S = t2∂t + ty1∂y1 + ty2∂y2 −
(
t+

1
4
(
y2
1 + y2

2

))
v∂v.

(9)

Remark 1. We have not included the symmetry v → v + v1, where v1 is an arbitrary
solution of (8).

If we had considered equation (1) in R(1, 4), then we would have obtained the
linear heat equation in 1 + 3 dimensions with our reduction. Note also that there is
a Lie-algebraic reduction of (1) in R(1, 4) to equation (1) in R(1, 3), which amounts
to omitting dependency on one of the spatial variables. In this way, we are able to
use the wave equation in R(1, 4) as a bridge in constructing solutions of the wave
equation in R(1, 3) from those of the heat equation in 1 + 3 dimensions.

The invariance of equation (8) under the group G2(1, 2) which the above algebra
generates then allows us to obtain a nine-parameter family of exact solutions whenever
one solution is given.

The commutation relations of the algebra (9) are

[Pa, Gb] = δabM, [P1, J12] = P2, [P2, J12] = −P1,

[Pa,D] = Pa, [Pa, S] = Ga, [Pa, T ] = 0, [M,X] = 0 for all X ∈ AG3(2),
[Ga, Gb] = 0, [D,Ga] = Ga, [T,Ga] = Pa, [S,Ga] = 0,
[J12, T ] = [J12,D] = [J12, S] = 0, [T,D] = 2T, [T, S] = D, [D,S] = 2S.
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Clearly, we see that the subalgebra 〈Pa, Ga,M〉, a = 1, 2 is an ideal (maximal and
solvable, and therefore the radical of the algebra [8, 9]). Our algebra is seen to be the
semi-direct sum 〈J12, S, T,D〉 + 〈Pa, Ga,M〉. In turn, we can verify that 〈S, T,D〉 is
a semi-simple Lie algebra which we can take as being a realization of ASL(2,R), the
Lie algebra of SL(2,R). To see this, we take X1 = 1

2D, X2 = 1
2 (T−S), X3 = 1

2 (T+S)
as a new basis, and obtain the commutation relations of SL(2,R):

[X1,X2] = −X3, [X2,X3] = X1, [X3,X1] = X2.

Thus we obtain

〈J12, S, T,D〉 = 〈J12〉 ⊕ 〈S, T,D〉 = 〈J12〉 ⊕ASL(2,R)

which is the Lie algebra of O(2) ⊗ SL(2,R).
The elements of the group G2(1, 2) are considered as transformations of a space

with local coordinates (t, y1, y2, v) and points with these coordinates are mapped to
points (t′, y′1, y

′
2, v

′). The finite transformations defining this action are obtained by
solving the corresponding Lie equations. For the subalgebra 〈J12, S, T,D〉 = 〈J12,X1,
X2,X3〉 we solve the Lie equations as follows:

J12 :
dt′

dρ
= 0,

dy′1
dρ

= −y′2,
dy′2
dρ

= y′1,
dv′

dρ
= 0,

t′|ρ=0 = t, y′a|ρ=0 = ya, v′|ρ=0 = v

which gives the finite transformations

t′ = t, y′1 = y1 cos ρ− y2 sin ρ, y′2 = y1 sin ρ+ y′2 cos ρ, v′ = v.

Then we have the corresponding equations for X1, X2, X3

X1 : t′ = eν1t =
eν1/2t+ 0

0 · t+ e−ν1/2
, y′a = eν1/2ya =

ya

0 · t+ e−ν1/2
,

v′ = e−ν1/2v,

X2 : t′ =
t cosh ν2 + sinh ν2
t sinh ν2 + cosh ν2

, y′a =
ya

t sinh ν2 + cosh ν2
,

v′ = v(t sinh ν2 + cosh ν2) exp
(

(y2
1 + y2

2) sinh ν2
4(t sinh ν2 + cosh ν2)

)
,

X3 : t′ =
t cos ν3 + sin ν3
cos ν3 − t sin ν3

, y′a =
ya

cos ν3 − t sin ν3
,

v′ = v(cos ν3 − t sin ν3) exp
(
− (y2

1+y2
2) sin ν3

4(cos ν3−t sin ν3)

)
.

Thus, we see that the action of the group generated by 〈J12, S, T,D〉 can be given
in the form

t′ =
ζt+ η

κt+ σ
, y′1 =

y1ε cos ρ− y2ε sin ρ
κt+ σ

, y′2 =
y1 sin ρ+ y2 cos ρ

κt+ σ
,

v′ = (κt+ σ)v exp
(
κ(y2

1 + y2
2)

4(κt+ σ)

)

with ζσ − ηκ = 1, and ε = ±1 corresponds to the possibility of space reflections
under which (8) is manifestly invariant (the group O(2) has two components). The
parameters ζ, η, κ, σ correspond to the action of SL(2,R).
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Solving the Lie equations defined by each of the other infinitesimal generators
in (9), we obtain finite transformations such that (t, y1, y2, v) → (t′, y′1, y

′
2, v

′) as
follows:

Gi : t′ = t, y′i = µit+ yi, y′j = yj for j �= i,

v′ = v exp
(
−1

2

(
µ2

i

2
t+ µiyi

))
,

Pi : t′ = t, y′i = yi − λi, y′j = yj for j �= i, v′ = v,

M : t′ = t, y′i = yi, v′ = v exp
(
−1

2
θ

)
.

3. Subalgebras and ansatzes
Having obtained and discussed the symmetry algebra of equation (8), we now pass

to listing the subalgebras of AG2(1, 2) which are inequivalent up to conjugation by
G2(1, 2), and giving the corresponding reduced equations. In those cases where it
is possible, we integrate these equations. The method of obtaining subalgebras up to
conjugation is described in [4, 10]; here we simply present our results. The reductions
we have obtained have been verified with MAPLE.

3.1. Reduction to ordinary differential equations by two-dimensional subal-
gebras. Here we list the subalgebras, with restrictions on any parameters entering
into the algebra, and then we give the corresponding ansatz and finally the differenti-
al equation which arises, with its solution. In all the cases, we can take the real
and imaginary parts of the solutions, as the reduced equations are linear. This is
understood when complex arguments appear.

3.1.1.

〈P2, T + αM〉 (α = 0,±1) : v = e−αt/2ϕ(ω), ω = y1, ϕ̈+
1
2
αϕ = 0.

Integrating this reduced equation, we find the following cases

ϕ = C1ω + C2 for α = 0,

ϕ = C1 exp
(
ω√
2

)
+ C2 exp

(
− ω√

2

)
for α = −1,

ϕ = C1 cos
(
ω√
2

+ C2

)
for α = 1.

From these we obtain the following exact solutions of (8):

v = C1y2 + C2 for α = 0,

v = et/2

(
C1 exp

(
y1√
2

)
+ C2 exp

(
− y2√

2

))
for α = −1,

v = e−t/2C1 cos
(
y1√
2

+ C2

)
for α = 1

with C1, C2 being arbitrary constants.
3.1.2.

〈D + (2α+ 1)M,T 〉 (α ∈ R) : v = y
−(α+3/2)
1 ϕ(ω), ω =

y2
y1
,

(ω2 + 1)ϕ̈+ (5 + 2α)ωϕ̇+
(

3
2

+ α

)(
5
2

+ α

)
ϕ = 0.
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For α = − 5
2 we have

ϕ = C1ω + C2.

If α = − 3
2 then

ϕ = C1 arctanω + C2.

For α �= − 3
2 ,− 5

2 then

ϕ = C1(1 + ω2)−(α/2+3/4) cos
((

3
2

+ α

)
arctanω + C2

)
.

The exact solutions being:

v = C1y2 + C2y2, α = −5
2
,

v = C1 arctan
y2
y1

+ C2, α = −3
2
,

v = C1(y2
1 + y2

2)−(α/2+3/4) cos
((

3
2

+ α

)
arctan

y2
y1

+ C2

)
α �= −3

2
,−5

2
.

3.1.3.

〈D + (4α+ 1)M,P2〉 (α ∈ R) : v = t−(α+3/4)ϕ(ω), ω =
y2
1

t
,

4ωϕ̈+ (2 + ω)ϕ̇+
(

3
4

+ α

)
ϕ = 0.

If we make the transformation ω → ξ = −ω
4 in this ODE, we obtain

ξϕ′′ +
(

1
2
− ξ

)
ϕ′′ −

(
α+

3
4

)
ϕ = 0,

where ϕ′ denotes differentiation with respect to ξ. The solutions of this equation are
given in terms of the Pochhammer–Barnes confluent hypergeometric function (see
for example Vol. 1, ch. 6 of [11])

Φ(a; b; z) =
∞∑

n=0

(a)nz
n

(b)nn!

with b �= 0 and where (a)n = a(a+ 1)(a+ 2) · · · (a+ n− 1), n ≥ 1. We find then [11]

ϕ = C1Φ
(
α+

3
4
;
1
2
;−1

4
ω

)
+ C2

(
−1

4
ω

)1/2

Φ
(
α+

5
4
;
3
2
;−1

4
ω

)
.

Thus we find the exact solution

v = t−(α+ 3
4 )
[
C1Φ

(
α+

3
4
;
1
2
− y2

1

4t

)
+ C2

(
−y

2
1

4t

)1/2

Φ
(
α+

5
4
;
3
2
;−y

2
1

4t

)]
.

3.1.4.

〈G1, P2〉 : v = exp
(
−y

2
1

4t

)
ϕ(ω), ω = t, ϕ̇+

1
2ω
ϕ = 0
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which integrates to give the exact solution

v = C|t|−1/2 exp
(
−y

2
1

4t

)
.

3.1.5.

〈P2, T +G1〉 : v = exp
(
t3

6
− y1t

2

)
ϕ(ω), ω = t2 − 2y1,

16ϕ̈− ωϕ = 0.

To treat this ODE, first write ϕ =
√
ωψ(z) with z = ω3/2/6. Then ψ satisfies

ψ′′ +
1
z
ψ′ −

(
1 +

1
9z2

)
ψ = 0

which is the equation for the Bessel function J±1/3(iz) (these two are linearly
independent solutions) (see Vol. 2, section 7.2.2 of [11]). Consequently, we have

v =
(
t2 − 2y1

)1/2
exp

(
t3

6
− ty1

2

)
×

×
[
C1J1/3

(
i
(
t2 − 2y1

)3/2

6

)
+ C2J−1/3

(
i
(
t2 − 2y1

)3/2

6

)]

as an exact solution of the heat equation.
3.1.6.

〈J12 + αD − α(4β + 2)M,T 〉 (α > 0, β ∈ R),

v =
(
y2
1 + y2

2

)β
ϕ(ω), ω = α arctan

(
y1
y2

)
+

1
2

ln
(
y2
1 + y2

2

)
,

(α2 + 1)ϕ̈+ 4βϕ̇+ 4β2ϕ = 0.

Integrating this equation, we obtain

ϕ = C1ω + C2 for β = 0

and

ϕ = C1 exp
(
− 2βω

1 + α2

)
cos
(
− 2αβω

1 + α2
+ C2

)
for β �= 0.

These then give us the exact solutions

v = C1

[
α arctan

(
y1
y2

)
+

1
2

ln
(
y2
1 + y2

2

)]
+ C2 for β = 0,

v = C1

(
y2
1 + y2

2

)β
exp

(
− 2βω

1 + α2

)
cos
(

2αβω
1 + α2

+ C2

)
for β �= 0,

where

ω = α arctan
(
y1
y2

)
+

1
2

ln
(
y2
1 + y2

2

)
.
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3.1.7.

〈J12 + 2αM,D − (4β + 2)M〉 (α ≥ 0, β ∈ R),

v = tβ exp
(
α arctan

y1
y2

)
ϕ(ω), ω =

y2
1 + y2

2

t
,

ω2ϕ̈+
(
ω +

ω2

4

)
ϕ̇+

(
α2

4
− βω

4

)
ϕ = 0.

This equation gives

ϕ̈+
(

1
4

+
1
ω

)
ϕ̇+

(
α2

4ω2
− β

4ω

)
ϕ = 0.

Its solutions can be given in terms of Whittaker functions W (k;m; z) (see Vol. 1,
ch. 6, pp. 248–251 of [11]) and one obtains

ϕ =
e−ω/8

√
ω
W

(
−(β + 1/2);

iα

2
;
ω

4

)

and hence

v =
tβ+1/2√
y2
1 + y2

2

exp
(
−y

2
1 + y2

2

8t

)
exp
(
α arctan

y1
y2

)
W

(
−(β + 1/2);

iα

2
;
y2
1 + y2

2

4t

)
.

3.1.8.

〈J12 + 2αM,T + βM〉 (α ≥ 0, β = 0,±1),

v = exp
(
α arctan

y1
y2

− βt

2

)
ϕ(ω), ω = y2

1 + y2
2 ,

ω2ϕ̈+ ωϕ̇+
(
α2

4
+
βω

8

)
ϕ = 0.

We have the following cases:

ϕ = C1 + C2 logω for α = β = 0,

ϕ = C1 cos
(
−α

2
logω + C2

)
for α �= 0, β = 0,

ϕ = Jiα

(√
βω

2

)
for α ≥ 0, β �= 0.

Consequently, we have the following solutions of (8)

v = C1 + C2 log
(
y2
1 + y2

2

)
for α = β = 0,

v = exp
(
α arctan

y1
y2

)
C1 cos

(
−α

2
log
(
y2
1 + y2

2

)
+ C2

)
for α �= 0, β = 0,

v = exp
(
α arctan

y1
y2

− βt

2

)
Jiα

(√
β (y2

1 + y2
2)

2

)
for α ≥ 0, β �= 0.



New solutions of the wave equation 319

3.1.9.

〈J12 + S + T + 2αM,G1 + P2〉 (α ∈ R),

v =
(
t2 + 1

)−1/2
exp

[(
1 − t2

4t

)(
y1 + ty2
t2 + 1

)2

− y2
1

4t
− α arctan t

]
ϕ(ω),

ω =
y1 + ty2
t2 + 1

, ϕ̈+ (α+ ω2)ϕ = 0.

This equation is known as the Weber equation. Its solutions are the real and imaginary
parts of the functions

D−√
α(±(1 + i)ω),

where Dν(z) are the Weber–Hermite (parabolic cylinder) functions (Vol. 2, ch. 8,
section 8.2 of [11]). This gives the following exact solutions of (9):

v =
(
t2 + 1

)−1/2
exp

[(
1 − t2

4t

)(
y1 + ty2
t2 + 1

)2

− y2
1

4t
− α arctan t

]
×

×D√
α

(
±(1 + i)

y1 + ty2
t2 + 1

)

and the real and imaginary parts of this function give us exact solutions of the heat
equation (9).

3.1.10.

〈J12 + 2αM,S + T + 2βM〉 (α ≥ 0, β ∈ R),

v =
(
t2 + 1

)−1/2
exp

[
−β arctan t+ α arctan

y1
y2

− t
(
y2
1 + y2

2

)
4 (t2 + 1)

]
ϕ(ω),

ω =
y2
1 + y2

2

t2 + 1
, ϕ̈+

1
ω
ϕ̇+

(
1
16

+
β

4ω
+

α2

4ω2

)
ϕ = 0.

The solutions of this equation can be given in terms of Whittaker functions [11],
and we obtain the following exact solutions of the heat equation as a result:

v =
(
y2
1 + y2

2

)−1/2
exp

[
−β arctan t+ α arctan

y1
y2

− t(y2
1 + y2

2)
4(t2 + 1)

]
×

×W

(
iβ

8
;
iα

2
;
i
(
y2
1 + y2

2

)
2 (t2 + 1)

)
.

In the above cases we have been able to describe exact solutions of (8) in terms
of elementary functions or confluent hypergeometric functions. Using the notation
introduced in equations (8) and (7), we are thus able to construct strikingly new
exact solutions of the linear wave equation (1).

3.2. Reduction to partial differential equations by one-dimensional subal-
gebras. Here we list the subalgebras, the relevant parameters, ansatzes and reduced
equations, without constructing their exact solutions. We use ϕ1 to denote the partial
derivative with respect to ω1, and ϕ22 means the second derivative with respect to ω2,
and so on.
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3.2.1.

〈P2〉 : v = ϕ(ω1, ω2), ω1 = t, ω2 = y1, ϕ1 = ϕ22.

This is the heat equation in 1 + 1 spacetime dimensions. The symmetries and condi-
tional symmetries of the heat equation are well known. A discussion of these can be
found in [6] and in appendix 7 of [2].

3.2.2.

〈G1 + P2〉 : v = exp
(
−y

2
1

4t

)
ϕ(ω1, ω2), ω1 = t, ω2 = y1 + ty2,

(1 + ω2
1)ϕ22 − ϕ1 − ω2

ω1
ϕ2 − 1

2ω1
ϕ = 0.

3.2.3.

〈T + αM〉 (α = 0,±1) : v = exp
(
−αt

2

)
ϕ(ω1, ω2), ω1 = y1, ω2 = y2,

ϕ11 + ϕ22 +
1
2
αϕ = 0.

This equation is the Laplace equation for α = 0. Solutions can be obtained by using
separation of variables.

3.2.4.

〈T +G1〉 : v = exp
(
t3

6
− y1t

2

)
ϕ(ω1, ω2), ω1 = t2 − 2y1, ω2 = y2,

4ϕ11 + ϕ22 − 1
4
ω1ϕ = 0.

3.2.5.

〈J12 + 2αM〉 (α ≥ 0),

v = exp
(
α arctan

y1
y2

)
ϕ(ω1, ω2), ω1 = y2

1 + y2
2 , ω2 = t,

4ω2
1ϕ11 + 4ω1ϕ1 + ω1ϕ2 + α2ϕ = 0.

3.2.6.

〈J12 + T + 2αM〉 (α ∈ R),

v = exp(−αt)ϕ(ω1, ω2), ω1 = y2
1 + y2

2 , ω2 = t+ arctan
y1
y2
,

4ω2
1ϕ11 + ϕ22 + 4ω1ϕ1 − ω1ϕ2 + αω1ϕ = 0.

3.2.7.

〈J12 +
α

2
D + α(2β − 1)M〉 (α ≥ 0, β ≥ 1/2),

v = tβϕ(ω1, ω2), ω1 = log t+ α arctan
y1
y2
, ω2 =

y2
1 + y2

2

t
,

α2ϕ11 + 4ω2
2ϕ22 − ω2ϕ1 + (4ω2 + ω2

2)ϕ2 + βω2ϕ = 0.
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3.2.8.

〈D + (4α− 2)M〉 (α ≥ 1/2) : v = t−αϕ(ω1, ω2), ω1 =
y2
1

t
, ω2 =

y2
2

t
,

4ω1ϕ11 + 4ϕ2ϕ22 + (2 + ω1)ϕ1 + (2 + ω2)ϕ2 + αϕ = 0.

3.2.9.

〈S + T + αJ12 + 2βM〉 (α > 0, β ∈ R),

v =
(
t2 + 1

)−1/2
exp

[
−β arctan t− t(y2

1 + y2
2)

4 (t2 + 1)

]
ϕ(ω1, ω2)

ω1 =
y2
1 + y2

2

t2 + 1
, ω2 = arctan

y1
y2

+ α arctan t,

4ω1ϕ11 +
1
ω1
ϕ22 + 4ϕ1 − αϕ2 +

(
β +

ω1

4

)
ϕ = 0.

3.2.10.

〈S + T + 2αM〉 (α ∈ R),

v =
(
t2 + 1

)−1/2
exp

[
−α arctan t− t(y2

1 + y2
2)

4(t2 + 1)

]
ϕ(ω1, ω2),

ω1 =
y2
1

t2 + 1
, ω2 =

y2
2

t2 + 1
,

4ω1ϕ11 + 4ω2ϕ22 + 2ϕ1 + 2ϕ2 +
(
α+

ω1 + ω2

4

)
ϕ = 0.

3.2.11.

〈S + T + J12 + α(G1 + P2)〉 (α > 0),

v = (t2 + 1)−1/2 exp
[
(1 − t2)(y1 + ty2)2

4t(t2 + 1)2
− y2

1

4t

]
ϕ(ω1, ω2),

ω1 =
y1 + ty2
t2 + 1

, ω2 =
ty1 − y2
t2 + 1

= α arctan t,

ϕ11 + ϕ22 − (2ω1 − α)ϕ2 + ω2
1ϕ = 0.

4. Some conditional symmetries of the 2 + 1 heat equation
In this section we give the conditional symmetries of equation (8). The defining

equations are nonlinear coupled partial differential equations, which we do not solve,
except in one case, leaving the others for consideration in a later publication. We have
the following result.

Proposition 3. Equation (8) is conditionally invariant under

X = ξ0
∂

∂t
+ ξ1

∂

∂y1
+ ξ2

∂

∂y2
+ η

∂

∂v

when the coefficients satisfy the following conditions:

(i) ξ0 = 1 : ξ1y1
= ξ2y2

, ξ1y2
= −ξ2y1

, η = Av +B,

where ξ1, ξ2, A, B are functions of t, y1, y2 and satisfy the system

ξ1t + 2ξ1ξ1y1
+ 2Ay1 = 0, ξ2t + 2ξ2ξ2y2

+ 2Ay2 = 0,

At = Ay1y1 +Ay2y2 − 2Aξ2y2
, Bt = By1y1 +By2y2 − 2Bξ2y2

.
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(ii) ξ0 = 0, ξ1 = 1 : ξ2y2
= ξ2ξ2y1

, η = Av +B,

where ξ2, A, B are functions of t, y1, y2 and satisfy the system

ξ2t − ξ2y1y1
− ξ2y2y2

+ 2ξ2y1
ξ2y2

− 2ξ2Ay1 − 2Aξ2y1
= 0,

At = Ay1y1 +Ay2y2 + 2AAy1 − 2Ay2ξ
2
y1
,

Bt = By1y1 +By2y2 + 2BAy1 − 2By2ξ2y1
.

(iii) ξ0 = ξ1 = 0, ξ2 = 1 : η = Av +B,

where A is a function of t, y2 only, and B is a function of t, y1, y2 and satisfy the
equations

At = Ay2y2 + 2AAy2 , Bt = By1y1 +By2y2 + 2BAy2 .

As is clear in the above three cases, the systems of equations involved are highly
nonlinear, and cannot be solved in general. However, the equation for the function A
in case (iii) is recognized to be the Burgers equation. This equation can be linearized
by the Hopf–Cole transformation A = wy2/w, where w is a solution of the heat
equation wt = wy2y2 (see for example [2]). The solutions obtained in this way can
then be used to build ansatzes first for the 2 + 1 heat equation (8) and then, in turn,
the linear wave equation (1), using the ansatz (7).

Ansatzes can also be obtained from the symmetry algebra of the Burgers equation.
Indeed, the symmetry algebra of the equation

At = Ay2y2 + 2AAy2 (10)

is generated by the operators

∂t, ∂y2 , 2t∂y2 − ∂A, 2t∂t + y2∂y2 −A∂A,

t2∂t + ty2∂y2 −
(
tA+

y2
2

)
∂A.

(11)

The operator (11) gives the ansatz

A = −y2
2t

+
1
t
ψ
(y2
t

)
(12)

which gives, on substituting into (10), the equation

ψ̈ + 2ψψ̇ = 0

for ψ, where the dot denotes differentiation with respect to the variable ω = y2/t.
This equation readily integrates to

ψ̇ + ψ2 = c,

where c is a constant. This gives us three cases:

c = 0 : ψ = t/(kt+ y2), (13)

where k is a constant;

c = a2, a > 0 : ψ = a

(
t exp

(
2ay2
t

)
− 1
)/(

t exp
(

2ay2
t

)
+ 1
)

(14)



New solutions of the wave equation 323

with l �= 0 a constant;

c = −a2, a > 0 : ψ = −a tan
(
a2 +

ay2
t

)
. (15)

Substituting these into (12), one obtains exact solutions of (10). We use these exact
solutions for A together with theorem 3 (iii) (with B = 0) as follows. The equation (8)
is conditionally invariant under

∂y2 +Av∂v (16)

and this gives us an ansatz for v to be substituted into (8), and this, in turn, gives us
an exact solution of (8) which, when we combine it with (7), gives an exact solution
of (1). We list the results of these stages for each of the equations (13)–(15).

The ansatz for v from (13) is

v = (kt+ y2) exp
(−y2

2/4t
)
Φ(t, y1),

where Φ(t, y1) satisfies

Φt = Φy1y1 −
3
2
Φ

and consequently we find that v is given by

v = (kt+ y2) exp
(−y2

2/4t− 3t/2
)
Φ(t, y1),

where Ψ(t, y1) satisfies the (1 + 1)-dimensional heat equation.
The ansatz for v from (14) is

v = ea2/t
[
l exp

(−(y2 − 2a)2/4t
)

+ exp
(−(y2 + 2a)2/4t

)]
Φ(t, y1),

where Φ(t, y1) satisfies

Φt +
(

1
2t

− a2

t2

)
Φ = Φy1y1

and using this we eventually find that v is given by

v =
1√
t

[
leay2/t + e−ay2/t

]
exp

(− (4a2 + y2
2

)
/4t
)
Ψ(t, y1), (17)

where Ψ(t, y1) satisfies the (1 + 1)-dimensional heat equation.
The ansatz for v from (15) is

v = cos
(
a2 +

ay2
t

)
exp

(−y2
2/4t

)
Φ(t, y1),

where Φ(t, y1) satisfies

Φt +
(

1
2t

− a2

t2

)
Φ = Φy1y1 ,

so that we obtain

v =
1√
t
cos
(
a2 +

ay2
t

)
exp

(− (4a2 + y2
2

)
/4t
)
Ψ(t, y1), (18)

where Ψ(t, y1) satisfies the (1 + 1)-dimensional heat equation.
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We can now combine equations (17)–(19) with equation (7) to obtain new solutions
of (1):

u = [k(τx) + (δx)] exp
(

(εx)
2

− (δx)2

4(τx)
− 3(τx)

2

)
Ψ((τx), (βx)),

u =
1√
(τx)

[
lea(δx)/(τx)+ e−a(δx)/(τx)

]
exp
(

(εx)
2

− (4a2+(δx)2)
4(τx)

)
Ψ((τx),(βx)),

u =
1√
(τx)

cos
(
a2 +

a(δx)
(τx)

)
exp

(
(εx)
2

− (4a2 + (δx)2)
4(τx)

)
Ψ((τx), (βx)),

where Ψ(t, x) is any solution of the (1 + 1)-dimensional heat equation.
One can, in principle, perform the same procedure for the other conditional

symmetry operators defined in theorem 3; however, it is first necessary to obtain
some exact solutions of the systems. These latter are quite nonlinear and require
further treatment, and we leave this to a future publication.

5. Conclusion
We have been able to give a new reduction of the linear wave equation in 1 + 3

timespace dimensions to a linear heat equation in 1 + 2 timespace dimensions, that
is, a reduction of a hyperbolic equation to a parabolic one. The further reductions of
this heat equation by two-dimensional subalgebras (inequivalent under the action of
G2(1, 2)) to ordinary differential equations leads to exact solutions in terms of special
functions. These are of interest in their own right. Conditional symmetries can also
be used to obtain new exact solutions. Using these solutions of the heat equation, one
can construct new solutions of the linear wave equation. In concluding, we remark
that the complex nonlinear wave equation

�Ψ + F (|Ψ|, ∂µ|Ψ|∂µ|Ψ|)Ψ = 0,

where F is an arbitrary smooth function of its arguments and Ψ is a complex function,
can be reduced by the same ansatz as (7) (but with k imaginary) to a nonlinear
Schrödinger equation with the same nonlinearity. Some of these equations admit
soliton solutions. We report on these results in [3].
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hospitality. P Basarab-Horwath thanks the Wallenberg Fund of Linköping University
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New solutions of the wave equation 325

4. Fushchych W.I., Barannyk L.F., Barannyk A.F., Subgroup analysis of the Galilei and Poincaré
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