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On linear and non-linear representations
of the generalized Poincaré groups
in the class of Lie vector fields
W.I. FUSHCHYCH, R.Z. ZHDANOV, V.I. LAHNO

We study representations of the generalized Poincaré group and its extensions in
the class of Lie vector fields acting in a space of n + m independent and one
dependent variables. We prove that an arbitrary representation of the group P (n, m)
with max{n, m} ≥ 3 is equivalent to the standard one, while the conformal group
C(n, m) has non-trivial nonlinear representations. Besides that, we investigate in
detail representations of the Poincaré group P (2, 2), extended Poincaré groups P̃ (1, 2),
P̃ (2, 2), and conformal groups C(1, 2), C(2, 2) and obtain their linear and nonlinear
representations.

1 Introduction

The central problem to be solved within the framework of the classical Lie approach
to investigation of the partial differential equation (PDE)

F (x, u, u
1
, u
2
, . . . , u

r
) = 0, (1)

where symbol u
k
denotes a set of k-th order derivatives of the function u = u(x),

is to compute its maximal symmetry group. Sophus Lie developed the universal
infinitesimal algorithm which reduced the above problem to solving some linear over-
determined system of PDE (see, e.g. [1–3]). The said method enables us to solve
the inverse problem of symmetry analysis of differential equations — description
of equations invariant under given transformation group. This problem is of great
importance of mathematical and theoretical physics. For example, in relativistic field
theory motion equations have to obey the Lorentz–Poincaré–Einstein relativity prin-
ciple. It means that equations considered should be invariant under the Poincaré
group P (1, 3). That is why, there exists a deep connection between the theory of
relativistically-invariant wave equations and representations of the Poincaré group
[4–6].

There exists a vast literature on representations of the generalized Poincaré group
P (n,m) [6], n,m ∈ N but only a few papers are devoted to a study of nonlinear
representations. It should be noted that nonlinear representations of the Poincaré and
conformal groups often occur as realizations of symmetry groups of nonlinear PDE
such as eikonal, Born–Infeld and Monge–Amperé equations (see [3] and references
therein). On sets of solutions of some nonlinear heat equations nonlinear represen-
tations of the Galilei group are realized [3]. So, nonlinear representations of the
transformations groups are intimately connected with nonlinear PDE, and systematic
study of these is of great importance.
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In the present paper we obtain the complete description of the Poincaré group
P (n,m) (called for bravity the Poincaré group) and of its extensions — the extended
Poincaré group P̃ (n,m) and conformal group C(n,m) acting as Lie transformation
groups in the space R(n,m)×R

1, where R(n,m) is the pseudo-Euclidean space with
the metric tensor

gαβ =




1, α = β = 1, n,
−1, α = β = n + 1, n + m,

0, α �= β.

The paper is organized as follows. In Section 2 we give all necessary notations and
definitions. In Section 3 we investigate representations of groups P (n,m), P̃ (n,m),
C(n,m) with max{n,m} ≥ 3 and prove, in particular, that each representation of
the Poincaré group P (n,m) with max{n,m} ≥ 3 is equivalent to the standard li-
near representation. In Section 3 we study representations of the above groups with
max{n,m} < 3 and show that groups P̃ (1, 2), C(1, 2), P (2, 2), P̃ (2, 2), C(2, 2) have
nontrivial nonlinear representations. It should be noted that nonlinear representati-
ons of the groups P (1, 1), P̃ (1, 1), C(1, 1) were constructed in [9] and of the group
P (1, 2) — in [10].

2 Notations and definitions

Saying about a representation of the Poincaré group P (n,m) in the class of Lie
transformation groups we mean the transformation group

x′
µ = fµ(x, u, a), µ = 1, n + m, u′ = g(x, u, a), (2)

where a = {aN , N = 1, 2, . . . , n + m + C2
n+m} are group parameters preserving the

quadratic form S(x) = gαβxαxβ . Here and below summation over the repeated indices
is understood.

It is common knowledge that a problem of description of inequivalent representa-
tions of the Lie transformation group (2) can be reduced to a study of inequivalent
representations of its Lie algebra [1, 2, 12].

Definition 1. Set of n + m + C2
n+m differential operators Pµ, Jαβ = −jβα, µ, α, β =

1, n + m of the form

Q = ξµ(x, u)∂µ + η(x, u)∂u (3)

satisfying the commutational relations

[Pα, Pβ ] = 0, [Pα, Pβγ ] = gαβPγ − gαγPβ ,

[Jαβ , Jµν ] = gανJβµ + gβµJαν − gαµJβν − gβνJαµ

(4)

is called a representation of the Poincaré algebra AP (n,m) in the class of Lie vector
fields.

In the above formulae

∂µ =
∂

∂xµ
, ∂u =

∂

∂u
, [Q1, Q2] = Q1Q2 − Q2Q1, α, β, γ, µ, ν = 1, n + m.
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Definition 2. Set of 1 + n + m + C2
n+m differential operators Pµ, Jαβ = −Jβα, D

(µ, α, β = 1, n + m) of the form (3) satisfying the commutational relations (4) and

[D,Jαβ ] = 0, [Pα,D] = Pα (α, β = 1, n + m) (5)

is called a representation of the extended Poincaré algebra AP̃ (n,m) in the class of
Lie vector fields.

Using the Lie theorem [1, 2] one can construct the (1+n+m+C2
n+m)-parameter

Lie transformation group corresponding to the Lie algebra {Pµ, Jαβ ,D}. This trans-
formation group is called a representation of the extended Poincaré group P̃ (n,m).
Definition 3. Set of 1+2(n+m)+C2

n+m differential operators Pµ, Jαβ = −Jβα, D,
Kµ (µ, α, β = 1, n + m) of the form (3) satisfying the commutational relations (4),
(5) and

[Kα,Kβ ] = 0, [Kα, Jβγ ] = gαβKγ − gαγKβ ,

[Pα,Kβ ] = 2(gαβD − Jαβ), [D,Kα] = Kα,
(6)

is called a representation of the conformal algebra AC(n,m) in the class of Lie
vector fields.

(1 + 2(n + m) + C2
n+m)-parameter transformation group corresponding to the Lie

algebra {Pµ, Jαβ ,D,Kµ} is called a representation of the conformal group C(n,m).
Definition 4. Representation of the Lie transformation group (2) is called linear if
functions fµ, g satisfy conditions fµ = fµ(x, a) (µ = 1, n + m), g = g̃(x, a)u. If these
conditions are not satisfied, representation is called nonlinear.
Definition 5. Representation of the Lie algebra in the class of Lie vector fields (3)
is called linear if coefficients of its basis elements satisfy the conditions

ξα = ξα(x), α = 1, n + m, η = η̃(x)u, (7)

otherwise it is called nonlinear.
Using the Lie equations [1, 2] it is easy to establish that if a Lie algebra has a

nonlinear representation, its Lie group also has a nonlinear representation and vice
versa.

Since commutational relations (4)–(6) are not altered by the change of variables

x′
α = Fα(x, u), u′ = G(x, u), (8)

two representations {Pα, Jαβ ,D,Kα} and {P ′
α, J ′

αβ ,D′,K ′
α} are called equivalent pro-

vided they are connected by relations (8).

3 Representations of the algebras AP (n, m),
AP̃ (n, m), AC(n, m) with max{n, m} ≥ 3

Theorem 1. Arbitrary representation of the Poincaré algebra AP (n,m) with
max{n,m} ≥ 3 in the class of Lie vector fields is equivalent to the standard repre-
sentation

Pα = ∂α, Jαβ = gαγxγ∂β − gβγxγ∂α (α, β = 1, n + m). (9)
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Proof. By force of the fact that operators Pα commute, there exists the change of
variables (8) reducing these to the form Pα = ∂α, α = 1, n + m (a rather simple
proof of this assertion can be found in [1, 3]). Substituting operators Pα = ∂α, Jαβ =
ξαβγ(x, u)∂γ + ηαβ(x, u)∂u into relations [Pα, Jβγ ] = gαβPγ − gαγPβ and equating
coefficients at the linearly-independent operators ∂α, ∂u we get a system of PDE for
unknown functions ξαβγ , ηαβ

ξαβγxµ
= gµαgγβ − gµβgγα, ηαβxµ

= 0, α, β, γ, µ = 1, n + m,

whence

ξαβγ = xαgγβ − xβgγα + Fαβγ(u), ηαβ = Gαβ(u).

Here Fαβγ = −Fβαγ , Gαβ = −Gβα are arbitrary smooth functions, α, β, γ = 1, n + m.
Consider the third commutational relation from (4) under 1 ≤ α, β, µ, ν ≤ n,

β = µ. Equating coefficients at the operator ∂u, we get the system of nonlinear
ordinary differential equations for Gµν(u)

Gαν = GαβĠβν − GβνĠαβ (11a)

(no summation over β), where a dot means differentiation with respect to u.
Since (11a) holds under arbitrary α, β, ν = 1, n, we can redenote subscripts in

order to obtain the following equations

Gβν = GβαĠαν − GανĠβα, (11b)

Gαβ = GανĠνβ − GνβĠαν (11c)

(no summation over α and ν).
Multiplying (11a) by Gαν , (11b) by Gβν , (11c) by Gαβ and summing we get

G2
αµ + G2

βµ + G2
αβ = 0,

whence Gαν = Gβγ = Gαβ = 0.
Since α, β, ν are arbitrary indices satisfying the restriction 1 ≤ α, β, ν ≤ n, we

conclude that Gαβ = 0 for all α, β = 1, 2, . . . , n.
Furthermore, from commutational relations for operators Jαβ , α, β = 1, n we get

the homogeneous system of linear algebraic equations for functions Fαβγ(u), which
general solution reads

Fαβγ = Fα(u)gβγ − Fβ(u)gαγ , α, β, γ = 1, n,

where Fα(u) are arbitrary smooth functions.
Consequently, the most general form of operators Pµ, Jαβ with 1 ≤ α, β ≤ n

satisfying (4) is equivalent to the following:

Pµ = ∂µ, Jαβ =
(
xα + Fα(u)

)
∂β − (

xβ + Fβ(u)
)
∂α.

Making in the above operators the change of variables

x′
µ = xµ + Fµ (u), µ = 1, n, x′

A = xA, A = n + 1, n + m, u′ = 0

and omitting primes we arrive at the formulae (9) with 1 ≤ α, β ≤ n.
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Consider the commutator of operators Jαβ , JαA under 1 ≤ α, β ≤ n, n + 1 ≤ A ≤
n + m[

Jαβ , JαA

]
= [xα∂β − xβ∂α, gαγxγ∂A − gAγxγ∂α +

+ FαAγ(u)∂γ + GαA(u)∂u] = xA∂β − xβ∂A.
(12a)

On the other hand, by force of commutational relations (4) an equality

[Jαβ , JαA] = JβA (12b)

holds. Comparing right-hand sides of (12a) and (12b) we come to conclusion that
FαAγ = 0, GαA = 0. Consequently, operators JαA = −JAα with α = 1, n, A =
n + 1, n + m have the form (9).

Analogously, computing the commutator of operators JαA, JAB under 1 ≤ α ≤ n,
n + 1 ≤ A,B ≤ n + m and taking into account commutational relations (4) we get
FABγ = 0, A,B = n + 1, n + m, γ = 1, n. Consequently, operators JAB are of the
form

JAB = xB∂A − xA∂B + GAB(u)∂u, A,B = n + 1, n + m.

At last, substituting the results obtained into commutational relations

[JαA, JαB ] = −JAB

(no summation over α), where α = 1, n, A,B = n + 1, n + m, we get

GAB = 0, A,B = n + 1, n + m.

Thus, we have proved that there exists the change of variables (8) reducing an
arbitrary representation of the Poincaré algebra AP (n,m) with max{n,m} ≥ 3 to the
standard representation (9). Theorem is proved.

Note 1. Poincaré algebra AP (n,m) contains as a subalgebra the Euclid algebra AE(n)
with basis elements Pα, Jαβ , α, β = 1, n. When proving the above theorem we have
established that arbitrary representations of the algebra AE(n) with n ≥ 3 in the
class of Lie vector fields are equivalent to the standard representation

Pµ = ∂µ, Jαβ = xα∂β − xβ∂α, µ, α, β = 1, n.

Theorem 2. Arbitrary representation of the extended Poincaré algebra AP̃ (n,m)
with max{n,m} ≥ 3 in the class of Lie vector fields is equivalent to the following
representation:

Pα = ∂α, Jαβ = gαγxγ∂β − gβγxγ∂α, D = xα∂α + εu∂u, (13)

where ε = 0, 1; α, β, γ = 1, n + m.
Proof. From theorem 1 it follows that a representation of the Poincaré algebra
AP (n,m) = 〈Pµ, Jαβ〉 can always be reduced to the form (9). To find the explicit
form of the dilatation operator D = ξµ(x, u)∂µ + η(x, u)∂u we use the commutational
relations [Pα,D] = Pα. Equating coefficients at linearly-independent operators ∂µ, ∂u,
we get

ξµxα
= δµα, ηxα

= 0,

where δµα is a Kronecker symbol; µ, α = 1, n + m.
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Integrating the above equations we have

ξµ = xµ + Fµ(u), η = G(u),

where Pµ(u), G(u) are arbitrary smooth functions.
Using commutational relations [Jµν ,D] = 0 we arrive at the following equalities:

gµγFγ∂ν − gνγFγ∂µ = 0; µ, ν = 1, n + m,

whence Fγ = 0, γ = 1, n + m.
Thus, the most general form of the operator D is the following:

D = xµ∂µ + G(u)∂u.

Provided G(u) = 0, we get the formulae (13) under ε = 0. If G(u) = 0, then after
making the change of variables

x′
µ = xµ, µ = 1, n + m, u′ =

∫ (
G(u)

)−1
du

we obtain the formulae (8) under ε = 1. Theorem is proved.

Theorem 3. Arbitrary representation of the conformal algebra AC(n,m) with
max{n,m} ≥ 3 in the class of Lie vector fields is equivalent to one of the following
representations:

1) operators Pµ, Jαβ, D are given by (13), and operators Kα have the form

Kα = 2gαβxβD − (gµνxµxν)∂α; (14)

2) operators Pµ, Jαβ, D are given by (13) with ε = 1, and operators Kα have the
form

Kα = 2gαβxβD − (gµνxµxν ± u2)∂α. (15)

Proof. From theorem 2 it follows that the basis of the algebra AP̃ (n,m) up to the
change of variables (8) can be chosen in the form (13).

From the commutational relations for operators Pα = ∂α and Kβ = ξβµ(x, u)∂µ +
ηβ(x, u)∂u we get the following system of PDE:

ξβµxα
= 2gαβxµ − 2gανxνδβµ + 2gβνxνδµα, ηβxα

= 2εgβαu.

Integrating these we have

ξβµ = 2gβνxνxµ − gανxαxνδβµ + Fβµ(u), ηβ = 2εxβu + Gβ(u),

where Fβµ, gβ are arbitrary smooth functions, α, β, µ, ν = 1, n + m.
Next, we make use of commutational relations [D,Kα] = Kα. Direct computation

shows that the following equalities hold

[D,Kα] = [xµ∂µ + εu∂u, 2gαβxβ(xµ∂µ + εu∂u) − gµνxµxν∂α +
+ Fαβ(u)∂β + Gα(u)∂u] = 2gαβxβ(xµ∂µ + εu∂u) −
− (gµνxµxν)∂α + (εuFαβu − Fαβ)∂β + ε(uGαu − Gα)∂u.
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Comparison of the right-hand sides of the above equalities yields the system of
PDE

2Fαβ = εuFαβu, Gα = ε(uGαu − Gα), α, β = 1, n + m. (16)

In the following, we will consider the cases ε = 0 and ε = 1 separately.
Case 1, ε = 0. Then it follows from (16) that Fαβ = 0, Gα = 0, α, β = 1, n + m,

i.e. operators Kµ are given by (14) with ε = 0. It is not difficult to verify that the
rest of commutational relations (6) also holds.

Case 2, ε = 1. Integrating the equations (16) we get

Fαβ = Cαβu2, Gα = Cαu2,

where Cαβ , Cα are arbitrary real constants.
Next, from the commutational relations for Kα, Jµν it follows that

Cαβ = Cδαβ , Cα = 0,

where C is an arbitrary constant, α, β = 1, n + m.
Thus, operators Kµ have the form

Kµ = 2gµνxνD − (gαβxαxβ)∂µ + Cu2∂µ. (17)

Easy check shows that the operators (17) commute, whence it follows that all
commutational relations of the conformal algebra hold.

If in (17) C = 0, then we have the case (14) with ε = 1. If C �= 0, then after
rescaling the dependent variable u′ = u|c|1/2 we obtain the operators (15). Theorem
is proved.

Note 2. Nonlinear representations of the conformal algebra given by (13) with ε = 1
and (15) are realized on the set of solutions of the eikonal equations [3, 14]

gµνuxµ
uxν

± 1 = 0

and on the set of solutions of d’Alembert–eikonal system [15]

gµνuxµ
uxν

± 1 = 0, gµνuxµxν
± (n + m − 1)u−1 = 0.

Thus, the Poincaré group P (n,m) with max{n,m} ≥ 3 has no truly nonlinear
representations. The only hope to obtain nonlinear representations of the Poincaré
group is to study the case when max{n,m} < 3.

4 Representations of the algebras AP (n, m),
AP̃ (n, m), AC(n, m) with max{n, m} < 3

Representations of algebras AP (1, 1), AP̃ (1, 1), AC(1, 1) in the class of Lie vector
fields were completely described by Rideau and Winternitz [9]. They have established,
in particular, that the Poincaré algebra AP (1, 1) has no nonequivalent representations
distinct from the standard one (9), while algebras AP̃ (1, 1), AC(1, 1) admit nonlinear
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representations. In the paper [10] nonlinear representations of the Poincaré algebra
AP (1, 2)

Pµ = ∂µ, J12 = x1∂2 + x2∂1 + ∂u,

J13 = x1∂3 + x3∂1 + cos u∂u, J23 = x2∂3 − x3∂2 − sin u∂u,
(18)

were constructed and besides that, it was proved that an arbitrary representation
of the algebra AP (1, 2) in the class of Lie vector fields is equivalent either to the
standard representation or to (18).

In the paper [11] we have constructed nonlinear representations of the algebras
AP (2, 2) and AC(2, 2).
Theorem 4. Arbitrary representation of the Poincaré algebra AP (2, 2) in the class
of Lie vector fields is equivalent to the following representation:

Pµ = ∂µ, µ = 1, 4,

J12 = x1∂2 − x2∂1 + ε∂u, J13 = x3∂1 + x1∂3 + ε cos u∂u,

J14 = x4∂1 + x1∂4 ∓ ε sin u∂u, J23 = x3∂2 + x2∂3 + ε sin u∂u,

J24 = x4∂2 + x2∂4 ± ε cos u∂u, J34 = x4∂3 − x3∂4 ± ε∂u,

(19)

where ε = 0, 1.
Proof. When, proving the theorem 1, we have established that the operators Pµ, Jαβ

can be reduced to the form

Pµ = ∂µ, Jµν = gµαxα∂ν − gναxα∂µ + Fµνα(u)∂α + Gµν(u)∂u, (19a)

where Fµνα = −Fνµα, Gµν = −Gνµ are arbitrary smooth functions; µ, ν, α = 1, 4.
Consider the triplet of operators J12, J13, J23. From commutational relations (4)

we obtain the following system of nonlinear ordinary differential equations for functi-
ons G12, G13, G23:

G23 = G13Ġ12 − G12Ġ13, G13 = G12Ġ23 − G23Ġ12,

G12 = G13Ġ23 − G23Ġ13,
(20)

(a dot means differentiations with respect to u).
Multiplying the first equation of the system (20) by G23, the second — by G13

and the third — by G12 and summing we get an equality

G2
12 = G2

13 + G2
23. (21)

In the following one has to consider cases G12 �= 0 and G12 = 0 separately.
Case 1, G12 �= 0. General solution of the algebraic equation (21) reads

G12 = f(u), G13 = f(u) cos g(u), G23 = f(u) sin g(u), (22)

where f(u), g(u) are arbitrary smooth functions.
Substitution of (22) into (20) yields ġf2 = f . Since f(u) = g12 �= 0, the equality

ġ = f−1 holds. Consequently, the general solution of the system (20) is of the form

G12 = ġ−1, G13 = ġ−1 cos g, G23 = ġ−1 sin g,

where g = g(u) is an arbitrary smooth function.
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On making the change of variables

x′
α = xα, α = 1, 4, u′ = g(u),

which does not alter the structure of operators Pµ, Jµν (19a), we reduce operators
J12, J23, J13 to the form

J12 = x1∂2 − x2∂1 + ∂u + F̃12α(u)∂α,

J23 = x3∂2 + x2∂3 + (sin u)∂u + F̃23α(u)∂α,

J13 = x3∂1 + x1∂3 + (cos u)∂u + F̃13α(u)∂α,

(23)

where F̃12α, F̃23α, F̃13α, α = 1, 4 are arbitrary smooth functions.
Substitution of (23) into (4) yields the system of linear ordinary differentional

equations, which for general solution reads

F̃121 = V̇ + W, F̃122 = Ẇ − V, F̃123 = Q̇, F̃131 = V̇ cos u − Q,

F̃132 = Ẇ cos u, F̃133 = Q̇ cos u − V, F̃231 = V̇ sin u, F̃232 = Ẇ sinu − Q,

F̃233 = Q̇ sinu − W, F̃124 = R, F̃134 = R cos u − C1 sin u,

F̃234 = R sinu + C1 cos u.

Here V , W , Q, R are arbitrary smooth functions on u, C1 is an arbitrary constant.
The change of variables

x′
1 = x1 − V (u), x′

2 = x2 − W (u),
x′

3 = x3 − Q(u), x′
4 = x4 −

∫
R(u)du, u′ = u

reduce operators J12, J23, J13 to the form

J12 = x1∂2 − x2∂1 + ∂u,

J13 = x3∂1 + x1∂3 − C1 sin u∂u + cos u∂u,

J23 = x3∂2 + x2∂3 + C1 sin u∂u + sinu∂u,

(24)

the rest of basis elements of the algebra AP (2, 2) having the form (19a).
Computing commutational relations (4) for operators Jab; α, β = 1, 4 given by

formulae (19a) with µ = 1, 3, ν = 4 and (24) we obtain system of equations for
unknown functions Fµ4α, Gµ4 ; α = 1, 4; µ = 1, 3. General solution of the system
reads

G14 = ∓ sin u, G24 = ± cos u, G34 = ±1, C1 = 0,

F141 = F242 = F343 = C2, Fα4β = 0, α = β,

where C2 is an arbitrary constant.
Substituting the result obtain into the formulae (19a) and making the change of

variables

x′
α = xα, α = 1, 3; x′

4 = x4 + C2; u′ = u

we conclude that operators Jα4, α = 1, 3 are given by (19) with ε = 1.
Case 2, G12 = 0. In this case from (21) it follows that G12 = G13 = G23 = 0.

Computing commutators of operators J12, J14 and J12, J24 we get G14 = G24. Next,
computing commutator of operators J13, J23 we came to conclusion that G34 = 0.
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Substitution of operators Jµν from (19a) with Gµη = 0, µ, ν = 1, 4 into commu-
tational relations (4) yields a homogenerous system of linear algebraic equations for
functions Fµνα. Its general solution can be represented in the form

Fµνα = Fµ(u)gνα − Fν(u)gµα, µ, ν, α = 1, 4,

where Fµ(u) are arbitrary smooth functions.
Consequently, operators (19a) take the form

Pµ = ∂µ, Jαβ = gαγ(xγ + Fγ(u))∂β − gβγ(xγ + Fγ(u))∂α.

Making in the above operators the change of variables x′
µ = xµ + Fµ(u), µ = 1, 4,

u′ = u we arrive at formulae (19) with ε = 0. Theorem is proved.
Theorem 5. Arbitrary representations of the extended Poincaré algebra AP̃ (2, 2) in
the class of Lie vector fields is equalent to one of the following representations:

1) Pµ, Jαβ are of the form (19) with ε = 1, D = xµ∂µ;
2) Pµ, Jαβ are of the form (19) with ε = 0, D = xµ∂µ + ε1u∂u, ε1 = 0, 1.

Theorem 6. Arbitrary representation of the conformal algebra AC(2, 2) in thew
class of Lie vector field is equivalent to one of the following representations:

1) Pµ, Jαβ are of the form (19) with ε = 0,

D = xα∂α + ε1u∂u, ε1 = 0, 1,

Kα = 2gαβxβD − (gµνxµxν)∂α;

2) Pµ, Jαβ are of the form (19) with ε = 0,

D = xα∂α + u∂u,

Kα = 2gαβxβD − (gµνxµxν ± u2)∂α;

3) Pα, Jµν are of the form (19) with ε = 1,

D = xα∂α,

K1 = 2x1D − (gµνxµxν)∂1 + 2(x2 + x3 cos u ∓ x4 sinu)∂u,

K2 = 2x2D − (gµνxµxν)∂2 + 2(−x1 + x3 sinu ± x4 cos u)∂u,

K3 = −2x3D − (gµνxµxν)∂3 + 2(±x4 + x1 cos u − x2 sinu)∂u,

K4 = −2x4D − (gµνxµxν)∂4 + 2(∓x4 ± x1 sinu ∓ x2 cos u)∂u,

where µ, α, β, ν = 1, 2, 3, 4.

Proofs of the theorems 5 and 6 are similar to the proofs of the theorems 2, 3 that
is why they are omitted.

In conclusion of the Section we adduce all nonequivalent representations of the
extended Poincaré algebra AP̃ (1, 2) [10]

1) Pµ, Jαβ are of the form (9),

D = xµ∂µ + εu∂u, ε = 0, 1;

2) Pµ, Jαβ are of the form (18),

D = xµ∂µ
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and the conformal algebra AC(1, 2) [10]
1) Pµ, Jαβ are of the form (9),

D = xµ∂µ + εu∂u, ε = 0, 1,

Kα = 2gαβxβD − (gµνxµxν)∂α;

2) Pµ, Jαβ are of the form (9),

D = xµ∂µ + u∂u,

Kα = 2gαβxβD − (gµνxµxν ± u2)∂α;

3) Pµ, Jαβ are of the form (18),

D = xµ∂µ,

K1 = 2x1D − (gµνxµxν)∂1 + 2(x2 + x3 cos u)∂u,

K2 = −2x2D − (gµνxµxν)∂2 + 2(−x1 + x3 sinu)∂u,

K3 = −2x3D − (gµνxµxν)∂3 − 2(x1 cos u + x2 sinu)∂u.

Here µ, α, β, ν = 1, 2, 3.

5 Conclusion

Thus, we have obtained the complete description of nonequivalent representations
of the generalized Poincaré group P (n,m) by operators of the form (3). This fact
makes a problem of constructing Poincaré-invariant equations of the form (1) purely
algorithmic. To obtain all nonequivalent Poincaré-invariant equations on the order N ,
one has to construct complete sets of functionally-independent differential invariants
of the order N for each nonequivalent representation [1, 2].

For example, each P (n,m)-invariant first-order PDE with max{n,m} ≥ 3 can be
reduced by appropriate change of variables (2) to the eikonal equation

gµνuxµ
uxν

= F (u), (25)

where F (u) is an arbitrary smooth function.
Equation (26) with an arbitrary F (u) is invariant under the algebra AP (n,m)

having the basis elements (9). Provided F (u) = 0, n = m = 2, it admits also the
Poincaré algebra with the basis elements (19) [11].

Another interesting example is provided by P (1, n)-invariant PDE (n ≥ 3). In [16]
a complete basis of functionally-independent differential invariants of the order 2 of
the algebra AP (1, n) with the basis elements (9) has been constructed. Since each
representation of the algebra AP (1, n) with n ≥ 3 is equivalent to (9), the above
mentioned result gives the exhaustive description of Poincaré-invariant equations (1)
in the Minkowski space R(1, n).

It would be of interest to apply the technique developed in [15] to construct PDE
of the order higher than 1 which are invariant under the Poincaré algebra AP (2, 2)
with the basis elements (19).

In the present papers we have studied representations of the Poincaré algebra in
spaces with one dependent variable. But no less important is to investigate nonlinear
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representations of the Poincaré algebra in spaces with more number of dependent
variables [17]. Linear representations of such a kind are realized on sets of solutions
of the complex d’Alembert, of Maxwell, and of Dirac equations. If nonlinear rep-
resentations in question would be obtained, one could construct principially new
Poincaré-invariant mathematical models for describing real physical processes.

We intend to study the above mentioned problems in our future publications.
Besides that, we will construct nonlinear representations of the Galilei group G(1, n),
which plays in Galilean relativistic quantum mechanics the same role as the Poincaré
group in relativistic field theory.
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