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Antireduction and exact solutions
of nonlinear heat equations

W.I. FUSHCHYCH, R.Z. ZHDANOV

We construct a number of ansatzes that reduce one-dimensional nonlinear heat equations
to systems of ordinary differential equations. Integrating these, we obtain new exact
solution of nonlinear heat equations with various nonlinearities.

By the term antireduction for a partial differential equation (PDE) we mean the
construction of an ansatz which transforms the PDE to a system of differential equati-
ons for several unknown differentiable functions. As a rule, such procedure reduces
the PDE under consideration to a system of PDE with fewer numbers of independent
variables and greater number of dependent variables [1–4].

Antireduction of the nonlinear acoustics equation

ux0x1 − (ux1u)x1 − ux2x2 − ux3x3 = 0 (1)

is carried out in the paper [2] with the use of the ansatz

u =
1
3
x1ϕ1(x0, x2, x3) − 1

6
x2

1ϕ2(x0, x2, x3) + ϕ3(x0, x2, x3). (2)

In [3] antireduction of the equation for short waves in gas dynamics

2ux0x1 − 2(2x1 + ux1)ux1x1 + ux2x2 + 2λux1 = 0 (3)

is carried out via the following ansatz:

u = x1ϕ1 + x2
1ϕ2 + x

3/2
1 ϕ3 + ϕ4, ϕi = ϕi(x0, x2). (4)

Ansatzes (2), (4) reduce equations (1), (3) to system of PDE for three and four
functions, respectively.

In the present paper we adduce some new results on antireduction for the nonlinear
heat equations of the form

ut =
(
a(u)ux

)
x

+ F (u). (5)

The antireduction of equation (5) is performed by means of the ansatz

h
(
t, x, u, ϕ1(ω), ϕ2(ω), . . . , ϕN (ω)

)
= 0 (6)

where ω = ω(t, x, u) is a new independent variable. Ansatz (6) reduces equation (5) to
a system of ordinary differential equations (ODE) for the unknown functions ϕi(ω),
i = 1, N.
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Below we list, without derivation, explicit forms of a(u) and F (u), such that
equation (5) admits an antireduction of the form (6). For each case the reduced ODE
are given.

1. a(u) = θ̈(u)θ(u), F (u) =
(
λ1 + λ2θ̇(u)

)(
θ̈(u)

)−1
,

θ̇(u) = ϕ1(t) + ϕ2(t)x, ϕ̇1 = (λ2 + ϕ2
2)ϕ1 + λ1, ϕ̇2 = (λ2 + ϕ2

2)ϕ2;

2. a(u) = uθ̇(u), F (u) =
(
λ1 + λ2θ(u)

)(
θ̇(u)

)−1
,

θ(u) = ϕ1(t) + ϕ2(t)x, ϕ̇1 = λ2ϕ1 + ϕ2
2 + λ1, ϕ̇2 = λ2ϕ2;

3. a(u) = θ̇(u), F (u) =
(
λ1 + λ2θ(u)

)(
θ̇(u)

)−1
,

θ(u) = ϕ1(t) + ϕ2(t)x, ϕ̇1 = λ2ϕ1 + λ1, ϕ̇2 = λ2ϕ2;
4. a(u) = λuk, F (u) = λ1u + λ2u

1−k, uk = ϕ1(t) + ϕ2(t)x + ϕ3(t)x2,

ϕ̇1 = 2λϕ1ϕ3 + λk−1ϕ2
2 + kλ2, ϕ̇2 = 2λ(1 + 2k−1)ϕ2ϕ3 + kλ1ϕ2,

ϕ̇3 = 2λ(1 + 2k−1)ϕ2
3 + kλ1ϕ3;

5. a(u) = λeu, F (u) = λ1 + λ2e
−u, eu = ϕ1(t) + ϕ2(t)x + ϕ3(t)x2,

ϕ̇1 = 2λϕ1ϕ3 + λ1ϕ1 + λ2, ϕ̇2 = 2λϕ2ϕ3 + λ1ϕ2, ϕ̇3 = 2λϕ2
3 + λ1ϕ3;

6. a(u) = λu−3/2, F (u) = λ1u + λ2u
5/2,

u−3/2 = ϕ1(t) + ϕ2(t)x + ϕ3(t)x2 + ϕ4(t)x3,

ϕ̇1 = 2λϕ1ϕ3 − 2
3
λϕ2

2 −
3
2
λ1ϕ1 − 3

2
λ2,

ϕ̇2 = −2
3
λϕ2ϕ3 + 6λϕ1ϕ4 − 3

2
λ1ϕ2,

ϕ̇3 = −2
3
λϕ2

3 + 2λϕ2ϕ4 − 3
2
λ1ϕ3, ϕ̇4 = −3

2
λ1ϕ4;

7. a(u) = 1, F (u) = (α + β ln u)u, ln u = ϕ1(t) + ϕ2(t)x,

ϕ̇1 = βϕ1 + ϕ2
2 + α, ϕ̇2 = αϕ2;

8. a(u) = 1, F (u) =
(
α + β ln u − γ2(ln u)2

)
u, ln u = ϕ1(t) + ϕ2(t)eγx,

ϕ̇1 = α + βϕ1 − γ2ϕ2
1, ϕ̇2 = (β + γ2 − 2γ2ϕ1)ϕ2;

9. a(u) = 1, F (u) = −u(1 + lnu2)
(
α + β(ln u)−1/2

)
,∫ ln u(

2ατ + 4βτ1/2 + ϕ2(t)
)−1/2

dτ = x + ϕ1(t),

ϕ̇1 = 0, ϕ̇2 = 4β2 − 2αϕ2;
10. a(u) = 1, F (u) = −2(u3 + αu2 + βu),

(a) α = β = 0

u =
(
ϕ1(t) + 2ϕ2(t)x

)(
1 + ϕ1(t)x + ϕ2(t)x2

)−1
,

ϕ̇1 = −6ϕ1ϕ2, ϕ̇2 = −6ϕ2
2;

(b) α2 = 4β �= 0

u =
(
−α

2
ϕ1(t) +

(
1 − α

2
x
)

ϕ2(t)
) (

eαx/2 + ϕ1(t) + ϕ2(t)x
)−1

,

ϕ̇1 = −α2

4
ϕ1 − αϕ2, ϕ̇2 = −α2

4
ϕ2;

(c) α2 > 4β

u =
(
(A + B)ϕ1(t)eBx + (A − B)ϕ2(t)e−Bx

) ×
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× (
e−Ax + ϕ1(t)eBx + ϕ2(t)e−Bx

)−1
,

A = −α

2
, B =

1
2
(α2 − 4β)1/2,

ϕ̇1 =
(

α2

2
− 3β − α

2
(α2 − 4β)1/2

)
ϕ1,

ϕ̇2 =
(

α2

2
− 3β +

α

2
(α2 − 4β)1/2

)
ϕ2;

(d) α2 < 4β

u =
(
ϕ1(t)(A cos Bx − B sin Bx) + ϕ2(t)(A sin Bx +

+ B cos Bx)
)(

e−Ax + ϕ1(t) cos Bx + ϕ2(t) sin Bx
)−1

,

ϕ̇1 =
(

α2

2
− 3β

)
ϕ1 − α

2
(4β − α2)1/2ϕ2,

ϕ̇2 =
(

α2

2
− 3β

)
ϕ2 +

α

2
(4β − α2)1/2ϕ1.

In the above formulae θ = θ(u) ∈ C2(R1, R1) is an arbitrary function; λ, λ1, λ2,
α, β, γ are arbitrary real constants; overdot means differentiation with respect to the
corresponding argument.

Most of above adduced system of ODE can be integrated. As a result, one obtains
a number of new exact solutions of the nonlinear heat equation (5). Detailed study of
reduced systems of ODE and construction of exact solutions of equation (5) will be a
topic of our future paper. Here we present some exact solutions of the nonlinear heat
equation

ut = uxx + F (u)

obtained with the help of ansatzes 7–10 which are listed above.

1) F (u) =
(
α + β ln u − γ2(ln u)2

)
u,

(a) ∆ = β2 + 4αγ2 > 0

u = C

(
cos

∆1/2t

2

)−2

eγx+γ2t +
1

2γ2

(
β − ∆1/2tg

∆1/2t

2

)
;

(b) ∆ = −β2 − 4αγ2 > 0

u = C

(
ch

∆1/2t

2

)−2

eγx+γ2t +
1

2γ2

(
β + ∆1/2th

∆1/2t

2

)
;

(c) ∆ = β2 + 4αγ2 = 0

u = Ct−2eγx+γ2t +
1

2γ2t
(βt + 2);

2) F (u) = −u(1 + ln u2)
(
α + β(ln u)−1/2

)
,

(a) α �= 0∫ ln u(
2ατ + 4βτ1/2 + Ce−2αt + 2β2α−1

)−1/2
dτ = x;

(b) α = 0∫ ln u(
4βτ1/2 + 4β2t

)−1/2
dτ = x;
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3) F (u) = −2u(u2 + αu + β),
(a) α2 = 4β

u =
(
1 − α

2
(x − αt)

) (
x − αt + C exp

(
α

2

(
x +

αt

2

)))−1

;

(b) α2 > 4β

u =
(
(A + B)C1 exp

(
(A + B)(x − αt)

)
+ (A − B)C2 ×

× exp
(
(A − B)(x − αt)

))(
exp(3βt) + C1 exp

(
(A + B)(x − αt)

)
+

+ C2 exp
(
(A − B)(x − αt)

))−1

,

A = −α

2
, B =

1
2
(α2 − 4β)1/2;

(c) α2 < 4β

u =
(
(αAC1 − BC2) cos B(x − αt) + (AC2 + BC1) ×

× sin B(x − αt)
)(

exp
(
3βt − A(x − αt)

)
+

+ C1 cos B(x − αt) + C2 sin B(x − αt)
)−1

,

A = −α

2
, B =

1
2
(4β − α2)1/2.

In the above formulae C, C1, C2 are arbitrary constants.
It is worth noting that the above solutions can not be obtained with the use of

the classical Lie symmetry reduction technique [6]. That is why they are essentially
new. Another impotant feature is that solutions 3(a) and 3(c) are soliton-like soluti-
ons. Consequently, nonlinear heat equation with cubic nonlinearity admits soliton-like
solutions.
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