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Symmetry reduction and exact solutions
of the Navier–Stokes equations
W.I. FUSHCHYCH, R.O. POPOVYCH

Ansatzes for the Navier–Stokes field are described. These ansatzes reduce the Navier–
Stokes equations to system of differential equations in three, two, and one independent
variables. The large sets of exact solutions of the Navier–Stokes equations are
constructed.

1 Introduction

The Navier–Stokes equations (NSEs)

�ut + (�u · �∇)�u−��u+ �∇p = �0,

div �u = 0
(1.1)

which describe the motion of an incompressible viscous fluid are the basic equations
of modern hydrodynamics. In (1.1) and below �u = {ua(t, �x)} denotes the velocity
field of a fluid, p = p(t, �x) denotes the pressure, �x = {xa}, ∂t = ∂/∂t, ∂a = ∂/∂xa,
�∇ = {∂a}, � = �∇ · �∇ is the Laplacian, the kinematic coefficient of viscosity and fluid
density are set equal to unity. Repead indices denote summation whereby we consider
the indices a, b to take on values in {1, 2, 3} and the indices i, j to take on values in
{1, 2}.

The problem of finding exact solutions of non-linear equations (1.1) is an important
but rather complicated one. There are some ways to solve it. Considerable progress in
this field can be achieved by means of making use of a symmetry approach. Equations
(1.1) have non-trivial symmetry properties. It was known long ago [37, 2] that they
are invariant under the eleven-parametric extended Galilei group. Let us denote it by
G1(1, 3). This group includes the Galilei group and scale transformations. The Lie
algebra AG1(1, 3) of G1(1, 3) is generated by the operators

P0, Jab, D, Pa, Ga,

where

P0 = ∂t, D = 2t∂t + xa∂a − ua∂ua − 2p∂p,

Jab = xa∂b − xb∂a + ua∂ub − ub∂ua , a �= b,

Ga = t∂a + ∂ua , Pa = ∂a.

Relatively recently it was found by means of the Lie method [8, 5, 26] that the
maximal Lie invariance algebra (MIA) of the NSEs (1.1) is the infinite-dimensional
algebra A(NS) with the basis elements

∂t, D, Jab, R(�m), Z(χ), (1.2)
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where

R(�m) = R(�m(t)) = ma(t)∂a +ma
t (t)∂ua −ma

tt(t)xa∂p, (1.3)

Z(χ) = Z(χ(t)) = χ(t)∂p, (1.4)

ma = ma(t) and χ = χ(t) are arbitrary smooth functions of t (degree of their
smoothness is discussed in Note A.1).

The algebra AG1(1, 3) is a subalgebra of A(NS). Indeed, setting ma = δab, where
b is fixed, we obtain R(�m) = ∂b, and if ma = δabt then R(�m) = Gb. Here δab is the
Kronecker symbol (δab = 1 if a = b, δab = 0 if a �= b).

Operators (1.2) generate the following invariance transformations of system (1.1):

∂t : �̃u(t, �x) = �u(t+ ε, �x), p̃(t, �x) = p(t+ ε, �x)

(translations with respect to t),

Jab : �̃u(t, �x) = B�u(t, BT�x), p̃(t, �x) = p(t, BT�x)

(space rotations),

D : �̃u(t, �x) = eε�u(e2εt, eε�x), p̃(t, �x) = e2εp(e2εt, eε�x)

(scale transformations),

R(�m) : �̃u(t, �x) = �u(t, �x− �m(t)) + �mt(t),

p̃(t, �x) = p(t, �x− �m(t)) − �mtt · �x− 1
2 �m · �mtt

(these transformations include the space translations

and the Galilei transformations),

Z(χ) : �̃u(t, �x) = �u(t, �x), p̃(t, �x) = p(t, �x) + χ(t).

(1.5)

Here ε ∈ R, B = {βab} ∈ O(3), i.e. BBT = {δab}, BT is the transposed matrix.
Besides continuous transformations (1.5) the NSEs admit discrete transformations

of the form

t̃ = t, x̃a = xa, a �= b, x̃b = −xb,

p̃ = p, ũa = ua, a �= b, ũb = −ub,
(1.6)

where b is fixed. Invariance under transformations (1.5) and (1.6) means that (�̃u, p̃) is
a solution of (1.1) if (�u, p) is a solution of (1.1).

A complete review of exact solutions found for the NSEs before 1963 is contained
in [1]. We should like also to mark more modern reviews [16, 7, 36] despite their
subjects slightly differ from subjects of our investigations. To find exact solutions
of (1.1), symmetry approach in explicit form was used in [2, 31, 32, 6, 20, 21, 4,
17, 15, 12, 10, 11, 30]. This article is a continuation and a extention of our works
[15, 12, 10, 11, 30]. In it we make symmetry reduction of the NSEs to systems
of PDEs in three and two independent variables and to systems of ODEs, using
subalgebraic structure of A(NS). We investigate symmetry properties of the reduced
systems of PDEs and construct exact solutions of the reduced systems of ODEs when
it is possible. As a result, large classes of exact solutions of the NSEs are obtained.
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The reduction problem for the NSEs is to describe ansatzes of the form [9]:

ua = fab(t, �x)vb(ω) + ga(t, �x), p = f0(t, �x)q(ω) + g0(t, �x) (1.7)

that reduce system (1.1) in four independent variables to systems of differential equati-
ons in the functions va and q depending on the variables ω = {ωn} (n = 1, N), where
N takes on a fixed value from the set {1, 2, 3}. In formulas (1.7) fab, ga, f0, g0, and
ωn are smooth functions to be described. In such a general formulation the reducti-
on problem is too complex to solve. But using Lie symmetry, some ansatzes (1.7)
reducing the NSEs can be obtained. According to the Lie method, first a complete
set of A(NS)-inequivalent subalgebras of dimension M = 4−N is to be constructed.
For N = 3, N = 2, and N = 1 such sets are given in Subsections A.2, A.3, and
A.4, correspondingly. Knowing subalgebraic structure of A(NS), one can find explicit
forms for the functions fab, ga, f0, g0, and ωn and obtain reduced systems in the
functions vk and q. This is made in Section 2 (N = 3), Section 3 (N = 2) and Secti-
on 4 (N = 1). Moreover, in Subsection 2.3 symmetry properties of all reduced systems
of PDEs in three independent variables are investigated, and in Subsection 4.3 exact
solutions of the reduced systems of ODEs are constructed. Symmetry properties and
exact solutions of some reduced systems of PDEs in two independent variables are
discussed in Sections 5 and 6. In Section 7 we make symmetry reduction of a some
reduced system of PDEs in three independent variables.

In conclusion of the section, for convenience, we give some abbreviations, notati-
ons, and default rules used in this article.

Abbreviations:

the NSEs: the Navier–Stokes equations

the MIA: the maximal Lie invariance algebra (of either a some equation or a some
system of equations)

a ODE: a ordinary differential equation

a PDE: a partial differential equation

Notations:

C∞((t0, t1),R): the set of infinite-differentiable functions from (t0, t1) into R, where
−∞ ≤ t0 < t1 ≤ +∞

C∞((t0, t1),R3): the set of infinite-differentiable vector-functions from (t0, t1) into
R

3, where −∞ ≤ t0 < t1 ≤ +∞
∂t = ∂/∂t, ∂a = ∂/∂xa

, ∂ua = ∂/∂ua , . . .

Default rules:
Repead indices denote summation whereby we consider the indices a, b to take on

values in {1, 2, 3} and the indices i, j to take on values in {1, 2}.
All theorems on the MIAs of PDEs are proved by means of the standard Lie

algorithm.
Subscripts of functions denote differentiation.
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2 Reduction of the Navier–Stokes equations
to systems of PDEs in three independent variables

2.1 Ansatzes of codimension one

In this subsection we give ansatzes that reduce the NSEs to systems of PDEs in three
independent variables. The ansatzes are constructed with the subalgebraic analysis of
A(NS) (see Subsection A.2) by means of the method discribed in Section B.

1. u1 = |t|−1/2(v1 cos τ − v2 sin τ) + 1
2x1t

−1 − κx2t
−1,

u2 = |t|−1/2(v1 sin τ + v2 cos τ) + 1
2x2t

−1 + κx1t
−1,

u3 = |t|−1/2v3 + 1
2x3t

−1,

p = |t|−1q + 1
2κ

2t−2r2 + 1
8 t

−2xaxa,

(2.1)

where

y1 = |t|−1/2(x1 cos τ + x2 sin τ), y2 = |t|−1/2(−x1 sin τ + x2 cos τ),

y3 = |t|−1/2x3, κ ≥ 0, τ = κ ln |t|.
Here and below va = va(y1, y2, y3), q = q(y1, y2, y3), r = (x2

1 + x2
2)

1/2.

2. u1 = v1 cos κt− v2 sin κt− κx2,

u2 = v1 sin κt+ v2 cos κt+ κx1,

u3 = v3,

p = q + 1
2κ

2r2,

(2.2)

where

y1 = x1 cos κt+ x2 sin κt, y2 = −x1 sin κt+ x2 cos κt,

y3 = x3, κ ∈ {0; 1}.
3. u1 = x1r

−1v1 − x2r
−1v2 + x1r

−2,

u2 = x2r
−1v1 + x1r

−1v2 + x2r
−2,

u3 = v3 + η(t)r−1v2 + ηt(t) arctanx2/x1,

p = q − 1
2ηtt(t)(η(t))−1x2

3 − 1
2r

−2 + χ(t) arctanx2/x1,

(2.3)

where

y1 = t, y2 = r, y3 = x3 − η(t) arctanx2/x1, η, χ ∈ C∞((t0, t1),R).

Note 2.1 The expression for the pressure p from ansatz (2.3) is indeterminate in the
points t ∈ (t0, t1) where η(t) = 0. If there are such points t, we will consider ansatz
(2.3) on the intervals (tn0 , t

n
1 ) that are contained in the interval (t0, t1) and that satisfy

one of the conditions:

a) η(t) �= 0 ∀ t ∈ (tn0 , t
n
1 );

b) η(t) = 0 ∀ t ∈ (tn0 , t
n
1 ).

In the last case we consider ηtt/η := 0.
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4. �u = vi�ni + (�m · �m)−1v3 �m+ (�m · �m)−1(�m · �x)�mt − yi�n
i
t,

p = q − 3
2 (�m · �m)−1((�mt · �ni)yi)2 − (�m · �m)−1(�mtt · �x)(�m · �x) +

+ 1
2 (�mtt · �m)(�m · �m)−2(�m · �x)2,

(2.4)

where

yi = �ni · �x, y3 = t, �m,�ni ∈ C∞((t0, t1),R3).

�ni · �m = �n1 · �n2 = �n1
t · �n2 = 0, |�ni| = 1. (2.5)

Note 2.2 There exist vector-functions �ni which satisfy conditions (2.5). They can be
constructed in the following way: let us fix the vector-functions �ki = �ki(t) such that
�ki · �m = �k1 · �k2 = 0, |�ki| = 1, and set

�n1 = �k1 cosψ(t) − �k2 sinψ(t),

�n2 = �k1 sinψ(t) + �k2 cosψ(t).
(2.6)

Then �n1
t · �n2 = �k1

t · �k2 − ψt = 0 if ψ =
∫

(�k1
t · �k2)dt.

2.2 Reduced systems

1–2. Substituting ansatzes (2.1) and (2.2) into the NSEs (1.1), we obtain reduced
systems of PDEs with the same general form

vav1
a − v1

aa + q1 + γ1v
2 = 0,

vav2
a − v2

aa + q2 − γ1v
1 = 0,

vav3
a − v3

aa + q3 = 0,
va

a = γ2.

(2.7)

Hereafter subscripts 1, 2, and 3 of functions denote differentiation with respect to y1,
y2, and y3, accordingly. The constants γi take the values

1. γ1 = −2κ, γ2 = − 3
2 if t > 0, γ1 = 2κ, γ2 = 3

2 if t < 0.
2. γ1 = −2κ, γ2 = 0.

For ansatzes (2.3) and (2.4) the reduced equations have the form

3. v1
1 + v1v1

2 + v3v1
3 − y−1

2 v2v2 − (v1
22 + (1 + η2y−2

2 )v1
33

)− 2ηy−2
2 v2

3 + q2 = 0,
v2
1 + v1v2

2 + v3v2
3 + y−1

2 v1v2 − (v2
22 + (1 + η2y−2

2 )v2
33

)
+

+ 2ηy−2
2 v1

3 + 2y−2
2 v2 − ηy−1

2 q3 + χy−1
2 = 0,

v3
1 + v1v3

2 + v3v3
3 − (v3

22 + (1 + η2y−2
2 )v3

33

)− 2η2y−3
2 v1

3 + 2η1y−1
2 v2 +

+ 2ηy−1
2 (y−1

2 v2)2 + (1 + η2y−2
2 )q3 − η11η

−1y3 − χηy−2
2 = 0,

y−1
2 v1 + v1

2 + v3
3 = 0.

(2.8)

4. vi
3 + vjvi

j − vi
jj + qi + ρi(y3)v3 = 0,

v3
3 + vjv3

j − v3
jj = 0,

vi
i + ρ3(y3) = 0,

(2.9)
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where

ρi = ρi(y3) = 2(�m · �m)−1(�mt · �ni),
ρ3 = ρ3(y3) = (�m · �m)−1(�mt · �m).

(2.10)

2.3 Symmetry of reduced systems

Let us study symmetry properties of systems (2.7), (2.8), and (2.9). All results of this
subsection are obtained by means of the standard Lie algorithm [28, 27]. First, let us
consider system (2.7).

Theorem 2.1 The MIA of system (2.7) is the algebra

a) 〈∂a, ∂q, J
1
12〉 if γ1 �= 0;

b) 〈∂a, ∂q, J
1
ab〉 if γ1 = 0, γ2 �= 0;

c) 〈∂a, ∂q, J
1
ab,D

1
1〉 if γ1 = γ2 = 0.

Here J1
ab = ya∂b − yb∂a + va∂vb − vb∂va , D1

1 = ya∂a − va∂va − 2q∂q.

Note 2.3 All Lie symmetry operators of (2.7) are induced by operators from A(NS):
The operators J1

ab and D1
1 are induced by Jab and D. The operators ca∂a (ca = const)

and ∂q are induced by either

R(|t|1/2(c1 cos τ − c2 sin τ, c1 sin τ + c2 cos τ, c3)), Z(|t|−1),

where τ = κ ln |t|, for ansats (2.1) or

R(c1 cos κt− c2 sin κt, c1 sin κt+ c2 cos κt, c3), Z(1)

for ansatz (2.2), respectively. Therefore, Lie reductions of system (2.7) give only
solutions that can be obtained by reducing the NSEs with two- and three-dimensional
subalgebras of A(NS).

Let us continue to system (2.8). We denote Amax as the MIA of (2.8). Studying
symmetry properties of (2.8), one has to consider the following cases:

A. η, χ ≡ 0. Then

Amax = 〈∂1,D1
2, R1(ψ(y1)), Z1(λ(y1))〉,

where

D1
2 = 2y1∂1 + y2∂2 + y3∂3 − va∂va − 2q∂q,

R1(ψ(y1)) = ψ∂3 + ψ1∂v3 − ψ11y3∂q, Z1(λ(y1)) = λ(y1)∂q.

Here and below ψ = ψ(y1) and λ = λ(y1) are arbitrary smooth functions of y1 = t.
B. η ≡ 0, χ �≡ 0. In this case an extension of Amax exists for χ = (C1y1 + C2)−1,

where C1, C2 = const. Let C1 �= 0. We can make C2 vanish by means of equivalence
transformation (A.6), i.e., χ = Cy−1

1 , where C = const. Then

Amax = 〈D1
2, R1(ψ(y1)), Z1(λ(y1))〉.
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If C1 = 0, χ = C = const and

Amax = 〈∂1, R1(ψ(y1)), Z1(λ(y1))〉.
For other values of χ, i.e., when χ11χ �= χ1χ1,

Amax = 〈R1(ψ(y1)), Z1(λ(y1))〉.
C. η �= 0. By means of equivalence transformation (A.6) we make χ = 0. In this

case an extension of Amax exists for η = ±|C1y1 +C2|1/2, where C1, C2 = const. Let
C1 �= 0. We can make C2 vanish by means of equivalence transformation (A.6), i.e.,
η = C|y1|1/2, where C = const. Then

Amax = 〈D1
2, R2(|y1|1/2), R2(|y1|1/2 ln |y1|), Z1(λ(y1))〉,

where R2(ψ(y1)) = ψ∂3 + ψ1∂v3 . If C1 = 0, i.e., η = C = const,

Amax = 〈∂1, ∂3, y1∂3 + ∂v3Z1(λ(y1))〉.
For other values of η, i.e., when (η2)11 �= 0,

Amax = 〈R2(η(y1)), R2(η(y1)
∫

(η(y1))−2dy1), Z1(λ(y1))〉.

Note 2.4 In all cases considered above the Lie symmetry operators of (2.8) are
induced by operators from A(NS): The operators ∂1, D1

2, and Z
1(λ(y1)) are induced

by ∂t, D, and Z(λ(t)), respectively. The operator R(0, 0, ψ(t)) induces the operator
R1(ψ(y1)) for η ≡ 0 and the operator R2(ψ(y1)) (if ψ11η − ψη11 = 0) for η �= 0.
Therefore, the Lie reduction of system (2.8) gives only solutions that can be obtained
by reducing the NSEs with two- and three-dimentional subalgebras of A(NS).

When η = χ = 0, system (2.8) describes axially symmetric motion of a fluid and
can be transformed into a system of two equations for a stream function Ψ1 and a
function Ψ2 that are determined by

Ψ1
3 = y2v

1, Ψ1
2 = −y2v3, Ψ2 = y2v

2.

The transformed system was studied by L.V. Kapitanskiy [20, 21].
Consider system (2.9). Let us introduce the notations

t = y3, ρ = ρ(t) =
∫
ρ3(t)dt,

R3(ψ1(t), ψ2(t)) = ψi∂yi
+ ψi

t∂vi − ψi
ttyi∂q,

Z1(λ(t)) = λ(t)∂q, S = ∂v3 − ρi(t)yi∂q,

E(χ(t)) = 2χ∂t + χtyi∂yi
+ (χttyi − χtv

i)∂vi − (2χtq + 1
2χtttyjyj)∂q,

J1
12 = y1∂2 − y2∂1 + v1∂v2 − v2∂v1 .

Theorem 2.2 The MIA of(2.9) is the algebra

1) 〈R3(ψ1(t), ψ2(t)), Z1(λ(t)), S, E(χ1(t)), E(χ2(t)), v3∂v3 , J1
12〉,

where χ1 = e−ρ(t)
∫
eρ(t)dt and χ2 = e−ρ(t), if ρi = 0;

2) 〈R3(ψ1(t), ψ2(t)), Z1(λ(t)), S, E(χ(t)) + 2a1v
3∂v3 + 2a2J

1
12〉,
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where a1, a2, and a3 are fixed constants, χ = e−ρ(t)
(∫

eρ(t)dt+ a3

)
, if

ρ1 = e
3
2 ρρ̂−

3
2−a1

(
C1 cos(a2 ln ρ̂) − C2 sin(a2 ln ρ̂)

)
,

ρ2 = e
3
2 ρρ̂−

3
2−a1

(
C1 sin(a2 ln ρ̂) + C2 cos(a2 ln ρ̂)

)
with ρ̂ = ρ̂(t) = | ∫ eρ(t)dt+ a3|, C1, C2 = const, (C1, C2) �= (0, 0);

3) 〈R3(ψ1(t), ψ2(t)), Z1(λ(t)), S, E(χ(t)) + 2a1v
3∂v3 + 2a2J

1
12〉,

where a1 and a2 are fixed constants, χ = e−ρ(t), if

ρ1 = e
3
2 ρ−a1ρ̂

(
C1 cos(a2ρ̂) − C2 sin(a2ρ̂)

)
,

ρ2 = e
3
2 ρ−a1ρ̂

(
C1 sin(a2ρ̂) + C2 cos(a2ρ̂)

)
with ρ̂ = ρ̂(t) =

∫
eρ(t)dt, C1, C2 = const, (C1, C2) �= (0, 0);

4) 〈R3(ψ1(t), ψ2(t)), Z1(λ(t)), S〉
in all other cases.

Here ψi = ψi(t), λ = λ(t) are arbitrary smooth function of t = y3.

Note 2.5 If functions ρb are determined by (2.10), then eρ(t) = C|�m(t)|, where C =
const, and the condition ρi = 0 implies that �m = |�m(t)|�e, where �e = const and |�e| = 1.

Note 2.6 The vector-functions �ni from Note 2.2 are determined up to the transfor-
mation

�n1 = �n1 cos δ − �n2 sin δ, �n2 = �n1 sin δ + �n2 cos δ,

where δ = const. Therefore, δ can be chosen such that C2 = 0 (then C1 �= 0).

Note 2.7 The operators R3(ψ1, ψ2) + αS and Z1(λ) are induced by R(�l) + Z(χ) and
Z(λ), respectively. Here �l = ψi�ni + ψ3 �m, ψ3

t (�m · �m) + 2ψi(�ni
t · �m) = α,

χ− 3
2 (�m · �m)−1((�mt · �ni)ψi)2 − 1

2 (�mtt · �ni)ψ3ψi + 1
2 (�ltt · �ni)ψi = 0.

If �m = |�m|�e, where �e = const and |�e| = 1, the operator J1
12 is induced by e1J23 +

e2J31 + e3J12.
For

�m = β3e
σt(β2 cos τ, β2 sin τ, β1)T

with τ = κt+ δ and βa = const, where β2
1 + β2

2 = 1, the operator ∂t + κJ12 induces
the operator ∂y3 − β1κJ1

12 + σv3∂v3 if the following vector-functions �ni are chosen:

�n1 = �k1 cosβ1τ + �k2 sinβ1τ, �n2 = −�k1 sinβ1τ + �k2 cosβ1τ, (2.11)

where �k1 = (− sin τ, cos τ, 0)T and �k2 = (β1 cos τ, β1 sin τ,−β2)T .
For

�m = β3|t+ β4|σ+1/2(β2 cos τ, β2 sin τ, β1)T
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with τ = κ ln |t + β4| + δ and βa, β4 = const, where β2
1 + β2

2 = 1, the operator
D + 2β4∂t + 2κJ12 induces the operator

D1
3 + 2β4∂y3 − 2β1κJ1

12 + 2σv3∂v3 ,

where D1
3 = yi∂yi

+ 2y3∂y3 − vi∂vi − 2q∂q, if the vector-functions �ni are chosen in
form (2.11). In all other cases the basis elements of the MIA of (2.9) are not induced
by operators from A(NS).

Note 2.8 The invariance algebras of systems of form (2.9) with different parameter-
functions ρ3 = ρ3(t) and ρ̃3 = ρ̃3(t) are similar . It suggests that there exists a local
transformation of variables which make ρ3 vanish. So, let us transform variables in
the following way:

ỹi = yie
1
2 ρ(t), ỹ3 =

∫
eρ(t)dt,

ṽi =
(
vi + 1

2yiρ
3(t)

)
e−

1
2 ρ(t), ṽ3 = v3,

q̃ = qe−ρ(t) + 1
8yiyi

(
(ρ3(t)2) − 2ρ3

t (t)
)
e−ρ(t).

(2.12)

As a result, we obtain the system

ṽi
3 + ṽj ṽi

j − ṽi
jj + q̃i + ρ̃i(ỹ3)ṽ3 = 0,

ṽ3
3 + ṽjv3

j − ṽ3
jj = 0,

ṽi
i = 0

for the functions ṽa = ṽa(ỹ1, ỹ2, ỹ3) and q̃ = q̃(ỹ1, ỹ2, ỹ3). Here subscripts 1, 2, and
3 denote differentiation with respect to ỹ1, ỹ2, and ỹ3, accordingly. Also ρ̃i(ỹ3) =
ρi(t)e−

3
2 ρ(t).

3 Reduction of the Navier–Stokes equations
to systems of PDEs in two independent variables

3.1 Ansatzes of codimension two

In this subsection we give ansatzes that reduce the NSEs to systems of PDEs in two
independent variables. The ansatzes are constructed with the subalgebrical analysis of
A(NS) (see Subsection A.3) by means of the method discribed in Section B.

1. u1 = (rR)−1((x1 − κx2)w1 − x2w
2 + x1x3r

−1w3),

u2 = (rR)−1((x2 + κx1)w1 + x1w
2 + x2x3r

−1w3),

u3 = x3(rR)−1w1 −R−1w3,

p = R−2s,

(3.1)

where z1 = arctanx2/x1 − κ lnR, z2 = arctan r/x3, κ ≥ 0.
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Here and below wa = wa(z1, z2), s = s(z1, z2), r = (x2
1 + x2

2)
1/2, R = (x2

1 + x2
2 +

x2
3)

1/2, κ, ε, σ, µ, and ν are real constants.

2. u1 = |t|−1/2r−1(x1w
1 − x2w

2) + 1
2 t

−1x1 + x1r
−2,

u2 = |t|−1/2r−1(x2w
1 + x1w

2) + 1
2 t

−1x2 + x2r
−2,

u3 = |t|−1/2w3 + κr−1w2 + 1
2 t

−1x3,

p = |t|−1s− 1
2r

−2 + 1
8 t

−2R2 + ε|t|−1 arctanx2/x1,

(3.2)

where z1 = |t|−1/2r, z2 = |t|−1/2x3 − κ arctanx2/x1, κ ≥ 0, ε ≥ 0.

3. u1 = r−1(x1w
1 − x2w

2) + x1r
−2,

u2 = r−1(x2w
1 + x1w

2) + x2r
−2,

u3 = w3 + κr−1w2,

p = s− 1
2r

−2 + ε arctanx2/x1,

(3.3)

where z1 = r, z2 = x3 − κ arctanx2/x1, κ ∈ {0; 1}, ε ≥ 0 if κ = 1 and ε ∈ {0; 1} if
κ = 0.

4. u1 = |t|−1/2(µw1 + νw3) cos τ − |t|−1/2w2 sin τ +
+ νξt−1 cos τ + 1

2 t
−1x1 − κt−1x2,

u2 = |t|−1/2(µw1 + νw3) sin τ + |t|−1/2w2 cos τ +
+ νξt−1 sin τ + 1

2 t
−1x2 + κt−1x1,

u3 = |t|−1/2(−νw1 + µw3) + µξt−1 + 1
2 t

−1x3,

p = |t|−1s− 1
2 t

−2ξ2 + 1
8 t

−2R2 + 1
2κ

2t−2r2 +

+ ε|t|−3/2(νx1 cos τ + νx2 sin τ + µx3),

(3.4)

where

z1 = |t|−1/2(µx1 cos τ + µx2 sin τ − νx3),

z2 = |t|−1/2(x2 cos τ − x1 sin τ),
ξ = σ(νx1 cos τ + νx2 sin τ + µx3) + 2κν(x2 cos τ − x1 sin τ),
τ = κ ln |t|, κ > 0, µ ≥ 0, ν ≥ 0, µ2 + ν2 = 1, σε = 0, ε ≥ 0.

5. u1 = |t|−1/2w1 + 1
2 t

−1x1,

u2 = |t|−1/2w2 + 1
2 t

−1x2,

u3 = |t|−1/2w3 + (σ + 1
2 )t−1x3,

p = |t|−1s− 1
2σ

2t−2x2
3 + 1

8 t
−2R2 + ε|t|−3/2x3,

(3.5)

where

z1 = |t|−1/2x1, z2 = |t|−1/2x2, σε = 0, ε ≥ 0.
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6. u1 = (µw1 + νw3) cos t− w2 sin t+ νξ cos t− x2,

u2 = (µw1 + νw3) sin t+ w2 cos t+ νξ sin t+ x1,

u3 = (−νw1 + µw3) + µξ,

p = s− 1
2ξ

2 + 1
2r

2 + ε(νx1 cos t+ νx2 sin t+ µx3),

(3.6)

where

z1 = (µx1 cos t+ µx2 sin t− νx3),
z2 = (x2 cos t− x1 sin t),
ξ = σ(νx1 cos t+ νx2 sin t+ µx3) + 2ν(x2 cos t− x1 sin t),
µ ≥ 0, ν ≥ 0, µ2 + ν2 = 1, σε = 0, ε ≥ 0.

7. u1 = w1, u2 = w2, u3 = w3 + σx3,

p = s− 1
2σ

2x2
3 + εx3,

(3.7)

where

z1 = x1, z2 = x2, σε = 0, ε ∈ {0; 1}.

8. u1 = x1w
1 − x2r

−2(w2 − χ(t)),

u2 = x2w
1 + x1r

−2(w2 − χ(t)),

u3 = (ρ(t))−1(w3 + ρt(t)x3 + ε arctanx2/x1),

p = s− 1
2ρtt(t)(ρ(t))−1x2

3 + χt(t) arctanx2/x1,

(3.8)

where

z1 = t, z2 = r, ε ∈ {0; 1}, χ, ρ ∈ C∞((t0, t1),R).

9. �u = �w + λ−1(�ni · �x)�mi
t − λ−1(�k · �x)�kt,

p = s− 1
2λ

−1(�mi
tt · �x)(�ni · �x) − 1

2λ
−2(mi

tt · �k)(�ni · �x)(�k · �x),
(3.9)

where

z1 = t, z2 = (�k · �x), �mi ∈ C∞((t0, t1),R3),

�m1
tt · �m2 − �m1 · �m2

tt = 0, �k = �m1 × �m2, �n1 = �m2 × �k,

�n2 = �k × �m1, λ = λ(t) = �k · �k �= 0 ∀ t ∈ (t0, t1).

3.2 Reduced systems

Substituting ansatzes (3.1)–(3.9) into the NSEs (1.1), we obtain the following systems
of reduced equations:

1. w2w1
1 + w3w1

2 − w1w3 cot z2 − (w1)2 − (w2 + κw1)2 sin2 z2 −
− (w3)2 − ((κ2 + sin−2 z2)w1

11 + w1
22 − κw1

1 − 2w3
2 − 2w2

1 −
− 2w1

)
sin z2 + w1

2 cos z2 − w1 sin−1 z2 − (2s+ κs1) sin2 z2 = 0,
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w2w2
1 + w3w2

2 + w3(w2 + 2κw1) cot z2 −
− κ

(
(w1)2 + (w3)2 + (w2 + κw1)2 sin2 z2

)−
− ((κ2 + sin−2 z2)w2

11 + w2
22 + 3κw2

1 + 2κ(w3
2 + κw1

1 + w1)
)
sin z2 +

+ (2w1
1 + 2w3

1 cot z2 − w2 − 2κw1) sin−1 z2 −
− (w2

2 + 2κw1
2) cos z2 + 2κs sin2 z2 + (1 + κ

2 sin2 z2)s1 = 0,
w2w3

1 + w3w3
2 − (w3)2 cot z2 − (w2 + κw1)2 sin z2 cos z2 −

− ((κ2 + sin−2 z2)w3
11 + w3

22 + κw3
1 + 2w1

2

)
sin z2 +

+ (2w1 + w3
2 + w2

1 + κw1
1) cos z2 + s2 sin2 z2 = 0,

w1 + w2
1 + w3

2 = 0.

(3.10)

Hereafter numeration of the reduced systems corresponds to that of the ansatzes in
Subsection 3.1. Subscripts 1 and 2 denote differentiation with respect to the variables
z1 and z2, accordingly.

2–3. w1w1
1 + w3w1

2 − z−1
1 w2w2 − (w1

11 + (1 + κ
2z−2

1 )w1
22

)−
− 2κz−2

1 w2
2 + s1 = 0,

w1w2
1 + w3w2

2 + z−1
1 w1w2 − (w2

11 + (1 + κ
2z−2

1 )w2
22

)
+

+ 2κz−2
1 w1

2 + 2z−2
1 w2 − κz−1

1 s2 + εz−1
1 = 0,

w1w3
1 + w3w3

2 − 2κz−2
1 w1w2 − (w3

11 + (1 + κ
2z−2

1 )w3
22

)
+

+ 2κ(z−2
1 w2)1 − 2κ

2z−3
1 w1

2 + (1 + κ
2z−2

1 )s2 − εκz−2
1 = 0,

w1
1 + w3

2 + z−1
1 w1 + γ = 0,

(3.11)

where γ = ±3/2 for ansatz (3.2) and γ = 0 for ansatz (3.3). Here and below the
upper and lower sign in the symbols “±” and “∓” are associated with t > 0 and t < 0,
respectively.

4–7. For ansatzes (3.4)–(3.7) the reduced equations can be written in the form

wiw1
i − w1

ii + s1 + α2w
2 = 0,

wiw2
i − w2

ii + s2 − α2w
1 + α1w

3 = 0,
wiw3

i − w3
ii + α4w

3 + α5 = 0,
wi

i = α3

(3.12)

where the constants αn (n = 1, 5), take on the values

4. α1 = ±2κν, α2 = ∓2κµ, α3 = ∓(σ + 3/2), α4 = ±σ, α5 = ε.

5. α1 = 0, α2 = 0, α3 = ∓(σ + 3/2), α4 = ±σ, α5 = ε.

6. α1 = 2ν, α2 = −2µ, α3 = −σ, α4 = σ, α5 = ε.

7. α1 = 0, α2 = 0, α3 = −σ, α4 = σ, α5 = ε.

8. w1
1 + (w1)2 − z−4

2 (w2 − χ)2 + z2w
1w1

2 − w1
22 −

− 3z2w1
2 + z−1

2 s2 = 0,
(3.13)

w2
1 + z2w

1w2
2 − w2

22 + z−1
2 w2

2 = 0, (3.14)

w3
1 + z2w

1w3
2 − w3

22 − z−1
2 w3

2 + z−2
2 (w2 − χ) = 0, (3.15)



192 W.I. Fushchych, R.O. Popovych

2w1 + z2w
1
2 + ρ1/ρ = 0. (3.16)

9. �w1 − λ�w22 + s2�k + λ−1(�ni · �w)�mi
t + z2�e = �0, (3.17)

�k · �w2 = 0, (3.18)

where y1 = t and

�e = �e(t) = 2λ−2(�m1
t · �m2 − �m1 · �m2

t )�kt × �k + λ−2(2�kt · �kt − �ktt · �k).
Let us study symmetry properties of reduced systems (3.10) and (3.11).

Theorem 3.1 The MIA of (3.10) is given by the algebra 〈∂1〉.

Theorem 3.2 The MIA of (3.11) is given by the following algebras:

a) 〈∂2, ∂s,D
2
1 = zi∂i − wa∂wa − 2s∂s〉 if γ = κ = ε = 0;

b) 〈∂2, ∂s〉 if (γ,κ, ε) �= (0, 0, 0).

All the Lie symmetry operators of systems (3.10) and (3.11) are induced by
elements of A(NS). So, for system (3.10) the operator ∂1 is induced by J12. For
system (3.11), when γ = 0 (γ = ±3/2), the operators D2

1, ∂2, and ∂s (∂2 and ∂s)
are induced by D, R(0, 0, 1), and Z(1) (R(0, 0, |t|−1/2) and Z(|t|−1)), accordingly.
Therefore, the Lie reductions of systems (3.10) and (3.11) give only solutions that
can be obtained by reducing the NSEs with three-dimensional subalgebras of A(NS)
immediately to ODEs.

Investigation of reduced systems (3.13)–(3.16), (3.17)–(3.18), and (3.12) is given
in Sections 5 and 6.

4 Reduction of the Navier–Stokes equations
to ordinary differential equations

4.1 Ansatzes of codimension three

By means of subalgebraic analysis of A(NS) (see Subsection A.3) and the method
described in Section B one can obtain the following ansatzes that reduce the NSEs to
ODEs:

1. u1 = x1R
−2ϕ1 − x2(Rr)−1ϕ2 + x1x3r

−1R−2ϕ3,

u2 = x2R
−2ϕ1 + x1(Rr)−1ϕ2 + x2x3r

−1R−2ϕ3,

u3 = x3R
−2ϕ1 − rR−2ϕ3,

p = R−2h,

(4.1)

where ω = arctan r/x3. Here and below ϕa = ϕa(ω), h = h(ω), r = (x2
1 + x2

2)
1/2,

R = (x2
1 + x2

2 + x2
3)

1/2.

2. u1 = r−2(x1ϕ
1 − x2ϕ

2), u2 = r−2(x2ϕ
1 + x1ϕ

2),
u3 = r−1ϕ3, p = r−2h,

(4.2)
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where ω = arctanx2/x1 − κ ln r, κ ≥ 0.

3. u1 = x1|t|−1ϕ1 − x2r
−2ϕ2 + 1

2x1t
−1,

u2 = x2|t|−1ϕ1 + x1r
−2ϕ2 + 1

2x2t
−1,

u3 = |t|−1/2ϕ3 + (σ + 1
2 )x3t

−1 + ν|t|1/2t−1 arctanx2/x1,

p = |t|−1h+ 1
8 t

−2R2 − 1
2σ

2x2
3t

−2 +

+ ε1|t|−1 arctanx2/x1 + ε2x3|t|−3/2,

(4.3)

where ω = |t|−1/2r, νσ = 0, ε2σ = 0, ε1 ≥ 0, ν ≥ 0.

4. u1 = x1ϕ
1 − x2r

−2ϕ2,

u2 = x2ϕ
1 + x1r

−2ϕ2,

u3 = ϕ3 + σx3 + ν arctanx2/x1,

p = h− 1
2σ

2x2
3 + ε1 arctanx2/x1 + ε2x3,

(4.4)

where ω = r, νσ = 0, ε2σ = 0, and for σ = 0 one of the conditions

ν = 1, ε1 ≥ 0; ν = 0, ε1 = 1, ε2 ≥ 0; ν = ε1 = 0, ε2 ∈ {0; 1}
is satisfied.

Two ansatzes are described better in the following way:
5. The expressions for ua and p are determined by (2.1), where

v1 = a1ϕ
1 + a2ϕ

3 + b1iωi,

v2 = ϕ2 + b2iωi,

v3 = a2ϕ
1 − a1ϕ

3 + b3iωi,

p = h+ c1iωi + c2iωωi + 1
2dijωiωj .

(4.5)

In formulas (4.5) we use the following definitions:

ω1 = a1y1 + a2y3, ω2 = y2, ω = ω3 = a2y1 − a1y3;
ai = const, a2

1 + a2
2 = 1; a2 = 0 if γ1 = 0;

γ1 = −2κ, γ2 = − 3
2 if t > 0 and γ1 = 2κ, γ2 = 3

2 if t < 0.

bai, Bi, cij , and dij are real constants that satisfy the equations

b1i = a1Bi, b3i = a2Bi, c2i + a2γ1b2i = 0,
b21Bi + b22b2i − γ1a1Bi + d2i = 0,
B1Bi +B2b2i + γ1a1Bi + d1i = 0,
(B1 + b22)(B2 + a1γ1 − b21) = 0.

(4.6)

6. The expressions for ua and p have form (2.2), where va and q are determined
by (4.5), (4.6), and γ1 = −2κ, γ2 = 0.

Note 4.1 Formulas (4.5) and (4.6) determine an ansatz for system (2.7), where
equations (4.6) are the necessary and sufficient condition to reduce system (2.7)
by means of an ansatz of form (4.5).
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7. u1 = ϕ1 cosx3/η
3 − ϕ2 sinx3/η

3 + x1θ
1(t) + x2θ

2(t),
u2 = ϕ1 sinx3/η

3 + ϕ2 cosx3/η
3 − x1θ

2(t) + x2θ
1(t),

u3 = ϕ3 + η3
t (η3)−1x3,

p = h− 1
2η

3
tt(η

3)−1x2
3 − 1

2η
j
ttη

j(ηiηi)−1r2,

(4.7)

where ω = t,

ηa ∈ C∞((t0, t1),R), η3 �= 0, ηiηi �= 0, η1
t η

2 − η1η2
t ∈ {0; 1

2},
θ1 = ηi

tη
i(ηjηj)−1, θ2 = (η1

t η
2 − η1η2

t )(ηjηj)−1.

8. �u = �ϕ+ λ−1(�na · �x)�ma
t ,

p = h− λ−1(�ma
tt · �x)(�na · �x) + 1

2λ
−2(�mb

tt · �ma)(�na · �x)(�nb · �x), (4.8)

where ω = t, �ma ∈ C∞((t0, t1),R), �ma
tt · �mb − �ma · �mb

tt = 0,

λ = λ(t) = (�m1 × �m2) · �m3 �= 0 ∀t ∈ (t0, t1),
�n1 = �m2 × �m3, �n2 = �m3 × �m1, �n3 = �m1 × �m2.

4.2 Reduced systems

Substituting the ansatzes 1–8 into the NSEs (1.1), we obtain the following systems of
ODE in the functions ϕa and h:

1. ϕ3ϕ1
ω − ϕaϕa − ϕ1

ωω − ϕ1
ω cotω − 2h = 0,

ϕ3ϕ2
ω + ϕ2ϕ3 cotω − ϕ2

ωω − ϕ2
ω cotω + ϕ2 sin−2 ω = 0,

ϕ3ϕ3
ω − ϕ2ϕ2 cotω − ϕ3

ωω − ϕ3
ω cotω + ϕ3 sin−2 ω − 2ϕ1

ω + hω = 0,
ϕ1 + ϕ3

ω + ϕ3 cotω = 0.

(4.9)

2. (ϕ2 − κϕ1)ϕ1
ω − (1 + κ

2)ϕ1
ωω − ϕ1ϕ1 − ϕ2ϕ2 − κhω − 2h = 0,

(ϕ2 − κϕ1)ϕ2
ω − (1 + κ

2)ϕ2
ωω − 2(κϕ2

ω + ϕ1
ω) + hω = 0,

(ϕ2 − κϕ1)ϕ3
ω − (1 + κ

2)ϕ3
ωω − ϕ1ϕ3 − ϕ3 − 2κϕ3

ω = 0,
ϕ2

ω − κϕ1
ω = 0.

(4.10)

3–4. ϕ1ϕ1 − ω−4ϕ2ϕ2 + ωϕ1ϕ1
ω − ϕ1

ωω − 3ω−1ϕ1
ω + ω−1hω = 0,

ωϕ1ϕ2
ω − ϕ2

ωω + ω−1ϕ2
ω + ε1 = 0,

ωϕ1ϕ3
ω + σ1ϕ

3 + νω−2ϕ2 − ϕ3
ωω − ω−1ϕ3

ω + ε2 = 0,
2ϕ1 + ωϕ1

ω + σ2 = 0,

(4.11)

where

3. σ1 = σ, σ2 = (σ + 3
2 ) if t > 0,

σ1 = −σ, σ2 = −(σ + 3
2 ) if t < 0.

4. σ1 = σ2 = σ.

5–6. ϕ3ϕ1
ω − ϕ1

ωω − µ1iϕ
i + c11 + c21ω = 0,

ϕ3ϕ2
ω − ϕ2

ωω − µ2iϕ
i + c12 + c22ω + γ2a2ϕ

3 = 0,
ϕ3ϕ3

ω − ϕ3
ωω + γ1a2ϕ

2 + hω = 0,
ϕ3

ω = σ,

(4.12)
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where µ11 = −B1, µ12 = −B2−γ1a1, µ21 = −b21+γ1a1, µ22 = −b22, σ = γ1−B1−b22.
7. ϕ1

ω + θ1ϕ1 + θ2ϕ2 − (η3)−1ϕ3ϕ2 + (η3)−2ϕ1 = 0,
ϕ2

ω − θ2ϕ1 + θ1ϕ2 + (η3)−1ϕ3ϕ1 + (η3)−2ϕ2 = 0,
ϕ3

ω + η3
t (η3)−1ϕ3 = 0,

2θ1 + η3
t (η3)−1 = 0.

(4.13)

8. �ϕω + λ−1(�nb · �ϕ)�mb
t = 0,

�na · �ma
t = 0.

(4.14)

4.3 Exact solutions of the reduced systems

1. Ansatz (4.1) and system (4.9) determine the class of solutions of the NSEs (1.1)
that are called the steady axially symmetric conically similar flows of a viscous fluid
in hydrodynamics. This class of solutions was studied in a number of works (for
example, see references in [16]). For ϕ2 = 0 it was shown, by N.A. Slezkin [34], that
system (4.9) is reduced to a Riccati equation. The general solution of this equation
was expressed in terms of hypergeometric functions. Later similar calculations were
made by V.I. Yatseev [38] and H.B. Squire [35]. The particular case in the class of
solutions with ϕ2 = 0 is formed by the Landau jets [24]. For swirling flows, where
ϕ2 �= 0, the order of system (4.9) can be reduced too. For example [33], an arbitrary
solution of (4.9) satisfies the equation

ϕ2ϕ2 sin2 ω − sinω(Φω sin−1 ω)ω + 2Φω cotω + 2Φ = const,

where Φ = (ϕ3
ω − 1

2ϕ
3ϕ3) sin2 ω − ϕ3 cosω sinω, and the Yatseev results [38] are

completely extended to the case ϕ2 sinω = const.
2. System (4.10) implies that

ϕ2 = κϕ1 + C1,

h = κ(1 + κ
2)ϕ1

ω + (2κ
2 + 2 − κC1)ϕ1 + C2,

(1 + κ
2)ϕ1

ωω + (4κ − C1)ϕ1
ω + ϕ1ϕ1 + 4ϕ1 +

+ (1 + κ
2)−1(C2

1 + 2C2) = 0,
(1 + κ

2)ϕ3
ωω − (C1 − 2κ)ϕ3

ω + (1 + ϕ1)ϕ3 = 0.

(4.15)

If ϕ3 = 0, the solution determined by ansatz (4.10) and formulas (4.15) coincides with
the Hamel solution [18, 23]. In Section 6 we consider system (6.14) which is more
general than system (4.10).

3–4. Let us integrate the last equation of system (4.11), i.e.,

ϕ1 = C1ω
−2 − 1

2σ2. (4.16)

Taking into account the integration result, the other equations of system (4.11) can
be written in the form

hω = ω−3ϕ2ϕ2 + C2
1ω

−3 − 1
4σ

2
2ω,

ϕ2
ωω − ((C1 + 1)ω−1 − 1

2σ2ω)ϕ2
ω = ε1,
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ϕ3
ωω − ((C1 − 1)ω−1 − 1

2σ2ω)ϕ3
ω − σ1ϕ

3 = νω−2ϕ2 + ε2. (4.17)

Therefore,

h =
∫
ω−3ϕ2ϕ2dω − 1

2C
2
1ω

−2 − 1
8σ

2
2ω

2, (4.18)

ϕ2 = C2 + C3

∫ |ω|C1+1e−
1
4 σ2ω2

dω +

+ ε1
∫ |ω|C1+1e−

1
4 σ2ω2

(∫ |ω|−C1−1e
1
4 σ2ω2

dω
)
dω.

(4.19)

If σ1 = 0, it follows that

ϕ3 = C4 + C5

∫ |ω|C1−1e−
1
4 σ2ω2

dω +

+
∫ |ω|C1−1e−

1
4 σ2ω2

(∫ |ω|−C1+1e
1
4 σ2ω2

(ε2 + νω−2ϕ2)dω
)
dω.

(4.20)

Let σ1 �= 0 (and, therefore, ν = 0). Then, if σ2 �= 0, the general solution of equation
(4.17) is expressed in terms of Whittaker functions:

ϕ3 = |ω| 12 C1−1e−
1
8 σ2ω2

W (−σ1σ
−1
2 + 1

4C1 − 1
2 ,

1
4C1,

1
4σ2ω

2),

where W (κ, µ, τ) is the general solution of the Whittaker equation

4τ2Wττ = (τ2 − 4κτ + 4µ2 − 1)W. (4.21)

If σ2 = 0, the general solution of equation (4.16) is expressed in terms of Bessel
functions:

ϕ3 = |ω| 12 C1Z 1
2 C1

(
(−σ1)1/2ω

)
,

where Zν(τ) is the general solution of the Bessel equation

τ2Zττ + τZτ + (τ2 − ν2)Z = 0. (4.22)

Note 4.2 If σ2 = 0, all quadratures in formulas (4.18)–(4.20) are easily integrated.
For example,

ϕ2 =




C2 + C3 ln |ω| + 1
4ε1ω

2 if C1 = −2,
C2 + C3

1
2ω

2 + 1
2ε1ω

2(lnω − 1
2 ) if C1 = 0,

C2 + C3(C1 + 2)−1|ω|C1+2 − 1
2ε1C

−1
1 ω2 if C1 �= −2, 0.

5–6. Let σ = 0. Then the last equation of system (4.12) implies that ϕ3 = C0 =
const. The other equations of system (4.12) can be written in the form

h = −γ1a2

∫
ϕ2(ω)dω,

ϕi
ωω − C0ϕ

i
ω + µijϕ

j = ν1i + ν2iω,
(4.23)

where ν11 = c11, ν21 = c21, ν12 = c12 + γ2a2C0, ν22 = c22. System (4.23) is a linear
nonhomogeneous system of ODEs with constant coefficients. The form of its general
solution depends on the Jordan form of the matrix M = {µij}. Now let us transform
the dependent variables

ϕi = eijψ
j ,
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where the constants eij are determined by means of the system of linear algebraic
equations

eij µ̃jk = µijejk (i, j, k = 1, 2)

with the condition det{eij} �= 0. Here M̃ = {µ̃ij} is the real Jordan form of the matrix
M. The new unknown functions ψi have to satisfy the following system

ψi
ωω − C0ψ

i
ω + µ̃ijψ

j = ν̃1i + ν̃2iω, (4.24)

where ν1i = eij ν̃1j , ν2i = eij ν̃2j . Depending on the form of M̃, we consider the
following cases:

A. det M̃ = 0 (this is equivalent to the condition det M = 0 ).

i. M̃ =
(

0 ε
0 0

)
, where ε ∈ {0; 1}. Then

ψ2 = C1 + C2e
C0ω − 1

2 ν̃22C
−1
0 ω2 − (ν̃12 − ν̃22C

−1
0 )C−1

0 ω,

ψ1 = C3 + C4e
C0ω − 1

2 ν̃21C
−1
0 ω2 − (ν̃11 − ν̃21C

−1
0 )C−1

0 ω +

+ ε
(
− 1

6 ν̃22C
−2
0 ω3 − 1

2 (ν̃12 − 2ν̃22C−1
0 )C−2

0 ω2 +

+
(
C1 + (ν̃21 − 2ν̃22C−1

0 )C−2
0

)
C−1

0 ω − C2C
−1
0 ωeC0ω

) (4.25)

for C0 �= 0, and

ψ2 = C1 + C2ω + 1
6 ν̃22ω

3 + 1
2 ν̃12ω

2,

ψ1 = C3 + C4ω + 1
6 (ν̃21 − C2)ω3 + 1

2 (ν̃11 − C1)ω2 − 1
120 ν̃22ω

5 − 1
24 ν̃12ω

4
(4.26)

for C0 = 0.

ii. M̃ =
(

κ1 0
0 0

)
, where κ1 ∈ R\{0}. Then the form of ψ2 is given either by

formula (4.25) for C0 �= 0 or by formula (4.26) for C0 = 0. The form of ψ1 is given
by formula (4.28) (see below).

B. det M̃ �= 0 (this is equivalent to the condition det M �= 0).

i. M̃ =
(

κ1 0
0 κ2

)
, where κi ∈ R\{0}. Then

ψ2 = ν̃22κ
−1
2 ω + (ν̃12 − C0ν̃22κ

−1
2 )κ−1

2 + C1θ
21(ω) + C2θ

22(ω), (4.27)

ψ1 = ν̃21κ
−1
1 ω + (ν̃11 − C0ν̃21κ

−1
1 )κ−1

1 + C3θ
11(ω) + C4θ

12(ω), (4.28)

where

θi1(ω) = exp
(

1
2 (C0 −

√
Di)ω

)
, θi2(ω) = exp

(
1
2 (C0 +

√
Di)ω

)
if Di = C2

0 − 4κi > 0,

θi1(ω) = e
1
2 C0ω cos

(
1
2

√−Diω
)
, θi2(ω) = e

1
2 C0ω sin

(
1
2

√−Diω
)

if Di < 0,

θi1(ω) = e
1
2 C0ω, θi2(ω) = ωe

1
2 C0ω

if Di = 0.
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ii. M̃ =
(

κ2 1
0 κ2

)
, where κ2 ∈ R\{0}. Then the form of ψ2 is given by formula

(4.27), and

ψ1 =
(
ν̃11 − (ν̃12 − C0ν̃22κ

−1
2 )κ−1

2 − C0(ν̃21 − ν̃22κ
−1
2 )κ−1

2

)
κ

−1
2 +

+ (ν̃21 − ν̃22κ
−1
2 )κ−1

2 ω + C3θ
21(ω) + C4θ

22(ω) − Ciη
i(ω),

where

ηj(ω) = D−1
2 ω

(
2θ2j

ω (ω) − C0θ
2j(ω)

)
if D2 �= 0,

η1(ω) = 1
2ω

2e
1
2 C0ω, η2(ω) = 1

6ω
3e

1
2 C0ω if D2 = 0.

iii. M̃ =
(

κ1 −κ2

κ2 κ1

)
, where κi ∈ R, κ2 �= 0. Then

ψ1 = (κiκi)−1(ν̃21κ1 + ν̃22κ2)ω + (κiκi)−1(ν̃11κ1 + ν̃12κ2) −
− C0(κiκi)−2

(
ν̃21(κ2

2 − κ
2
1) − ν̃222κ1κ2

)
+ Cnθ

1n(ω),
ψ2 = (κiκi)−1(−ν̃21κ2 + ν̃22κ1)ω + (κiκi)−1(−ν̃11κ2 + ν̃12κ1) −

− C0(κiκi)−2
(
ν̃212κ1κ2 + ν̃22(κ2

2 − κ
2
1)
)

+ Cnθ
2n(ω),

where n = 1, 4,

γ =
√

(C2
0 − 4κ1)2 + (4κ2)2,

β1 = 1
4

√
2(γ + C2

0 − 4κ1), β2 = 1
4
|κ2|
κ2

√
2(γ − C2

0 + 4κ1),

θ11(ω) = θ22(ω) = exp
(
( 1
2C0 − β1)ω

)
cosβ2ω,

−θ21(ω) = θ12(ω) = exp
(
( 1
2C0 − β1)ω

)
sinβ2ω,

θ13(ω) = θ24(ω) = exp
(
( 1
2C0 + β1)ω

)
cosβ2ω,

θ23(ω) = −θ14(ω) = exp
(
( 1
2C0 + β1)ω

)
sinβ2ω.

If σ �= 0, the last equation of system (4.12) implies that ψ3 = σω (translating ω,
the integration constant can be made to vanish). The other equations of system (4.12)
can be written in the form

h = −γ1a2

∫
ϕ2(ω)dω − 1

2σ
2ω2,

ϕi
ωω − σωϕi

ω + µijϕ
j = ν1i + ν2iω,

(4.29)

where ν11 = c11, ν21 = c21, ν12 = c12, ν22 = c22 + γ2a2σ. The form of the general
solution of system (4.29) depends on the Jordan form of the matrix M = {µij}. Now,
let us transform the dependent variables

ϕi = eijψ
j ,

where the constants eij are determined by means of the system of linear algebraic
equations

eij µ̃jk = µijejk (i, j, k = 1, 2)

with the condition det{eij} �= 0. Here M̃ = {µ̃ij} is the real Jordan form of the
matrix M. The new unknown functions ψi have to satisfy the following system

ψi
ωω − σωψi

ω + µ̃ijψ
j = ν̃1i + ν̃2iω, (4.30)
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where ν1i = eij ν̃1j , ν2i = eij ν̃2j . Depending on the form of M̃, we consider the
following cases:

A. det M̃ = 0 (this is equivalent to the condition det M = 0).

i. M̃ =
(

0 ε
0 0

)
, where ε ∈ {0; 1}. Then

ψ2 = C1 + C2

∫
e

1
2 σω2

dω − σ−1ν̃22ω + ν̃12
∫
e

1
2 σω2(∫

e−
1
2 σω2

dω
)
dω, (4.31)

ψ1 = C3 + C4

∫
e

1
2 σω2

dω − σ−1ν̃21ω +
∫
e

1
2 σω2(∫

e−
1
2 σω2

(ν̃11 − εψ2)dω
)
dω.

ii. M̃ =
(
σ 0
0 0

)
. Then the form of ψ2 is given by formula (4.31), and

ψ1 = C3ω + C4

(
ω
∫
e

1
2 σω2

dω − σ−1e
1
2 σω2)

+ σ−1ν̃11 +

+ σ−1ν̃21
(
σω
∫
e

1
2 σω2

λ1(ω)dω − e
1
2 σω2

λ1(ω)
)
,

where λ1(ω) =
∫
e−

1
2 σω2

dω.

iii. M̃ =
(

κ1 0
0 0

)
, where κ1 ∈ R\{0;σ}. Then ψ2 is determited by (4.31), and

the form of ψ1 is given by (4.33) (see below).

B. det M̃ �= 0, det{µ̃ij − σδij} = 0 (this is equivalent to the conditions det M �= 0,
det{µij − σδij} = 0; here δij is the Kronecker symbol).

i. M̃ =
(
σ ε
0 σ

)
, where ε ∈ {0; 1}. Then

ψ2 = C1ω + C2

(
ω
∫
e

1
2 σω2

dω − σ−1e
1
2 σω2)

+ σ−1ν̃12 + vspace1mm
+ σ−1ν̃22

(
σω
∫
e

1
2 σω2

λ1(ω)dω − e
1
2 σω2

λ1(ω)
)
,

(4.32)

ψ1 = C3ω + C4

(
ω
∫
e

1
2 σω2

dω − σ−1e
1
2 σω2)

+ σ−1ν̃11 +

+ σω
∫
e

1
2 σω2

λ2(ω)dω − e
1
2 σω2

λ2(ω) + σ−1(ν̃21ω − εψ2),

where λ1(ω) =
∫
e−

1
2 σω2

dω, λ2(ω) = σ−1
∫
e−

1
2 σω2

(ν̃21 − εψ2
ω)dω.

ii. M̃ =
(

κ1 0
0 σ

)
, where κ1 ∈ R\{0;σ}. In this case ψ2 is determined by

(4.32), and the form of ψ1 is given by (4.33) (see below).

C. det M̃ �= 0, det{µ̃ij − σδij} �= 0 (this is equivalent to the condition det M �= 0,
det{µij − σδij} �= 0: here δij is the Kronecker symbol).

i. M̃ =
(

κ1 0
0 κ2

)
, where κi ∈ R\{0;σ}. Then

ψ1 = κ
−1
1 ν̃11 + (κ1 − σ)−1ν̃21ω + |ω|−1/2e

1
4 σω2 ×

×
(
C3M

(
1
2κ1σ

−1 + 1
4 ,

1
4 ,

1
2σω

2
)

+ C4M
(

1
2κ1σ

−1 + 1
4 ,− 1

4 ,
1
2σω

2
))
,
(4.33)
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ψ2 = κ
−1
2 ν̃12 + (κ2 − σ)−1ν̃22ω + |ω|−1/2e

1
4 σω2 ×

×
(
C1M

(
1
2κ2σ

−1 + 1
4 ,

1
4 ,

1
2σω

2
)

+ C2M
(

1
2κ2σ

−1 + 1
4 ,− 1

4 ,
1
2σω

2
))
,
(4.34)

where M(κ, µ, τ) is the Whittaker function:

M(κ, µ, τ) = τ
1
2+µe−

1
2 τ

1F1

(
1
2 + µ− κ, 2µ+ 1, τ

)
, (4.35)

and 1F1(a, b, τ) is the degenerate hypergeometric function defined by means of the
series:

1F1(a, b, τ) = 1 +
∞∑

n=1

a(a+ 1) . . . (a+ n− 1)
b(b+ 1) . . . (b+ n− 1)

τn

n!
,

b �= 0,−1,−2, . . ..

ii. M̃ =
(

κ1 −κ2

κ2 κ1

)
, where κi ∈ R, κ2 �= 0. Then

ψ1 = (κjκj)−1(κ1ν̃11 + κ2ν̃12) + ((κ1 − σ)2 + κ
2
2)−1((κ1 − σ)ν̃21 + κ2ν̃22)ω +

+ C1Re η1(ω) − C2Im η1(ω) + C3Re η2(ω) − C4Im η2(ω),

ψ2 = (κjκj)−1(−κ2ν̃11 + κ1ν̃12) +
+ ((κ1 − σ)2 + κ

2
2)−1(−κ2ν̃21 + (κ1 − σ)ν̃22)ω +

+ C1Im η1(ω) + C2Re η1(ω) + C3Im η2(ω) + C4Re η2(ω),

where

η1(ω) = M
(

1
2 (κ1 + κ2i)σ−1 + 1

4 ,
1
4 ,

1
2σω

2
)
,

η2(ω) = M
(

1
2 (κ1 + κ2i)σ−1 + 1

4 ,− 1
4 ,

1
2σω

2
)
, i2 = −1.

iii. M̃ =
(

κ2 1
0 κ2

)
, where κ2 ∈ R\{0;σ}. Here the form of ψ2 is given by

(4.34), and

ψ1 = (ν̃11 − ν̃12κ
−1
2 )κ−1

2 +
(
ν̃21 − ν̃22(κ2 − σ)−1

)
(κ2 − σ)−1ω +

+ |ω|−1/2e
1
4 σω2

(
C3θ

1(τ) + C4θ
2(τ) − σ−1θ1(τ)

∫
τ−1θ2(τ)Ciθ

i(τ)dτ +

+ σ−1θ2(τ)
∫
τ−1θ1(τ)Ciθ

i(τ)dτ
)
,

where τ = 1
2σω

2,

θ1(τ) = M
(

1
2κ2σ

−1 + 1
4 ,

1
4 , τ
)
, θ2(τ) = M

(
1
2κ2σ

−1 + 1
4 ,− 1

4 , τ
)
.

Note 4.3 The general solution of the equation

ψωω − σωψω − (n+ 1)σψ = 0,

where n is an integer and n ≥ 0, is determined by the formula

ψ =
(
dn

dωn
e

1
2 σω2

)(
C1 + C2

∫
e

1
2 σω2

(
dn

dωn
e

1
2 σω2

)−2

dω

)
.
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Note 4.4 If function ψ satisfies the equation

ψωω − σωψω + κψ = 0 (κ �= −σ),

then
∫
ψ(ω)dω = (κ + σ)−1(σωψ − ψω) + C1.

7. The last equation of system (4.13) is the compatibility condition of the NSEs
(1.1) and ansatz (4.7). Integrating this equation, we obtain that

η3 = C0(ηiηi)−1, C0 �= 0.

As ϕ3
ω = −η3

ω(η3)−1ϕ3 = 2θ1ϕ3, ϕ3 = C3η
iηi. Then system (4.13) is reduced to the

equations

ϕ1
ω = χ1(ω)ϕ1 − χ2(ω)ϕ2,

ϕ2
ω = χ2(ω)ϕ1 + χ1(ω)ϕ2,

(4.36)

where χ1 = −C−2
0 (ηiηi)2 − θ1 and χ2 = θ2 − C3C

−1
0 (ηiηi)2. System (4.36) implies

that

ϕ1 = exp
(∫
χ1(ω)dω

)(
C1 cos

(∫
χ2(ω)dω

)− C2 sin
(∫
χ2(ω)dω

))
,

ϕ2 = exp
(∫
χ1(ω)dω

)(
C1 sin

(∫
χ2(ω)dω

)
+ C2 cos

(∫
χ2(ω)dω

))
.

8. Let us apply the trasformation generated by the operator R(�k(t)), where

�kt = λ−1(�nb · �k)�mb
t − �ϕ,

to ansatz (4.8). As a result we obtain an ansatz of the same form, where the functi-
ons �ϕ and h are replaced by the new functions �̃ϕ and h̃:

�̃ϕ = �ϕ− λ−1(�na · �k)�ma
t + �kt = 0,

h̃ = h− λ−1(�ma
tt · �k)(�na · �k) + 1

2λ
−2(�mb

tt · �ma)(�na · �k)(�nb · �k).

Let us make h̃ vanish by means of the transformation generated by the operator
Z(−h̃(t)). Therefore, the functions ϕa and h can be considered to vanish. The equation
(�na · �ma

t ) = 0 is the compatibility condition of ansatz (4.8) and the NSEs (1.1).

Note 4.5 The solutions of the NSEs obtained by means of ansatzes 5–8 are equivalent
to either solutions (5.1) or solutions (5.5).

5 Reduction of the Navier–Stokes equations
to linear systems of PDEs

Let us show that non-linear systems 8 and 9, from Subsection 3.2, are reduced to
linear systems of PDEs.
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5.1 Investigation of system (3.17)–(3.18)

Consider system 9 from Subsection 3.2, i.e., equations (3.17) and (3.18). Equation
(3.18) integrates with respect to z2 to the following expression:

�k · �w = ψ(t).

Here ψ = ψ(t) is an arbitrary smooth function of z1 = t. Let us make the transfor-
mation from the symmetry group of the NSEs:

�̃u(t, �x) = �u(t, �x−�l) +�lt(t),

p̃(t, �x) = p(t, �x−�l) −�ltt(t) · �x,

where �ltt · �mi −�l · �mi
tt = 0 and

�k · (�lt − λ−1(�ni ·�l)mi
t + λ−1(�k ·�l)�kt

)
+ ψ = 0.

This transformation does not modify ansatz (3.9), but it makes the function ψ(t)
vanish, i.e., �k · �̃w = 0. Therefore, without loss of generality we may assume, at once,
that �k · �w = 0.

Let f i = f i(z1, z2) = �mi · �w. Since �m1
tt · �m2 − �m1 · �m2

tt = 0, it follows that
�m1

t · �m2 − �m1 · �m2
t = C = const. Let us multiply the scalar equation (3.17) by �mi

and �k. As a result we obtain the linear system of PDEs with variable coefficients in
the functions f i and s:

f i
1 − λf i

22 + Cλ−1
(
(�mi · �m2)f1 − (�mi · �m1)f2

)− 2Cλ−2
(
(�k × �kt) · �mi

)
z2 = 0,

s2 = 2λ−2(�ni · �kt)f i + λ−2(�ktt · �k − 2�kt · �kt)z2.

Consider two possible cases.
A. Let C = 0. Then there exist functions gi = gi(τ, ω), where τ =

∫
λ(t)dt and

ω = z2, such that f i = gi
ω and gi

τ − gi
ωω = 0. Therefore,

�u = λ−1(gi
ω(τ, ω) + �mi

t · �x)�ni − λ−1(�kt · �x)k,
p = 2λ−2(�ni · �kt)gi(τ, ω) + 1

2λ
−2(�ktt · �k − 2�kt · �kt)ω2 −

− 1
2λ

−1(�ni · �x)(�mi
tt · �x) − 1

2λ
−2(�k · �mi

tt)(�n
i · �x)(�k · �x),

(5.1)

where �m1
t · �m2 − �m1 · �m2

t = 0, �k = �m1 × �m2, �n1 = �m2 × �k, �n2 = �k × �m1, λ = |�k|2,
ω = �k · �x, τ =

∫
λ(t)dt, and gi

τ − gi
ωω = 0.

For example, if �m = (η1(t), 0, 0) and �n = (0, η2(t), 0) with ηi(t) �= 0, it follows that

u1 = (η1)−1(f1 + η1
t x1), u2 = (η2)−1(f2 + η2

t x2), u3 = −(η1η2)t(η1η2)−1x3,

p = − 1
2η

1
tt(η

1)−1x2
1 − 1

2η
2
tt(η

2)−1x2
2 +

+
(

1
2 (η1η2)tt(η1η2)−1 − ((η1η2)t(η1η2)−1

)2)
x2

3,

where f i = f i(τ, ω), f i
τ − f i

ωω = 0, τ =
∫

(η1η2)2dt, and ω = η1η2x3. If �m1 =
(η1(t), η2(t), 0) and �m2 = (0, 0, η3(t)) with η3(t) �= 0 and ηi(t)ηi(t) �= 0, we obtain
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that

u1 = (ηiηi)−1
{
η1(gω + ηi

txi) − η2
(
η3

t (η3)−2ω + η2
t x1 − η1

t x2

)}
,

u2 = (ηiηi)−1
{
η2(gω + ηi

txi) + η1
(
η3

t (η3)−2ω + η2
t x1 − η1

t x2

)}
,

u3 = (η3)−1(f + η3
t x3),

p = 2(η3)−1(η1η2
t − η1

t η
2)(ηiηi)−2g + 1

2λ
−1 ×

×
{
λ−1

(
(η3

ttη
3 − 2η3

t η
3
t )ηiηi − 2η3η3

t η
iηi

t − 2(η3)2ηi
tη

i
t

)
ω2 +

+ (η3)2
(
(η2η2

tt − η1η1
tt)(x

2
1 − x2

2) − 2(η1
ttη

2 + η1η2
tt)x1x2

)− ηiηiη3η3
ttx

2
3

}
.

Here f = f(τ, ω), fτ − fωω = 0, g = g(τ, ω), gτ − gωω = 0, τ =
∫

(η3)2ηiηidt,
ω = η3(η2x1 − η1x2), and λ = (η3)2ηiηi.

Note 5.1 The equation

�m1
t · �m2 − �m1 · �m2

t = 0 (5.2)

can easily be solved in the following way: Let us fix arbitrary smooth vector-functions
�m1,�l ∈ C∞((t0, t1),R3) such that �m1(t) �= �0, �l(t) �= �0, and �m1(t) ·�l(t) = 0 for all
t ∈ (t0, t1). Then the vector-function �m2 = �m2(t) is taken in the form

�m2(t) = ρ(t)�m1 +�l(t). (5.3)

Equation (5.2) implies

ρ(t) =
∫

(�m1 · �m1)−1(�m1
t ·�l − �m1 ·�lt)dt. (5.4)

B. Let C �= 0. By means of the transformation �mi → aij �m
j , where aij = const and

det{aij} = C, we make C = 1. Then we obtain the following solution of the NSEs
(1.1)

�u = λ−1
(
θij(t)gj

ω(τ, ω) + θi0(t)ω + �mi
t · �x− λ−1((�k × �mi) · �x)

)
�ni− λ−1(�kt · �x)�k,

p = 2λ−2(�ni · �kt)(θij(t)gi(τ, ω) + 1
2θ

i0(t)ω2) + 1
2λ

−2(�ktt · �k − 2�kt · �kt)ω2 −
− 1

2λ
−1(�ni · �x)(�mi

tt · �x) − 1
2λ

−2(�k · �mi
tt)(�n

i · �x)(�k · �x).
(5.5)

Here �m1
t · �m2 − �m1 · �m2

t = 1, �k = �m1 × �m2, �n1 = �m2 × �k, �n2 = �k × �m1, λ = |�k|2,
ω = �k · �x, τ =

∫
λ(t)dt, and gi

τ − gi
ωω = 0. (θ1i(t), θ2i(t)) (i = 1, 2) are linearly

independent solutions of the system

θi
t + λ−1(�mi · �m2)θ1 − λ−1(�mi · �m1)θ2 = 0, (5.6)

and (θ10(t), θ20(t)) is a particular solution of the nonhomogeneous system

θi
t + λ−1(�mi · �m2)θ1 − λ−1(�mi · �m1)θ2 = 2λ−2

(
(�k × �kt) · �mi

)
. (5.7)

For example, if �m1 = (η cosψ, η sinψ, 0) and �m2 = (−η sinψ, η cosψ, 0), where
η = η(t) �= 0 and ψ = − 1

2

∫
(η)−2dt (therefore, �m1

t · �m2 − �m1 · �m2
t = 1), we obtain

u1 = η−1
(
f1 cosψ − f2 sinψ + ηtx1 − 1

2η
−1x2

)
,

u2 = η−1
(
f1 sinψ + f2 cosψ + ηtx2 + 1

2η
−1x1

)
,

u3 = −2ηtη
−1x3,

p = (ηttη − 3ηtηt)η−2x2
3 − 1

2 (ηttη
−1 − 1

4η
−4)xixi.
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Here f i = f i(τ, ω), f i
τ − f i

ωω = 0, τ =
∫

(η)4dt, and ω = (η)2x3.

Note 5.2 As in the case C = 0, the solutions of the equation

�m1
t · �m2 − �m1 · �m2

t = 1 (5.8)

can be sought in form (5.3). As a result we obtain that

ρ(t) =
∫ |�m1|−2(�m1

t ·�l − �m1 ·�lt − 1)dt. (5.9)

Note 5.3 System (5.6) can be reduced to a second-order homogeneous differential
equation either in θ1, i.e.,(

λ|�m1|−2θ1t

)
t
+
((

(�m1 · �m2)|�m1|−2
)
t
+ |�m1|−2

)
θ1 = 0 (5.10)

(then θ2 = |�m1|−2(λθ1t + (�m1 · �m2)θ1)), or in θ2, i.e.,(
λ|�m2|−2θ2t

)
t
+
(
−((�m1 · �m2)|�m2|−2

)
t
+ |�m2|−2

)
θ2 = 0 (5.11)

(then θ1 = |�m2|−2(−λθ2t + (�m1 · �m2)θ2)). Under the notation of Note 5.1 equation
(5.10) has the form:(

(�l ·�l)θ1t
)
t
+ |�m1|−2(�m1

t ·�l − �m1 ·�lt)θ1 = 0. (5.12)

The vector-functions �m1 and �l are chosen in such a way that one can find a fundamen-
tal set of solutions for equation (5.12). For example, let �m× �mt �= 0 ∀ t ∈ (t0, t1). Let
us introduce the notation �m := �m1 and put �l = η(t)�m× �mt, where η ∈ C∞((t0, t1),R),
η(t) �= 0 ∀t ∈ (t0, t1). Then

�m ·�l = 0, �mt ·�l − �m ·�lt = 0, �m2 = −(∫ |�m|−2dt
)
�m+ η�m× �mt,

�k = η�m× (�m× �mt), λ = (η)2|�m|2|�m× �mt|−2,

�n2 = η|�m|2 �m× �mt, �n1 =
(∫ |�m|−2dt

)
�n2 + (η)2|�m× �mt|−2 �m,

θ11(t) =
∫

(η)−2|�m× �mt|−2dt, θ21(t) = 1 − θ11
∫ |�m|−2dt,

θ12(t) = 1, θ22(t) = − ∫ |�m|−2dt,

θ10(t) = 2
∫ (

((�m× �mt) · �mtt)|�m× �mt|−2 +
∫
η−1|�m|−4dt

)
η−2|�m× �mt|−2dt,

θ20(t) = −θ10(t) ∫ |�m|−2dt+ 2
∫
η−1|�m|−4dt.

Consider the following cases: �m × �mt ≡ �0, i.e., �m = χ(t)�a, where χ(t) ∈
C∞((t0, t1), R), χ(t) �= 0 ∀t ∈ (t0, t1), �a = const, and |�a| = 1. Let us put

�l(t) = η1(t)�b+ η2(t)�c,

where η1, η2 ∈ C∞((t0, t1),R), (η1(t), η2(t)) �= (0, 0) ∀ t ∈ (t0, t1), �b = const, |�b| = 1,
�a ·�b = 0, and �c = �a×�b. Then

�m2 = −(χ ∫ χ−2dt
)
�a+ η1�b+ η2�c, �k = χη1�c− χη2�b,

λ = (χ)2ηiηi, �n2 = (χ)2(η1�b+ η2�c), �n1 =
(∫
χ−2dt

)
�n2 + χηiηi�a,

θ11 =
∫

(ηiηi)−1dt, θ21 = 1 − θ11
∫
χ−2dt, θ12 = 1, θ22 = − ∫ χ−2dt,

θ10 = 2
∫

(η2
t η

1 − η2η1
t )χ−1(ηiηi)−1dt, θ20 = −θ10 ∫ χ−2dt.
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Note 5.4 In formulas (5.1) and (5.5) solutions of the NSEs (1.1) are expressed in
terms of solutions of the decomposed system of two linear one-dimensional heat
equations (LOHEs) that have the form:

gi
τ = gi

ωω. (5.13)

The Lie symmetry of the LOHE are known. Large sets of its exact solutions were
constructed [27, 3]. The Q-conditional symmetries of LOHE were investigated in [14].
Moreover, being decomposed system (5.13) admits transformations of the form

g̃1(τ ′, ω′) = F 1(τ, ω, g1(τ, ω)), τ ′ = G1(τ, ω), ω′ = H1(τ, ω),
g̃2(τ ′′, ω′′) = F 2(τ, ω, g2(τ, ω)), τ ′′ = G2(τ, ω), ω′′ = H2(τ, ω),

where (G1,H1) �= (G2,H2), i.e. the independent variables can be transformed in
the functions g1 and g2 in different ways. A similar statement is true for system
(5.19)–(5.20) (see below) if ε = 0.

Note 5.5 It can be proved that an arbitrary Navier–Stokes field (�u, p), where

�u = �w(t, ω) + (�ki(t) · �x)�li(t)
with �ki,�li ∈ C∞((t0, t1),R3), �k1 × �k2 �= 0, and ω = (�k1 × �k2) · �x, is equivalent to
either a solution from family (5.1) or a solution from family (5.5). The equivalence
transformation is generated by R(�m) and Z(χ).

5.2 Investigation of system (3.13)–(3.16)

Consider system 8 from Subsection 3.2, i.e., equations (3.13)–(3.16). Equation (3.16)
immediately gives

w1 = − 1
2ρtρ

−1 + (η − 1)z−2
2 , (5.14)

where η = η(t) is an arbitrary smooth function of z1 = t. Substituting (5.14) into
remaining equations (5.13)–(5.15), we get

q2 = 1
2

(
(ρtρ

−1)t − 1
2 (ρtρ

−1)2
)
z2 − ηtz

−1
2 − (η − 1)2z−3

2 + (w2 − χ)2z−3
2 , (5.15)

w2
1 − w2

22 +
(
ηz−1

2 − 1
2ρtρ

−1z2
)
w2

2 = 0, (5.16)

w3
1 − w3

22 +
(
ηz−1

2 − 1
2ρtρ

−1z2
)
w3

2 + ε(w2 − χ)z−2
2 = 0. (5.17)

Recall that ρ = ρ(t) and χ = χ(t) are arbitrary smooth functions of t; ε ∈ {0; 1}.
After the change of the independent variables

τ =
∫ |ρ(t)|dt, z = |ρ(t)|1/2z2 (5.18)

in equations (5.16) and (5.17), we obtain a linear system of a simpler form:

w2
τ − w2

zz + η̂(τ)z−1w2
z = 0, (5.19)

w3
τ − w3

zz + (η̂(τ) − 2)z−1w3
z + ε(w2 − χ̂(τ))z−2 = 0, (5.20)
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where η̂(τ) = η(t) and χ̂(τ) = χ(t). Equation (5.15) implies

q = 1
4

(
(ρtρ

−1)t − 1
2 (ρtρ

−1)2
)
z2
2 − ηt ln |z2| −

− 1
2 (η − 1)2z−2

2 +
∫

(w2(τ, z) − χ̂(τ))2z−3
2 dz2.

(5.21)

Formulas (5.14), (5.18)–(5.21), and ansatz (3.8) determine a solution of the NSEs
(1.1).

If ε = 0 system (5.19)–(5.20) is decomposed and consists of two translational
linear equations of the general form

fτ + η̃(τ)z−1fz − fzz = 0, (5.22)

where η̃ = η̂ (η̃ = η̂ − 2) for equation (5.19) ((5.20)). Tilde over η is omitted below.
Let us investigate symmetry properties of equation (5.22) and construct some of its
exact solutions.

Theorem 5.1 The MIA of (5.22) is given by the following algebras

a) L1 = 〈f∂f , g(τ, z)∂f 〉 if η(τ) �= const;

b) L2 = 〈∂τ , D̂, Π, f∂f , g(τ, z)∂f 〉 if η(τ) = const, η �∈ {0;−2};
c) L3 = 〈∂τ , D̂, Π, ∂z + 1

2ηz
−1f∂f , G = 2τ∂τ − (z − ηz−1τ)f∂f , f∂f ,

g(τ, z)∂f 〉 if η ∈ {0;−2}.
Here D̂ = 2τ∂τ + z∂z, Π = 4τ2∂τ + 4τz∂z − (z2 + 2(1 − η)τ)f∂f ; g = g(τ, z) is an
arbitrary solution of (5.22).

When η = 0, equation (5.22) is the heat equation, and, when η = −2, it is reduced
to the heat equation by means of the change f̃ = zf .

For the case η = const equation (5.22) can be reduced by inequivalent one-
dimensional subalgebras of L2. We construct the following solutions:

For the subalgebra 〈∂τ + af∂f 〉, where a ∈ {−1; 0; 1}, it follows that

f = e−τzν(C1Jν(z) + C2Yν(z)) if a = −1,
f = eτzν(C1Iν(z) + C2Kν(z)) if a = 1,
f = C1z

η+1 + C2 if a = 0 and η �= −1,
f = C1 ln z + C2 if a = 0 and η = −1.

Here Jν and Yν are the Bessel functions of a real variable, whereas Iν and Kν are
the Bessel functions of an imaginary variable, and ν = 1

2 (η + 1).

For the subalgebra 〈D̂ + 2af∂f 〉, where a ∈ R, it follows that

f = |τ |ae− 1
2 ω|ω| 12 (η−1)W

(
1
4 (η − 1) − a, 1

4 (η + 1), ω
)

with ω = 1
4z

2τ−1. Here W (κ, µ, ω) is the general solution of the Whittaker equation

4ω2Wωω = (ω2 − 4κω + 4µ2 − 1)W.

For the subalgebra 〈∂τ + Π + af∂f 〉, where a ∈ R, it follows that

f = (4τ2 + 1)
1
4 (η−1) exp(−τω + 1

2a arctan 2τ)ϕ(ω)
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with ω = z2(4τ2 + 1)−1. The function ϕ is a solution of the equation

4ωϕωω + 2(1 − η)ϕω + (ω − a)ϕ = 0.

For example if a = 0, then ϕ(ω) = ωµ
(
C1Jµ( 1

2ω) + C2Yµ( 1
2ω)
)
, where µ = 1

4 (η + 1).
Consider equation (5.22), where η is an arbitrary smooth function of τ .

Theorem 5.2 Equation (5.22) is Q-conditional invariant under the operators

Q1 = ∂τ + g1(τ, z)∂z +
(
g2(τ, z)f + g3(τ, z)

)
∂f (5.23)

if and only if

g1
τ − ηz−1g1

z + ηz−2g1 − g1
zz + 2g1

zg
1 − ητz

−1 + 2g2
z = 0,

gk
τ + ηz−1gk

z − gk
zz + 2g1

zg
k = 0, k = 2, 3,

(5.24)

and

Q2 = ∂z +B(τ, z, f)∂f (5.25)

if and only if

Bτ − ηz−2B + ηz−1Bz −Bzz − 2BBzf −B2Bff = 0. (5.26)

An arbitrary operator of Q-conditional symmetry of equation (5.22) is equivalent to
either an operator of form (5.23) or an operator of form (5.25).

Theorem 5.2 is proved by means of the method described in [13].

Note 5.6 It can be shown (in a way analogous to one in [13]) that system (5.24) is
reduced to the decomposed linear system

fa
τ + ηz−1fa

z − fa
zz = 0 (5.27)

by means of the following non-local transformation

g1 = −f
1
zzf

2 − f1f2
zz

f1
z f

2 − f1f2
z

+ ηz−1,

g2 = −f
1
zzf

2
z − f1

z f
2
zz

f1
z f

2 − f1f2
z

,

g3 = f3
zz − ηz−1f3

z + g1f3
z − g2f3.

(5.28)

Equation (5.26) is reduced, by means of the change

B = −Φτ/Φf , Φ = Φ(τ, z, f)

and the hodograph transformation

y0 = τ, y1 = z, y2 = Φ, Ψ = f,

to the following equation in the function Ψ = Ψ(y0, y1, y2):

Ψy0 + η(y0)y−1
1 Ψy1 − Ψy1y1 = 0.
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Therefore, unlike Lie symmetries Q-conditional symmetries of (5.22) are more
extended for an arbitrary smooth function η = η(τ). Thus, Theorem 5.2 implies that
equation (5.22) is Q-conditional invariant under the operators

∂z, X = ∂τ + (η − 1)z−1∂z, G = (2τ + C)∂z − zf∂f

with C = const. Reducing equation (5.22) by means of the operator G, we obtain the
following solution:

f = C2

(
z2 − 2

∫
(η(τ) − 1)dτ

)
+ C1. (5.29)

In generalizing this we can construct solutions of the form

f =
N∑

k=0

T k(τ)z2k, (5.30)

where the coefficients T k = T k(τ) (k = 0, N) satisfy the system of ODEs:

T k
τ + (2k + 2)(η(τ) − 2k − 1)T k+1 = 0, k = 0, N − 1, TN

τ = 0. (5.31)

Equation (5.31) is easily integrated for arbitrary N ∈ N. For example if N = 2, it
follows that

f = C3

{
z4 − 4z2

∫
(η(τ) − 3)dτ+ 8

∫(
(η(τ) − 1)

∫
(η(τ) − 3)dτ

)
dτ
}

+

+ C2

{
z2 − 2

∫
(η(τ) − 1)dτ

}
+ C1.

An explicit form for solution (5.30) with N = 1 is given by (5.29).
Generalizing the solution

f = C0 exp
{−z2(4τ + 2C)−1 +

∫
(η(τ) − 1)(2τ + C)−1dτ

}
(5.32)

obtained by means of reduction of (5.22) by the operator G, we can construct solutions
of the general form

f =
N∑

k=0

Sk(τ)
(
z(2τ + C)−1

)2k ×

× exp
{
−z2(4τ + 2C)−1 +

∫
(η(τ) − 1)(2τ + C)−1dτ

}
,

(5.33)

where the coefficients Sk = Sk(τ) (k = 0, N) satisfy the system of ODEs:

Sk
τ + (2k + 2)(η(τ) − 2k − 1)(2τ + C)−2Sk+1 = 0,

k = 0, N − 1, SN
τ = 0.

(5.34)

For example if N = 1, then

f =
{
C1

(
z2(2τ + C)−2 − 2

∫
(η(τ) − 1)(2τ + C)−2dτ

)
+ C0

}
×

× exp
{
−z2(4τ + 2C)−1 +

∫
(η(τ) − 1)(2τ + C)−1dτ

}
.

Here we do not present results for arbitrary N as they are very cumbersome.
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Putting g2 = g3 = 0 in system (5.24), we obtain one equation in the function g1:

g1
τ − ηz−1g1

z + ηz−2g1 − g1
zz + 2g1

zg
1 − ητz

−1 = 0.

It follows that g1 = −gz/g+ (η− 1)/z, where g = g(τ, z) is a solution of the equation

gτ + (η − 2)z−1gz − gzz = 0. (5.35)

Q-conditional symmetry of (5.22) under the operator

Q = ∂τ +
(−gz/g + (η − 1)/z

)
∂z (5.36)

gives rise to the following

Theorem 5.3 If g is a solution of equation (5.35) and

f(τ, z) =
∫ z

z0
z′g(τ, z′)dz′ +

+
∫ τ

τ0

(
z0gz(τ ′, z0) − (η(τ ′) − 1)g(τ ′, z0)

)
dτ ′,

(5.37)

where (τ0, z0) is a fixed point, then f is a solution of equation (5.22).

Proof. Equation (5.35) implies

(zg)τ = (zgz − (η − 1)g)z

Therefore, fz = zg, fτ = zgz − (η − 1)g and

fτ + ηz−1fz − fzz = zgz − (η − 1)g + ηg − (zg)z = 0. QED.

The converse of Theorem 5.3 is the following obvious

Theorem 5.4 If f is a solution of (5.22), the function

g = z−1fz (5.38)

satisfies (5.35).

Theorems 5.3 and 5.4 imply that, when η = 2n (n ∈ Z), solutions of (5.22) can be
constructed from known solutions of the heat equation by means of applying either
formula (5.37) (for n > 0) or formula (5.38) (for n < 0) |n| times.

Let us investigate symmetry properties and construct some exact solutions of
system (5.19)–(5.20) for ε = 1, i.e., the system

w1
τ − w1

zz + η̂(τ)z−1w1
z = 0, (5.39)

w2
τ − w2

zz + (η̂(τ) − 2)z−1w2
z + (w1 − χ̂(τ))z−2 = 0. (5.40)

If (w1, w2) is a solution of system (5.39)–(5.40), then (w1, w2 + g) (where g =
g(τ, z)) is also a solution of (5.39)–(5.40) if and only if the function g satisfies the
following equation

gτ − gzz + (η̂(τ) − 2)z−1gz = 0 (5.41)
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System (5.39)–(5.40), for some χ̂ = χ̂(τ), has particular solutions of the form

w1 =
N∑

k=0

T k(τ)z2k, w2 =
N−1∑
k=0

Sk(τ)z2k,

where T 0(τ) = χ̂(τ). For example, if χ̂(τ) = −2C1

∫
(η̂(τ) − 1)dτ + C2 and N = 1,

then

w1 = C1

(
z2 − 2

∫
(η̂(τ) − 1)dτ

)
+ C2, w2 = −C1τ.

Let χ̂(τ) = 0.

Theorem 5.5 The MIA of system (5.39)–(5.40) with χ̂(τ) = 0 is given by the
following algebras

a) 〈wi∂wi , w̃i(τ, z)∂wi〉 if η̂(τ) �= const;
b) 〈2τ∂τ + z∂z, ∂τ , w

i∂wi , w̃i(τ, z)∂wi〉 if η̂(τ) = const, η̂ �= 0;
c) 〈2τ∂τ + z∂z, ∂τ , w

1z−1∂w2 , wi∂wi , w̃i(τ, z)∂wi〉 if η̂ ≡ 0.

Here (w̃1, w̃2) is an arbitrary solution of (5.39)–(5.40) with χ̂(τ) = 0.

For the case χ̂(τ) = 0 and η̂(τ) = const system (5.39)–(5.40) can be reduced
by inequivalent one-dimensional subalgebras of its MIA. We obtain the following
solutions:

For the subalgebra 〈∂τ 〉 it follows that

w1 = C1 ln z + C2,

w2 = 1
4C1(ln2 z − ln z) + 1

2C2 ln z + C3z
−2 + C4

if η̂ = −1;

w1 = C1z
2 + C2,

w2 = 1
4C1z

2 + 1
2C2 ln2 z + C3 ln z + C4

if η̂ = 1;

w1 = C1z
η̂+1 + C2,

w2 = 1
2C1(η̂ + 1)−1zη̂+1 + C2(η̂ − 1)−1 ln z + C3z

η̂−1 + C4

if η̂ �∈ {−1; 1}.
For the subalgebra 〈∂τ − wi∂wi〉 it follows that

w1 = e−τz
1
2 (η̂+1)ψ1(z), w2 = e−τz

1
2 (η̂−1)ψ2(z),

where the functions ψ1 and ψ2 satisfy the system

z2ψ1
zz + zψ1

z +
(
z2 − 1

4 (η̂ + 1)2
)
ψ1 = 0, (5.42)

z2ψ2
zz + zψ2

z +
(
z2 − 1

4 (η̂ − 1)2
)
ψ2 = zψ1. (5.43)



Symmetry reduction and exact solutions of the Navier–Stokes equations 211

The general solution of system (5.42)–(5.43) can be expressed by quadratures in terms
of the Bessel functions of a real variable Jν(z) and Yν(z):

ψ1 = C1Jν+1(z) + C2Yν+1(z),
ψ2 = C3Jν(z) + C4Yν(z) + π

2Yν(z)
∫
Jν(z)ψ1(z)dz − π

2 Jν(z)
∫
Yν(z)ψ1(z)dz

with ν = 1
2 (η̂ − 1);

For the subalgebra 〈∂τ + wi∂wi〉 it follows that

w1 = eτz
1
2 (η̂+1)ψ1(z), w2 = eτz

1
2 (η̂−1)ψ2(z),

where the functions ψ1 and ψ2 satisfy the system

z2ψ1
zz + zψ1

z − (z2 + 1
4 (η̂ + 1)2

)
ψ1 = 0, (5.44)

z2ψ2
zz + zψ2

z − (z2 + 1
4 (η̂ − 1)2

)
ψ2 = zψ1. (5.45)

The general solution of system (5.44)–(5.45) can be expressed by quadratures in terms
of the Bessel functions of an imaginary variable Iν(z) and Kν(z):

ψ1 = C1Iν+1(z) + C2Kν+1(z),
ψ2 = C3Iν(z) + C4Kν(z) +Kν(z)

∫
Iν(z)ψ1(z)dz − Iν(z)

∫
Kν(z)ψ1(z)dz

with ν = 1
2 (η̂ − 1).

For the subalgebra 〈2τ∂τ + z∂z + awi∂wi〉 it follows that

w1 = |τ |ae− 1
2 ω|ω| 14 (η̂−1)ψ1(ω), w2 = |τ |ae− 1

2 ω|ω| 14 (η̂−3)ψ2(ω)

with ω = 1
4z

2τ−1, where the functions ψ1 and ψ2 satisfy the system

4ω2ψ1
ωω =

(
ω2 +

(
a− 1

4 (η̂ − 1)
)
ω + 1

4 (η̂ + 1)2 − 1
)
ψ1, (5.46)

4ω2ψ2
ωω =

(
ω2 +

(
a− 1

4 (η̂ − 3)
)
ω + 1

4 (η̂ − 1)2 − 1
)
ψ2 + 2|ω|1/2ψ1. (5.47)

The general solution of system (5.46)–(5.47) can be expressed by quadratures in terms
of the Whittaker functions.

6 Symmetry properties and exact solutions
of system (3.12)

As was mentioned in Section 3, ansatzes (3.4)–(3.7) reduce the NSEs (1.1) to the
systems of PDEs of a similar structure that have the general form (see (3.12)):

wiw1
i − w1

ii + s1 + α2w
2 = 0,

wiw2
i − w2

ii + s2 − α2w
1 + α1w

3 = 0,
wiw3

i − w3
ii + α4w

3 + α5 = 0,
wi

i = α3,

(6.1)

where αn (n = 1, 5) are real parameters.
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Setting αk = 0 (k = 2, 5) in (6.1), we obtain equations describing a plane convecti-
ve flow that is brought about by nonhomogeneous heating of boudaries [25]. In this
case wi are the coordinates of the flow velocity vector, w3 is the flow temperature, s
is the pressure, the Grasshoff number λ is equal to −α1, and the Prandtl number σ is
equal to 1. Some similarity solutions of these equations were constructed in [22]. The
particular case of system (6.1) for α1 = α2 = α4 = α5 = 0 and α3 = 1 was considered
in [31].

In this section we study symmetry properties of system (6.1) and construct large
sets of its exact solutions.

Theorem 6.1 The MIA of (6.1) is the algebra

1. E1 = 〈∂1, ∂2, ∂s〉 if α1 �= 0, α4 �= 0.
2. E2 = 〈∂1, ∂2, ∂s, ∂w3 − α1z2∂s〉 if α1 �= 0, α4 = 0, (α1, α2, α5) �= (0, 0, 0).

3. E3 = 〈∂1, ∂2, ∂s, ∂w3 − α1z2∂s, D̃ − 3w3∂w3〉 if α1 �= 0, αk = 0, k = 2, 5.
4. E4 = 〈∂1, ∂2, ∂s, J, (w3 + α5/α4)∂w3〉 if α1 = 0, α4 �= 0.
5. E5 = 〈∂1, ∂2, ∂s, J, ∂w3〉 if α1 = α4 = 0, (α2, α3) �= (0, 0), α5 �= 0.
6. E6 = 〈∂1, ∂2, ∂s, J, ∂w3 , w3∂w3〉 if α1 = α4 = α5 = 0, (α2, α3) �= (0, 0).

7. E7 = 〈∂1, ∂2, ∂s, J, ∂w3 , D̃ + 2w3∂w3〉 if α5 �= 0, αl = 0, l = 1, 4.

8. E8 = 〈∂1, ∂2, ∂s, J, ∂w3 , D̃, w3∂w3〉 if αn = 0, n = 1, 5.

Here D̃ = zi∂i − wi∂wi − 2s∂s, J = z1∂2 − z2∂1 + w1∂w2 − w2∂w1 , ∂i = ∂zi
.

Note 6.1 The bases of the algebras E6 and E8 contain the operator w3∂w3 that is not
induced by elements of A(NS).

Note 6.2 If α4 �= 0, the constant α5 can be made to vanish by means of local
transformation

w̃3 = w3 + α5/α4, s̃ = s− α1α5α
−1
4 z2, (6.2)

where the independent variables and the functions wi are not transformed. Therefore,
we consider below that α5 = 0 if α4 �= 0.

Note 6.3 Making the non-local transformation

s̃ = s+ α2Ψ, (6.3)

where Ψ1 = w2, Ψ2 = −w1 (such a function Ψ exists in view of the last equation of
(6.1)), in system (6.1) with α3 = 0, we obtain a system of form (6.1) with α̃3 = α̃2 = 0.
In some cases (α1 �= 0, α3 = α4 = α5 = 0, α2 �= 0; α1 = α3 = α4 = 0, α2 �= 0)
transformation (6.3) allows the symmetry of (6.1) to be extended and non-Lie solutions
to be constructed. Moreover, it means that in the cases listed above system (6.1) is
invariant under the non-local transformation

ẑi = eεzi, ŵi = e−εwi, ŵ3 = eδεw3, ŝ = e−2εs+ α2(e−2ε − 1)Ψ,

where

δ = −3 if α3 = α4 = α5 = 0, α1, α2 �= 0;
δ = 2 if α1 = α3 = α4 = 0, α2, α5 �= 0;
δ = 0 if α1 = α3 = α4 = α5 = 0, α2 �= 0.
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Let us consider an ansatz of the form:

w1 = a1ϕ
1 − a2ϕ

3 + b1ω2,

w2 = a2ϕ
1 + a1ϕ

3 + b2ω2,

w3 = ϕ2 + b3ω2,

s = h+ d1ω2 + d2ω1ω2 + 1
2d3ω

2
2 ,

(6.4)

where a2
1 + a2

2 = 1, ω = ω1 = a1z2 − a2z1, ω2 = a1z1 + a2z2, B, ba, da = const,

bi = Bai, b3(B + α4) = 0,
d2 = α2B − α1b3a1, d3 = −B2 − α1b3a2,

(6.5)

Here and below ϕa = ϕa(ω) and h = h(ω). Indeed, formulas (6.4) and (6.5) determine
a whole set of ansatzes for system (6.1). This set contains both Lie ansatzes, construc-
ted by means of subalgebras of the form

〈a1∂1 + a2∂2 + a3(∂w3 − α1z2∂s) + a4∂s〉, (6.6)

and non-Lie ansatzes. Equation (6.5) is the necessary and sufficient condition to
reduce (6.1) by means of an ansatz of form (6.3). As a result of reduction we obtain
the following system of ODEs:

ϕ3ϕ1
ω − ϕ1

ωω + µ1jϕ
j + d1 + d2ω + α2ϕ

3 = 0,
ϕ3ϕ2

ω − ϕ2
ωω + µ2jϕ

j + α5 = 0,
ϕ3ϕ3

ω − ϕ3
ωω + hω − α2ϕ

1 + α1a1ϕ
2 = 0,

ϕ3
ω = σ,

(6.7)

where µ11 = −B, µ12 = −α1a2, µ21 = −b3, µ22 = −α4, σ = α3 −B. If σ = 0, system
(6.7) implies that

ϕ3 = C0 = const,

h = α2

∫
ϕ1(ω)dω − α1a1

∫
ϕ2(ω)dω,

and the functions ϕi satisfy system (4.23), where ν11 = d1+α2C0, ν21 = d2, ν12 = α5,
ν22 = 0. If σ �= 0, then ϕ3 = σω (translating ω, the integration constant can be made
to vanish),

h = − 1
2σ

2ω2 + α2

∫
ϕ1(ω)dω − α1a1

∫
ϕ2(ω)dω,

and the functions satisfy system (4.29), where ν11 = d1, ν21 = d2 + α2σ, ν12 = α5,
ν22 = 0.

Note 6.4 Step-by-step reduction of the NSEs (1.1) by means of ansatzes (3.4)–(3.7)
and (6.4) is equivalent to a particular case of immediate reduction of the NSEs (1.1)
to ODEs by means of ansatzes 5 and 6 from Subsection 4.1.
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Table 1. Complete sets of inequivalent one-dimensional subalgebras of the algebras
E1 − E8 (a and al (l = 1, 4) are real constants)

Algebra Subalgebras
Values of
parameters

E1 〈a1∂1 + a2∂2 + a3∂s〉, 〈∂s〉 a2
1 + a2

2 = 1

E2
〈a1∂1 + a2∂2 + a3(∂w3 − α1z2∂s)〉,
〈∂1 + a4∂s〉, 〈∂w3 − α1z2∂s〉, 〈∂s〉

a2
1 + a2

2 = 1,
a4 �= 0

E3

〈a1∂1 + a2∂2 + a3(∂w3 − α1z2∂s)〉, 〈∂1 + a4∂s〉,
〈D̃ − 3w3∂w3〉, 〈∂w3 − α1z2∂s〉, 〈∂s〉

a2
1 + a2

2 = 1,
a3 ∈ {−1; 0; 1},
a4 ∈ {−1; 1}

E4
〈J + a1∂s + a2w

3∂w3〉, 〈∂2 + a1∂s + a2w
3∂w3〉,

〈w3∂w3 + a1∂s〉, 〈∂s〉

E5
〈J + a1∂s + a2∂w3〉, 〈∂2 + a1∂s + a2∂w3〉,
〈∂w3 + a1∂s >,< ∂s〉

E6

〈J + a1∂s + a2w
3∂w3〉, 〈∂2 + a1∂s + a2w

3∂w3〉,
〈J + a1∂s + a3∂w3〉, 〈∂2 + a1∂s + a3∂w3〉,
〈w3∂w3 + a1∂s〉, 〈∂w3 + a1∂s〉, 〈∂s〉

a2 �= 0,
a3 ∈ {−1; 0; 1}

E7
〈D̃ + aJ + 2w3∂w3〉, 〈J + a1∂s + a2∂w3〉,
〈∂2 + a1∂s + a2∂w3〉, 〈∂w3 + a2∂s〉, 〈∂s〉

a2 ∈ {−1; 0; 1},
a1 ∈ {−1; 0; 1}

if a2 = 0

E8

〈D̃ + aJ + a3w
3∂w3〉, 〈D̃ + aJ + a3∂w3〉,

〈J + a1∂s + a4w
3∂w3〉, 〈∂2 + a1∂s + a4w

3∂w3〉,
〈J + a1∂s + a2∂w3〉, 〈∂2 + a1∂s + a2∂w3〉,
〈w3∂w3 + a1∂s〉, 〈∂w3 + a1∂s〉, 〈∂s〉

ai ∈ {−1; 0; 1},
a4 �= 0
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Now let us choose such algebras, among the algebras from Table 1, that can be
used to reduce system (6.1) and do not belong to the set of algebras (6.6). By means
of the chosen algebras we construct ansatzes that are tabulated in the form of Table 2.

Table 2. Ansatzes reducing system (6.1) (r = (z2
1 + z2

2)1/2)

N
Values
of αn

Algebra
Invariant
variable

Ansatz

1
α1 �= 0,
αk = 0,
k = 2, 5

〈D̃ − 3w3∂w3〉 ω = arctan z2
z1

w1 = r−2(z1ϕ1 − z2ϕ
2),

w2 = r−2(z2ϕ1 + z1ϕ
2),

w3 = r−3ϕ3, s = r−2h

2
α1 = 0,
α5 = 0

〈∂2 + a1∂s + a2w
3∂w3〉,

a2 �= 0 ω = z1
w1 = ϕ1, w2 = ϕ2,
w3 = ϕ3ea2z2 ,
s = h+ a1z2

3
α1 = 0,
α4 = 0 〈J + a1∂s + a2∂w3〉 ω = r

w1 = z1ϕ
1 − z2r

−2ϕ2,
w2 = z2ϕ

1 + z1r
−2ϕ2,

w3 = ϕ3 + a2 arctan z2
z1
,

s = h+ a1 arctan z2
z1

4
α1 = 0,
α5 = 0

〈J + a1∂s + a2w3∂w3〉
a2 �= 0 if α4 = 0 ω = r

w1 = z1ϕ
1 − z2r

−2ϕ2,
w2 = z2ϕ

1 + z1r
−2ϕ2,

w3 = ϕ3ea2 arctan
z2
z1 ,

s = h+ a1 arctan z2
z1

5
α5 �= 0,
αl = 0,
l = 1, 4

〈D̃ + aJ + 2w3∂w3〉 ω = arctan z2
z1
−

−a ln r

w1 = r−2(z1ϕ1 − z2ϕ
2),

w2 = r−2(z2ϕ1 + z1ϕ
2),

w3 = r2ϕ3, s = r−2h

6
αn = 0,
n = 1, 5 〈D̃ + aJ + a1∂w3〉 ω = arctan z2

z1
−

−a ln r

w1 = r−2(z1ϕ1 − z2ϕ
2),

w2 = r−2(z2ϕ1 + z1ϕ
2),

w3 = ϕ3 + a1 ln r,
s = r−2h

7
αn = 0,
n = 1, 5

〈D̃ + aJ + a1w
3∂w3〉,

a1 �= 0
ω = arctan z2

z1
−

−a ln r

w1 = r−2(z1ϕ1 − z2ϕ
2),

w2 = r−2(z2ϕ1 + z1ϕ
2),

w3 = ra1ϕ3, s = r−2h
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Substituting the ansatzes from Table 2 into system (6.1), we obtain the reduced
systems of ODEs in the functions ϕa and h:

1. ϕ2ϕ1
ω − ϕ1

ωω − ϕ1ϕ1 − ϕ2ϕ2 − 2h+ α1ϕ
3 sinω + 2ϕ2

ω = 0,
ϕ2ϕ2

ω − ϕ2
ωω + hω − 2ϕ1

ω + α1ϕ
3 cosω = 0,

ϕ2ϕ3
ω − ϕ3

ωω − 3ϕ1ϕ3 − 9ϕ3 = 0,
ϕ2

ω = 0.

(6.8)

2. ϕ1ϕ1
ω − ϕ1

ωω + α2ϕ
2 + hω = 0,

ϕ1ϕ2
ω − ϕ2

ωω − α2ϕ
1 + a1 = 0,

ϕ1ϕ3
ω − ϕ3

ωω + (a2ϕ
2 + α4 − a2

2)ϕ
3 = 0,

ϕ1
ω = α3.

(6.9)

3. ωϕ1ϕ1
ω − ϕ1

ωω + ϕ1ϕ1 − ω−4ϕ2ϕ2 − 3ω−1ϕ1
ω + α2ω

−2ϕ2 + ω−1hω = 0,
ωϕ1ϕ2

ω − ϕ2
ωω + ω−1ϕ2

ω − α2ω
2ϕ1 + a1 = 0,

ωϕ1ϕ3
ω − ϕ3

ωω + a2ω
−2ϕ2 − ω−1ϕ3

ω + α5 = 0,
2ϕ1 + ωϕ1

ω = α3.

(6.10)

4. ωϕ1ϕ1
ω − ϕ1

ωω + ϕ1ϕ1 − ω−4ϕ2ϕ2 − 3ω−1ϕ1
ω + α2ω

−2ϕ2 + ω−1hω = 0,
ωϕ1ϕ2

ω − ϕ2
ωω + ω−1ϕ2

ω − α2ω
2ϕ1 + a1 = 0,

ωϕ1ϕ3
ω − ϕ3

ωω + a2ω
−2ϕ2ϕ3 − ω−1ϕ3

ω + (α4 − a2
2ω

−2)ϕ3 = 0,
2ϕ1 + ωϕ1

ω = α3.

(6.11)

5. (ϕ2 − aϕ1)ϕ1
ω − (1 + a2)ϕ1

ωω − ϕ1ϕ1 − ϕ2ϕ2 − ahω − 2h = 0,
(ϕ2 − aϕ1)ϕ2

ω − (1 + a2)ϕ2
ωω − 2(aϕ2

ω + ϕ1
ω) + hω = 0,

(ϕ2 − aϕ1)ϕ3
ω − (1 + a2)ϕ3

ωω + 2ϕ1ϕ3 − 4ϕ3 + 4aϕ3
ω + α5 = 0,

ϕ2
ω − aϕ1

ω = 0.

(6.12)

6. (ϕ2 − aϕ1)ϕ1
ω − (1 + a2)ϕ1

ωω − ϕ1ϕ1 − ϕ2ϕ2 − ahω − 2h = 0,
(ϕ2 − aϕ1)ϕ2

ω − (1 + a2)ϕ2
ωω − 2(aϕ2

ω + ϕ1
ω) + hω = 0,

(ϕ2 − aϕ1)ϕ3
ω − (1 + a2)ϕ3

ωω + a1ϕ
1 = 0,

ϕ2
ω − aϕ1

ω = 0.

(6.13)

7. (ϕ2 − aϕ1)ϕ1
ω − (1 + a2)ϕ1

ωω − ϕ1ϕ1 − ϕ2ϕ2 − ahω − 2h = 0,
(ϕ2 − aϕ1)ϕ2

ω − (1 + a2)ϕ2
ωω − 2(aϕ2

ω + ϕ1
ω) + hω = 0,

(ϕ2 − aϕ1)ϕ3
ω − (1 + a2)ϕ3

ωω + a1ϕ
1ϕ3 − a2

1ϕ
3 + 2aa1ϕ

3
ω = 0,

ϕ2
ω − aϕ1

ω = 0.

(6.14)

Numeration of reduced systems (6.8)–(6.14) corresponds to that of the ansatzes
in Table 2. Let us integrate systems (6.8)–(6.14) in such cases when it is possible.
Below, in this section, Ck = const (k = 1, 6).
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1. We failed to integrate system (6.8) in the general case, but we managed to find
the following particular solutions:

a) ϕ1 = −6℘(ω + C3,
1
3 (4 − 2C1), C2) − 2,

ϕ2 = ϕ3 = 0, h = 2ϕ1 + C1;
b) ϕ1 = −6C2

1e
2C1ω℘(eC1ω + C3, 0, C2) + 3C2

1 − 2,
ϕ2 = 5C1, ϕ3 = 0,
h = −12C2

1e
2C1ω℘(eC1ω + C3, 0, C2) − 2 − 13

2 C
2
1 − 9

4C
4
1 ;

c) ϕ1 = C1, ϕ2 = C2, ϕ3 = 0, h = − 1
2 (C2

1 + C2
2 ).

Here ℘(τ,κ1,κ2) is the Weierstrass function that satisfies the equation (see [19]):

(℘τ )2 = 4℘3 − κ1℘− κ2. (6.15)

2. If α3 = 0, the last equation of (6.9) implies that ϕ1 = C1. It follows from the
other equations of (6.9) that

ϕ2 = C3 + C2e
C1ω − (a1C

−1
1 − α2)ω,

h = C6 − α2C3ω − α2C2C
−1
1 eC1ω + 1

2α2(a1C
−1
1 − α2)ω2

if C1 �= 0, and

ϕ2 = C3 + C2ω + 1
2a1ω

2,

h = C6 − α2C3ω − 1
2α2C2ω

2 − 1
6α2a1ω

3

if C1 = 0. The function ϕ3 satisfies the equation

ϕ3
ωω − C1ϕ

3
ω + (a2

2 − α4 − a2ϕ
2)ϕ3 = 0. (6.16)

We solve equation (6.16) for the following cases:

A. C2 = a1 − α2C1 = 0:

ϕ3 =




e
1
2 C1ω

(
C4e

µ1/2ω + C5e
−µ1/2ω

)
, µ > 0,

e
1
2 C1ω

(
C4 + C5ω

)
, µ = 0,

e
1
2 C1ω

(
C4 cos((−µ)1/2ω) + C5 sin((−µ)1/2ω)

)
, µ < 0,

where µ = 1
4C

2
1 − a2

2 + α4 + a2C3.

B. C1 = a1 = 0, C2 �= 0 ([19]):

ϕ3 = ξ1/2Z1/3

(
2
3 (−a2C2)1/2ξ3/2

)
,

where ξ = ω + (C3a2 − a2
2 − α4)/(a2C2). Here Zν(τ) is the general solution of the

Bessel equation (4.22).

C. C1 = 0, a1 �= 0 ([19]):

ϕ3 = (ω + C2a
−1
1 )−1/2W

(
ν, 1

4 , (
1
2a1a2)−1/2(ω + C2a

−1
1 )2

)
,

where ν = 1
4 ( 1

2a1a2)−1/2
(
a2
2−α4−a2C3 + 1

2a2C
2
3a

−1
1

)
. Here W (κ, µ, τ) is the general

solution of the Whittaker equation (4.21).
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D. C1 �= 0, C2 �= 0, a1 − α2C1 = 0 ([19]):

ϕ3 = e
1
2 C1ωZν

(
2C−1

1 (−a2C2)1/2e
1
2 C1ω

)
,

where ν = C−1
1

(
C2

1 +4(α4 +a2C3 −a2
2)
)1/2

. Here Zν(τ) is the general solution of the
Bessel equation (4.22).

E. C1 �= 0, a1 − α2C1 �= 0, C2 = 0 ([19]):

ϕ3 = e
1
2 C1ωξ1/2Z1/3

(
2
3

(
a2(a1C

−1
1 − α2)

)1/2
ξ3/2

)
,

where ξ = ω+
(
a2
2 − 1

4C
2
1 −C3a2 −α4

)
/
(
a2(a1C

−1
1 −α2)

)
. Here Zν(τ) is the general

solution of the Bessel equation (4.22).
If α3 �= 0, then ϕ1 = α3ω (translating ω, the integration constant can be made to

vanish),

ϕ2 = C1 + C2

∫
e

1
2 α3ω2

dω + a1

∫
e

1
2 α3ω2

(∫
e−

1
2 α3ω2

dω
)
dω + α2ω,

h = C3 − 1
2 (α2

2 + α2
3)ω

2 − α2C1ω − α2C2

(
ω
∫
e

1
2 α3ω2

dω − α−1
3 e

1
2 α3ω2

)
−

− α2a1

(
ω
∫
e

1
2 α3ω2(∫

e−
1
2 α3ω2

dω
)
dω − α−1

3 e
1
2 α3ω2 ∫

e−
1
2 α3ω2

dω + α−1
3 ω

)
,

and the function ϕ3 satisfies the equation

ϕ3
ωω − α3ωϕ

3
ω + (a2

2 − α4 − a2ϕ
2)ϕ3 = 0. (6.17)

We managed to find a solution of (6.17) only for the case a1 = C2 = 0, i.e.,

ϕ3 = e
1
4 α3ω2

V
(
α

1/2
3 (ω + 2a2α2α

−2
3 ), ν

)
,

where ν = 4α−1
3

(
α4 + a2C1 − a2

2(α
2
2α

−2
3 + 1)

)
. Here V (τ, ν) is the general solution of

the Weber equation

4Vττ = (τ2 + ν)V. (6.18)

3. The general solution of system (6.10) has the form:

ϕ1 = C1ω
−2 + 1

2α3, (6.19)

ϕ2 = C2 + C3

∫
ωC1+1e

1
4 α3ω2

dω − 1
2α2ω

2 +

+ a1

∫
ωC1+1e

1
4 α3ω2

(∫
ω−C1−1e−

1
4 α3ω2

dω
)
dω,

(6.20)

ϕ3 = C4 + C5

∫
ωC1−1e

1
4 α3ω2

dω +

+
∫
ωC1−1e

1
4 α3ω2

(∫
ω1−C1e−

1
4 α3ω2

(α5 + a2ω
−2ϕ2)dω

)
dω,

h = C6 − 1
8α

2
3ω

2 − 1
2C

2
1ω

−2 +
∫

(ϕ2(ω))2ω−3dω − α2

∫
ω−1ϕ2(ω)dω. (6.21)

4. System (6.11) implies that the functions ϕi and h are determined by (6.19)–
(6.21), and the function ϕ3 satisfies the equation

ϕ3
ωω−

(
(C1−1)ω−1+ 1

2α3ω
)
ϕ3

ω +
(
a2ω

−2(a2−ϕ2) − α4

)
ϕ3 = 0. (6.22)
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We managed to solve equation (6.22) in following cases:

A. C3 = a1 = 0, α3 �= 0:

ϕ3 = ω
1
2 C1−1e

1
8 α3ω2

W (κ, µ, 1
4α3ω

2),

where κ = 1
4

(
2 − C1 − (4α4 + 2α2a2)α−1

3

)
, µ = 1

4 (C2
1 − 4a2

2 + 4a2C2)1/2. Here
W (κ, µ, τ) is the general solution of the Whittaker equation (4.21).

Let α3 = 0, then

ϕ2 =




C2 + C3 lnω + 1
4 (a1 + 2α2)ω2, C1 = −2,

C2 + 1
2C3ω

2 + 1
2a1ω

2(lnω − 1
2 ), C1 = 0,

C2 + C3(C1 + 2)−1ωC1+2 − 1
2C

−1
1 (a1 − α2C1)ω2, C1 �= 0,−2.

B. C3 = a1 − α2C1 = 0:

ϕ3 =




ω
1
2 C1Zν(µ1/2ω), µ �= 0,

ω
1
2 C1(C5ω

ν + C6ω
−ν), µ = 0, ν �= 0,

ω
1
2 C1(C5 + C6 lnω), µ = 0, ν = 0,

(6.23)

where µ = −α4, ν = 1
2 (C2

1 − 4a2
2 + 4a2C2)1/2. Here and below Zν(τ) is the general

solution of the Bessel equation (4.22).

C. C3 = 0, C1 �= 0: ϕ3 is determined by (6.23), where

µ = 1
2a2C

−1
1 (a1 − α2C1) − α4, ν = 1

2 (C2
1 − 4a2

2 + 4a2C2)1/2.

D. C1 = a1 = 0: ϕ3 is determined by (6.23), where

µ = − 1
2a2C3 − α4, ν = (−a2

2 + a2C2)1/2.

E. C3 �= 0, C1 �∈ {0;−2}, a2(a1 − α2C1) − 2α4C1 = 0:

ϕ3 = ω
1
2 C1Zν(µω1+ 1

2 C1),

where µ = 2C1/2
3 (C1 + 2)−3/2, ν = (C1 + 2)−1(C2

1 − 4a2
2 + 4a2C2)1/2.

F. C1 = −2, C3 �= 0, a2(a1 + 2α2) + 4α4 = 0 ([19]):

ϕ3 = ω−1ξ1/2Z1/3( 2
3C

1/2
3 ξ3/2),

where ξ = lnω + C−1
3 (a2

2 − a2C2 − 1).

G. C1 = 2, C3 < 0, 1 − a2
2 + a2C2 ≥ 0:

ϕ3 = W (κ, µ, 1
2 (−C3)1/2ω2),

where κ = 1
8 (−C3)−1/2(−4α4+a2

2−2α2a2), µ = 1
2 (1−a2

2+a2C2)1/2. Here W (κ, µ, τ)
is the general solution of the Whittaker equation (4.21).

5–7. Identical corollaries of system (6.12), (6.13), and (6.14) are the equations

ϕ2 = aϕ1 + C1, (6.24)

h = a(1 + a2)ϕ1
ω + (2 + 2a2 − aC1)ϕ1 + C2, (6.25)
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(1 + a2)ϕ1
ωω + (4a− C1)ϕ1

ω + ϕ1ϕ1 + 4ϕ1 + (1 + a2)−1(C2
1 + 2C2) = 0. (6.26)

We found the following solutions of (6.26):

A. If (1 + a2)−1(C2
1 + 2C2) < 4:

ϕ1 =
(
4 − (1 + a2)−1(C2

1 + 2C2)
)1/2 − 2. (6.27)

B. If C1 = 4a:

ϕ1 = −6℘
(

ω

(1 + a2)1/2
+ C4,

4
3
− (C2

1 + 2C2)
3(1 + a2)

, C3

)
− 2. (6.28)

Here and below ℘(τ,κ1,κ2) is the Weierstrass function satisfying equation (6.15). If
C2 = 2 − 6a2 and C3 = 0, a particular case of (6.28) is the function

ϕ1 = −6(1 + a2)ω2 − 2 (6.29)

(the constant C4 is considered to vanish).

C. If 1 �= 4a, (1 + a2)−1(C2
1 + 2C2) − 4 = −9µ4:

ϕ1 = −6µ2e−2ξ℘(e−ξ + C4, 0, C3) + 3µ2 − 2, (6.30)

where ξ = (1 + a2)−1/2µω, µ = 1
5 (4a−C1)(1 + a2)−1/2. If C3 = 0, a paticular case of

(6.30) is the function

ϕ1 = −6µ2e−2ξ(e−ξ + C4)−2 + 3µ2 − 2, (6.31)

where the constant C4 is considered not to vanish.
The function ϕ3 has to be found for systems (6.12), (6.13), and (6.14) individually.

5. The function ϕ3 satisfy the equation

(1 + a2)ϕ3
ωω − (C1 + 4a)ϕ3

ω − (2ϕ1 − 4)ϕ3 − α5 = 0.

If ϕ1 is determined by (6.27), we obtain

ϕ3 = exp
(

1
2 (1 + a2)−1(C1 + 4a)ω

)×
×




C5 exp(ν1/2ω) + C6 exp(−ν1/2ω), ν > 0

C5 cos((−ν)1/2ω) + C6 sin((−ν)1/2ω), ν < 0
C5 + C6ω, ν = 0


+

+




−α5(2ϕ1 − 4)−1, 2ϕ1 − 4 �= 0
−α5(4a+ C1)−1ω, 2ϕ1 − 4 = 0, C1 + 4a �= 0
1
2α5(1 + a2)−1ω2, 2ϕ1 − 4 = 0, C1 + 4a = 0


 ,

where ν = 1
4 (1 + a2)−2(C1 + 4a)2 − (1 + a2)−1(4 − 2ϕ1).

6. In this case ϕ3 satisfy the equation

(1 + a2)ϕ3
ωω − C1ϕ

3
ω = a1ϕ

1.
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Therefore,

ϕ3 = C5 + C6 exp
(
(1 + a2)−1C1ω

)
+ a1C

−1
1

(∫
ϕ1(ω)dω +

+ exp
(
(1 + a2)−1C1ω

) ∫
exp
(−(1 + a2)−1C1ω

)
ϕ1(ω)dω

)
for C1 �= 0, and

ϕ3 = C5 + C6ω + a1(1 + a2)−1
(
ω
∫
ϕ1(ω)dω − ∫ ωϕ1(ω)dω

)
for C1 = 0.

7. The function ϕ3 satisfy the equation

(1 + a2)ϕ3
ωω − (C1 + 2a1a)ϕ3

ω + (a2
1 − a1ϕ

1)ϕ3 = 0. (6.32)

A. If ϕ1 is determined by (6.27), it follows that

ϕ3 = exp
(

1
2 (1 + a2)−1(C1 + 2a1a)ω

)×
×



C5 exp(ν1/2ω) + C6 exp(−ν1/2ω), ν > 0
C5 cos((−ν)1/2ω) + C6 sin((−ν)1/2ω), ν < 0
C5 + C6ω, ν = 0


 ,

where ν = 1
4 (1 + a2)−2(C1 + 2a1a)2 − (1 + a2)−1(a2

1 − a1ϕ
1).

B. If C1 = 4a, that is, ϕ1 is determined by (6.27), we obtain

ϕ3 = exp
(
a(a1 + 2)(1 + a2)−1ω

)
θ(τ),

where τ = (1 + a2)−1/2ω + C4. Here the function θ = θ(τ) is the general solution of
of the following Lame equation ([19]):

θττ +
(
6a1℘(τ) + a2

1 + 2a1 − a2(2 + a1)2(1 + a2)−1
)
θ = 0

with the Weierstrass function

℘(τ) = ℘
(
τ, 1

3

(
4 − (1 + a2)−1(C2

1 + 2C2)
)
, C3

)
.

Consider the particular case when C2 = 2 − 6a2 and C3 = 0 additionally, i.e., ϕ1

can be given in form (6.29). Depending on the values of a and a1, we obtain the
following expression for ϕ3:

Case 1. a1 �= −2, a1 �= 2a2:

ϕ3 = |ω|1/2exp

(
a(2 + a1)
1 + a2

ω

)
Zν

((
(2 + a1)(a1 − 2a2)

)1/2

1 + a2
ω

)
,

where ν = (1
4 − 6a1)1/2.

Case 2. a1 = −2: ϕ3 = C5ω
4 + C6ω

−3.

Case 3. a1 = 2a2:

Case 3.1. 48a2 < 1: ϕ3 = |ω|1/2e2aω
(
C5ω

σ + C6ω
−σ
)
, where σ = 1

2

√
1 − 48a2.

Case 3.2. 48a2 = 1, that is, a = ± 1
12

√
3: ϕ3 = |ω|1/2(C5 + C6 lnω).
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Case 3.3. 48a2 > 1: ϕ3 = |ω|1/2e2aω
(
C5 cos(γ lnω) + C6 sin(γ lnω)

)
, where

γ = 1
2

√
48a2 − 1.

C. Let the conditions

C1 �= 4a, (1 + a2)−1(C2
1 + 2C2) − 4 = −9µ4

be satisfied, that is, let ϕ1 be determined by (6.30). Transforming the variables in
equation (6.32) by the formulas:

ϕ3 = τ−1/2 exp
(

1
2 (C1 + 2aa1)(1 + a2)−1ω

)
θ(τ),

τ = exp
(−µ(1 + a2)−1/2ω

)
,

we obtain the following equation in the function θ = θ(τ):

τ2θττ +
(
6a1τ

2℘(τ + C4, 0, C3) + σ
)
θ = 0, (6.33)

where σ = µ−2
(
a2
1 + 2a1 − 1

4 (1 + a2)−1(C2
1 + 2aa1)2

) − 3a1 + 1
4 . If σ = 0, equation

(6.33) is a Lame equation.
In the particular case when ϕ1 is determined by (6.31), equation (6.33) has the

form:

τ2(τ + C4)2θττ +
(
6a1τ

2 + σ(τ + C4)2
)
θ = 0. (6.34)

By means of the following transformation of variables:

θ = |ξ|ν1 |ξ − 1|ν2ψ(ξ), ξ = −C−1
4 τ,

where ν1(ν1 − 1) + σ = 0 and ν2(ν2 − 1) + 6a1 = 0, equation (6.34) is reduced to a
hypergeometric equation of the form (see [19]):

ξ(ξ − 1)ψξξ +
(
2(ν1 + ν2)ξ − 2ν1)ψξ + 2ν1ν2ψ = 0.

If σ = 0, equation (6.34) implies that

(τ + C4)2θττ + 6a1θ = 0.

Therefore,

θ = C5|τ + C4|1/2−ν + C6|τ + C4|1/2+ν

if a1 <
1
24 , where ν = (1

4 − 6a1)1/2,

θ = |τ + C4|1/2
(
C5 + C6 ln |τ + C4|

)
if a1 = 1

24 , and

θ = |τ + C4|1/2
(
C5 cos(ν ln |τ + C4|) + C6 sin(ν ln |τ + C4|)

)
if a1 >

1
24 , where ν = (6a1 − 1

4 )1/2.
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7 Exact solutions of system (2.9)

Among the reduced systems from Section 2, only particular cases of system (2.9) have
Lie symmetry operators that are not induced by elements from A(NS). Therefore,
Lie reductions of the other systems from Section 2 give only solutions that can be
obtained by means of reducing the NSEs with two- and three-dimensional subalgebras
of A(NS).

Here we consider system (2.9) with ρi vanishing. As mentioned in Note 2.5, in
this case the vector-function �m has the form �m = η(t)�e, where �e = const, |�e| = 1, and
η = η(t) = |�m(t)| �= 0. Without loss of generality we can assume that �e = (0, 0, 1),
i.e.,

�m = (0, 0, η(t)).

For such vector �m, conditions (2.5) are satisfied by the following vector �ni:

�n1 = (1, 0, 0), �n2 = (0, 1, 0).

Therefore, ansatz (2.4) and system (2.9) can be written, respectively, in the forms:

u1 = v1, u2 = v2, u3 =
(
η(t)

)−1(
v3 + ηt(t)x3

)
,

p = q − 1
2ηtt(t)

(
η(t)

)−1
x2

3,
(7.1)

where v = v(y1, y2, y3), q = q(y1, y2, y3), yi = xi, y3 = t, and

vi
t + vjvi

j − vi
jj + qi = 0,

v3
t + vjv3

j − v3
jj = 0,

vi
i + ρ3 = 0,

(7.2)

where ρ3 = ρ3(t) = ηt/η.
It was shown in Note 2.8 that there exists a local transformation which make ρ3

vanish. Therefore, we can consider system (7.2) only with ρ3 vanishing and extend
the obtained results in the case ρ3 �= 0 by means of transformation (2.12). However it
will be sometimes convenient to investigate, at once, system (7.2) with an arbitrary
function ρ3.

The MIA of (7.2) with ρ3 = 0 is given by the algebra

B = 〈R3(ψ̄), Z1(λ), D1
3, ∂t, J

1
12, ∂v3 , v3∂v3〉

(see notations in Subsection 2.1). We construct complete sets of inequivalent one-
dimensional subalgebras of B and choose such algebras, among these subalgebras,
that can be used to reduce system (7.2) and do not lie in the linear span of the
operators R3(ψ̄), Z1(λ), J1

12, i.e., the operators which are induced by operators from
A(NS) for arbitrary ρ3. As a result we obtain the following algebras (more exactly,
the following classes of algebras):

The one-dimentional subalgebras:

1. B1
1 = 〈D1

3 + 2κJ1
12 + 2γv3∂v3 + 2β∂v3〉, where γβ = 0.

2. B1
2 = 〈∂t + κJ1

12 + γv3∂v3 + β∂v3〉, where γβ = 0, κ ∈ {0; 1}.
3. B1

3 = 〈J1
12 + γv3∂v3 + Z1(λ(t))〉, where γ �= 0, λ ∈ C∞((t0, t1),R).

4. B1
4 = 〈R3(ψ̄(t)) + γv3∂v3〉, where γ �= 0,

ψ̄(t) = (ψ1(t), ψ2(t)) �= (0, 0) ∀ t ∈ (t0, t1), ψi ∈ C∞((t0, t1),R).
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The two-dimentional subalgebras:

1. B2
1 = 〈∂t + β2∂v3 , D1

3 + κJ1
12 + γv3∂v3 + β1∂v3〉,

where γβ1 = 0, (γ − 2)β2 = 0.
2. B2

2 = 〈D1
3 + 2γ1v

3∂v3 + 2β1∂v3 , J1
12 + γ2v

3∂v3 + β2∂v3 + Z1(ε|t|−1)〉,
where γ1β1 = 0, γ2β2 = 0, γ1β2 − γ2β1 = 0.

3. B2
3 = 〈D1

3 + 2κJ1
12 + 2γ1v

3∂v3 + 2β1∂v3 , R3(|t|σ+1/2 cos τ, |t|σ+1/2 sin τ) +
+ γ2v

3∂v3 + β2∂v3 + Z1(ε|t|σ−1)〉, where τ = κ ln |t|,
(γ1 + σ)β1 − γ2β1 = 0, σγ2 = 0, εσ = 0.

4. B2
4 = 〈∂t + γ1v

3∂v3 + β1∂v3 , J1
12 + γ2v

3∂v3 + β2∂v3 + Z1(ε)〉,
where γ1β1 = 0, γ2β2 = 0, γ1β2 − γ2β1 = 0.

5. B2
5 = 〈∂t + κJ1

12 + γ1v
3∂v3 + β1∂v3 , R3(eσt cos κt, eσt sin κt) +

+ Z1(εeσt) + γ2v
3∂v3 + β2∂v3〉, where (γ1 + σ)β1 − γ2β1 = 0,

σγ2 = 0, εσ = 0.
6. B2

6 = 〈R3(ψ̄1) + γv3∂v3 , R3(ψ̄2)〉, where ψ̄i = (ψi1(t), ψi2(t)) �= (0, 0)
∀ t ∈ (t0, t1), ψij ∈ C∞((t0, t1),R), ψ̄1

tt · ψ̄2 − ψ̄1 · ψ̄2
tt = 0, γ �= 0.

Hereafter ψ̄1 · ψ̄2 := ψ1iψ2i.

Let us reduce system (7.2) to systems of PDEs in two independent variables. With
the algebras B1

1–B
1
4 we can construct the following complete set of Lie ansatzes of

codimension 1 for system (7.2) with ρ3 = 0:

1. v1 = |t|−1/2(w1 cos τ − w2 sin τ) + 1
2y1t

−1 − κy2t
−1,

v2 = |t|−1/2(w1 sin τ + w2 cos τ) + 1
2y2t

−1 + κy1t
−1,

v3 = |t|γw3 + β ln |t|,
q = |t|−1s+ 1

2 (κ2 + 1
4 )t−2r2,

(7.3)

where τ = κ ln |t|, γβ = 0,

z1 = |t|−1/2(y1 cos τ + y2 sin τ), z2 = |t|−1/2(−y1 sin τ + y2 cos τ).

Here and below wa = wa(z1, z2), s = s(z1, z2), r = (y2
1 + y2

2)1/2.

2. v1 = w1 cos κt− w2 sin κt− κy2,

v2 = w1 sin κt+ w2 cos κt+ κy1,

v3 = w3eγt + βt,

q = s+ 1
2κ

2r2,

(7.4)

where κ ∈ {0; 1}, γβ = 0,

z1 = y1 cos κt+ y2 sin κt, z2 = −y1 sin κt+ y2 cos κt.

3. v1 = y1r
−1w3 − y2r

−2w1 − γy2r
−2,

v2 = y2r
−1w3 + y1r

−2w1 + γy1r
−2,

v3 = w2eγ arctan y2/y1 ,

q = s+ λ(t) arctan y2/y1,

(7.5)
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where 1 = t, z2 = r, γ �= 0, λ ∈ C∞((t0, t1),R).

4. v̄ = (ψ̄ · ψ̄)−1
(
(w1 + γ)ψ̄ + w3θ̄ + (ψ̄ · ȳ)ψ̄t − z2θ̄t

)
v3 = w2 exp

(
γ(ψ̄ · ψ̄)−1(ψ̄ · ȳ))

q = s− (ψ̄ · ψ̄)−1(ψ̄tt · ȳ)(ψ̄ · ȳ) + 1
2 (ψ̄ · ψ̄)−2(ψ̄tt · ψ̄)(ψ̄ · ȳ)2,

(7.6)

where z1 = t, z2 = (θ̄ · ȳ), γ �= 0, v̄ = (v1, v2), ȳ = (y1, y2), ψi ∈ C∞((t0, t1),R),
θ̄ = (−ψ2, ψ1).

Substituting ansatzes (7.3) and (7.4) into system (7.2) with ρ3 = 0, we obtain a
reduced system of the form (6.1), where

α1 = 0, α2 = −1, α3 = −2κ, α4 = γ, α5 = β if t > 0 and

α1 = 0, α2 = 1, α3 = 2κ, α4 = −γ, α5 = −β if t < 0

for ansatz (7.3) and

α1 = 0, α2 = 0, α3 = −2κ, α4 = γ, α5 = β

for ansatz (7.4). System (6.1) is investigated in Section 6 in detail.
Because the form of ansatzes (7.3) is not changed after transformation (2.12), it is

convinient to substitute their into a system of form (7.2) with an arbitrary function ρ3.
As a result of substituting, we obtain the following reduced systems:

3. w3
1 + w3w3

2 − z−3
2 (w1 + γ)2 − (w3

22 + z−1
2 w3

2 − z−2
2 w3) + s2 = 0,

w1
1 + w3w1

2 − w1
22 + z−1

2 w1
2 + λ = 0,

w2
1 + w3w2

2 − w2
22 − z−1

2 w2
2 + γz−2

2 w1w2 = 0,
w3

2 + z−1
2 w3 = −η1/η.

(7.7)

4. w1
1 + w3w1

2 − (ψ̄ · ψ̄)w1
22 = 0,

w3
1 + w3w3

2 − (ψ̄ · ψ̄)w3
22 + (ψ̄ · ψ̄)s2 + 2(w1 + γ)(ψ̄ · θ̄)(ψ̄ · ψ̄)−1 −

− 2(ψ̄t · ψ̄)(ψ̄ · ψ̄)−1w3 + (2ψ̄t · ψ̄t − ψ̄tt · ψ̄)(ψ̄ · ψ̄)−1z2 = 0,
w2

1 + w3w2
2 − (ψ̄ · ψ̄)w2

22 + γ(ψ̄ · ψ̄)−1
(
w1 + (ψ̄t · θ̄)(ψ̄ · ψ̄)−1z2

)
w2 = 0,

w3
2 + ηt/η = 0.

(7.8)

Unlike systems 8 and 9 from Subsection 3.2, systems (7.7) and (7.8) are not reduced
to linear systems of PDEs.

Let us investigate system (7.7). The last equation of (7.7) immediately gives

(w3
2 + z−1

2 w3)2 = w3
22 + z−1

2 w3
2 − z−2

2 w3 = 0,
w3 = (χ− 1)z−1

2 − 1
2ηtη

−1z2,
(7.9)

where χ = χ(t) is an arbitrary differentiable function of t = z2. Then it follows from
the first equation of (7.7) that

s =
∫
z−3
2 (w1 + γ)2dz2 − 1

2 (χ− 1)2z−2
2 + 1

4z
2
2

(
(ηt/η)t − 1

2 (ηt/η)2
)
− χt ln |z2|.
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Substituting (7.9) into the remaining equations of (7.7), we get

w1
1 − w1

22 +
(
χz−1

2 − 1
2ηtη

−1z2
)
w1

2 + λ = 0,

w2
1 − w2

22 +
(
(χ− 2)z−1

2 − 1
2ηtη

−1z2
)
w2

2 + γz−2
2 w1w2 = 0.

(7.10)

By means of changing the independent variables

τ =
∫ |η(t)|dt, z = |η(t)|1/2z2, (7.11)

system (7.10) can be transformed to a system of a simpler form:

w1
τ − w1

zz + χ̂z−1w2
z + λ̂|η̂|−1 = 0,

w2
τ − w2

zz + (χ̂− 2)z−1w2
z + γz−2w1w2 = 0,

(7.12)

where η̂(τ) = η(t), χ̂(τ) = χ(t), and λ̂(τ) = λ(t).
If λ(t) = −2Cη(t)(χ(t) − 1) for some fixed constant C, particular solutions of

(7.10) are functions

w1 = Cη(t)z2
2 , w2 = f(z1, z2) exp

(
γC
∫
η(t)dt

)
,

where f is an arbitrary solution of the following equation

f1 − f22 +
(
(χ− 2)z−1

2 − 1
2ηtη

−1z2
)
f2 = 0. (7.13)

In the variables from (7.11), equation (7.13) has form (5.22) with η̃(τ) = χ(t) − 2.
In the case λ(t) = 8C(χ(t) − 1)η(t)

∫
η(t)(χ(t) − 3)dt (C = const), particular

solutions of (7.10) are functions

w1 = C
(
(η(t))2z4

2 − 4z2
2η(t)

∫
η(t)(χ(t) − 3)dt

)
,

w2 = f(z1, z2) exp
(

1
2 (γC)1/2η(t)z2

2 + ξ(t)
)
,

where ξ(t) = −(γC)1/2
∫
η(t)(χ(t) − 3)dt+ 4γC

∫
η(t)

(∫
η(t)(χ(t) − 3)dt

)
dt and f is

an arbitrary solution of the following equation

f1 − f22 +
(
(χ− 2)z−1

2 − ( 1
2ηtη

−1 + 2(γC)1/2)z2
)
f2 = 0. (7.14)

After the change of the independent variables

τ =
∫ |η(t)| exp

(
4(γC)1/2

∫
η(t)dt

)
dt, z = |η(t)|1/2 exp

(
2(γC)1/2

∫
η(t)dt

)
z2

in (7.14), we obtain equation (5.22) with η̃(τ) = χ(t) − 2 again.
Let us continue to system (7.8). The last equation of (7.8) integrates with respect to

z2 to the following expression: w3 = −ηtη
−1z2 +χ. Here χ = χ(t) is an differentiable

function of z1 = y3 = t. Let us make the transformation from the symmetry group
of (7.2):

¯̃v(t, ȳ) = v̄(t, ȳ − ξ̄(t)) + ξ̄t(t), ṽ3 = v3, q̃(t, ȳ) = q(t, ȳ − ξ̄(t)) − ξ̄tt(t) · ȳ,
where ξ̄tt · ψ̄ − ξ̄ · ψ̄tt = 0 and

ξ̄t · θ̄ + χ+ ηtη
−1(ξ̄ · θ̄) − |ψ̄|−2(ξ̄ · ψ̄)(ψ̄t · θ̄) + |ψ̄|−2(ξ̄ · θ̄)(θ̄t · θ̄) = 0.
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Hereafter |ψ̄|2 = ψ̄ · ψ̄. This transformation does not modify ansatz (7.6), but it makes
the function χ vanish, i.e., w̃3 = −ηtη

−1z2. Therefore, without loss of generality we
may assume, at once, that w3 = −ηtη

−1z2.
Substituting the expression for w3 in the other equations of (7.8), we obtain that

s = z2
2 |ψ̄|−2

((
1
2 ψ̄tt · ψ̄ − ψ̄t · ψ̄t − (ψ̄t · ψ̄)ηtη

−1
)|ψ̄|−2 + 1

2ηttη
−1 − (ηt)2η−2

)
−

− 2(ψ̄t · θ̄)|ψ̄|−2
∫
w1(z1, z2)dz2,

w1
1 − η1η

−1z2w
1
2 − |ψ̄|2w1

22 = 0,
w2

1 − η1η
−1z2w

2
2 − |ψ̄|2w2

22 + γ|ψ̄|−2
(
2(ψ̄t · θ̄)|ψ̄|−2z2 + w1

)
w2 = 0.

(7.15)

The change of the independent variables

τ =
∫

(η(t)|ψ̄|)2dt, z = η(t)z2

reduces system (7.15) to the following form:

w1
τ − w1

zz = 0,

w2
τ − w2

zz + γ| ¯̂ψ|−4η̂−2
(
2(¯̂ψt · ¯̂θ)η̂z + w1

)
w2 = 0,

(7.16)

where ¯̂
ψ(τ) = ψ̄(t), ¯̂

θ(τ) = θ̄(t), η̂(τ) = η(t).
Particular solutions of (7.15) are the functions

w1 = C1 + C2η(t)z2 + C3

(
1
2 (η(t)z2)2 +

∫
(η(t)|ψ̄|)2dt),

w2 = f(t, z2) exp
(
ξ2(t)z2

2 + ξ1(t)z2 + ξ0(t)
)
,

where (ξ2(t), ξ1(t), ξ0(t)) is a particular solution of the system of ODEs:

ξ2t − 2ηtη
−1ξ2 − 4|ψ̄|2(ξ2)2 + 1

2C3γη
2|ψ̄|−2 = 0,

ξ1t − ηtη
−1ξ1 − 4|ψ̄|2ξ2ξ1 + 2γ(ψ̄t · θ̄)|ψ̄|−4 + C2γη|ψ̄|−2 = 0,

ξ0t − 2|ψ̄|2ξ2 − |ψ̄|2(ξ1)2 + γ
(
C1 + C3

∫
(η(t)|ψ̄|)2dt)|ψ̄|−2 = 0,

and f is an arbitrary solution of the following equation

f1 − |ψ̄|2f22 +
(
(ηtη

−1 + 4|ψ̄|2ξ2)z2 + 2|ψ̄|2ξ1)f2 = 0. (7.17)

Equation (7.17) is reduced by means of a local transformation of the independent
variables to the heat equation.

Consider the Lie reductions of system (7.2) to systems of ODEs. The second basis
operator of the each algebra B2

k, k = 1, 5 induces, for the reduced system obtained
from system (7.2) by means of the first basis operator, either a Lie symmetry operator
from Table 2 or a operator giving a ansatz of form (6.4). Therefore, the Lie reduction
of system (7.2) with the algebras B2

1 −B2
5 gives only solutions that can be constructed

for system (7.2) by means of reducing with the algebras B1
1 and B1

2 to system (6.1).
With the algebra B2

6 we obtain an ansatz and a reduced system of the following
forms:

v̄ = φ̄+ λ−1(θ̄i · ȳ)ψ̄i
t, v3 = φ3 exp

(
γλ(θ̄1 · ȳ)),

s = h− 1
2λ

−1(ψ̄i
tt · ȳ)(θ̄i · ȳ), (7.18)
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where φa = φa(ω), h = h(ω), ω = t, λ = ψ11ψ22 − ψ12ψ21 = ψ̄1 · θ̄1 = ψ̄2 · θ̄2,
θ̄1 = (ψ22,−ψ21), θ̄2 = (−ψ12, ψ11), and

φ̄t + λ−1(θ̄i · φ̄)ψ̄i
t = 0, φ3

t +
(
γλ−1(θ̄1 · φ̄) − γ2λ−2(θ̄1 · θ̄1))φ3 = 0,

λ−1(θ̄i · ψ̄i
t) + ηtη

−1 = 0.
(7.19)

Let us make the transformation from the symmetry group of system (7.2):
¯̃v(t, ȳ) = v̄(t, ȳ − ξ̄) + ξ̄t, ṽ3(t, ȳ) = v3(t, ȳ − ξ̄), s̃(t, ȳ) = s(t, ȳ − ξ̄) − ξ̄tt · ȳ,

where

ξ̄t + λ−1(θ̄i · ξ̄)ψ̄i
t + φ̄ = 0. (7.20)

It follows from (7.20) that ξ̄tt = λ−1(θ̄i · ξ̄)ψ̄i
tt, i.e., θ̄

i
tt · ξ̄− θ̄i · ξ̄tt = 0. Therefore, this

trasformation does not modify ansatz (7.18), but it makes the functions φi vanish.
And without loss of generality we may assume, at once, that φi ≡ 0. Then

φ3 = C exp
(∫ (

γλ−1|θ|)2dt), C = const.

The last equation of system (7.19) is the compatibility condition of system (7.2) and
ansatz (7.18).

8 Conclusion

In this article we reduced the NSEs to systems of PDEs in three and two independent
variables and systems of ODEs by means of the Lie method. Then, we investigated
symmetry properties of the reduced systems of PDEs and made Lie reductions of
systems which admitted non-trivial symmetry operators, i.e., operators that are not
induced by operators from A(NS). Some of the systems in two independent variables
were reduced to linear systems of either two one-dimensional heat equations or two
translational equations. We also managed to find exact solutions for most of the
reduced systems of ODEs.

Now, let us give some remaining problems. Firstly, we failed, for the present, to
describe the non-Lie ansatzes of form (1.6) that reduce the NSEs. (These ansatzes
include, for example, the well-known ansatzes for the Karman swirling flows (see
bibliography in [16]). One can also consider non-local ansatzes for the Navier–Stokes
field, i.e., ansatzes containing derivatives of new unknown functions.

Second problem is to study non-Lie (i.e., non-local, conditional, and Q-conditional)
symmetries of the NSEs [13].

And finally, it would be interesting to investigate compatability and to construct
exact solutions of overdetermined systems that are obtained from the NSEs by means
of different additional conditions. Usually one uses the condition where the nonli-
nearity has a simple form, for example, the potential form (see review [36]), i.e.,
rot((�u · �∇)�u) = �0 (the NS fields satisfying this condition is called the generalized
Beltrami flows). We managed to describe the general solution of the NSEs with the
additional condition where the convective terms vanish [29, 30]. But one can give
other conditions, for example,

��u = �0, �ut + (�u · �∇)�u = �0,

and so on.
We will consider the problems above elsewhere.
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Appendix

A Inequivalent one-, two-, and three-dimensional
subalgebras of A(NS)

To find complete sets of inequivalent subalgebras of A(NS), we use the method given,
for example, in [27, 28]. Let us describe it briefly.

1. We find the commutation relations between the basis elements of A(NS).
2. For arbitrary basis elements V , W 0 of A(NS) and each ε ∈ R we calculate the

adjoint action

W (ε) = Ad(εV )W 0 = Ad(exp(εV ))W 0

of the element exp(εV ) from the one-parameter group generated by the operator V
on W 0. This calculation can be made in two ways: either by means of summing the
Lie series

W (ε) =
∞∑

n=0

εn

n!
{V n,W 0} = W 0 +

ε

1!
[V,W 0] +

ε2

2!
[V, [V,W 0]] + · · · , (A.1)

where {V 0,W 0} = W 0, {V n,W 0} = [V, {V n−1,W 0}], or directly by means of solving
the initial value problem

dW (ε)
dε

= [V,W (ε)], W (0) = W 0. (A.2)

3. We take a subalgebra of a general form with a fixed dimension. Taking into
account that the subalgebra is closed under the Lie bracket, we try to simplify it by
means of adjoint actions as much as possible.

A.1 The commutation relations and the adjoint representation
of the algebra A(NS)

Basis elements (1.2) of A(NS) satisfy the following commutation relations:

[J12, J23] = −J31, [J23, J31] = −J12, [J31, J12] = −J23,

[∂t, Jab] = [D,Jab] = 0, [∂t,D] = 2∂t,

[∂t, R(�m)] = R(�mt), [D,R(�m)] = R(2t�mt − �m),
[∂t, Z(χ)] = Z(χt), [D,Z(χ)] = Z(2tχt + 2χ),

[R(�m), R(�n)] = Z(�mtt · �n− �m · �ntt), [Jab, R(�m)] = R( �̃m),
[Jab, Z(χ)] = [Z(χ), R(�m)] = [Z(χ), Z(η)] = 0,

(A.3)

where m̃a = mb, m̃b = −ma, m̃c = 0, a �= b �= c �= a.

Note A.1 Relations (A.3) imply that the set of operators (1.2) generates an algebra
when, for example, the parameter-functions ma and χ belong to C∞((t0, t1),R)
(C∞

0 ((t0, t1),R), A((t0, t1),R)), i.e., the set of infinite-differentiable (infinite-differen-
tiable finite, real analytic) functions from (t0, t1) in R, where −∞ ≤ t0 < t1 ≤ +∞.
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But the NSEs (1.1) admit operators (1.3) and (1.4) with parameter-functions of a less
degree of smoothness. Moreover, the minimal degree of their smoothness depends
on the smoothness that is demanded for the solutions of the NSEs (1.1). Thus, if
ua ∈ C2((t0, t1) × Ω,R) and p ∈ C1((t0, t1) × Ω,R), where Ω is a domain in R

3, then
it is sufficient that ma ∈ C3((t0, t1),R) and χ ∈ C1((t0, t1),R). Therefore, one can
consider the “pseudoalgebra” generated by operators (1.2). The prefix “pseudo-” means
that in this set of operators the commutation operation is not determined for all pairs
of its elements, and the algebra axioms are satisfied only by elements, where they are
defined. It is better to indicate the functional classes that are sets of values for the
parameters ma and χ in the notation of the algebra A(NS). But below, for simplicity,
we fix these classes, taking ma, χ ∈ C∞((t0, t1),R), and keep the notation of the
algebra generated by operators (1.2) in the form A(NS). However, all calculations
will be made in such a way that they can be translated for the case of a less degree
of smoothness.

Most of the adjoint actions are calculated simply as sums of their Lie series. Thus,

Ad(ε∂t)D = D + 2ε∂t, Ad(εD)∂t = e−2ε∂t,

Ad(εZ(χ))∂t = ∂t − εZ(χt), Ad(εZ(χ))D = D − εZ(2tχt + 2χ),
Ad(εR(�m))∂t = ∂t − εR(�mt) − 1

2ε
2Z(�mt · �mtt − �m · �mttt),

Ad(εR(�m))D = D − εR(2t�mt − �m) −
− 1

2ε
2Z(2t�mt · �mtt − 2t�m · �mttt − 4�m · �mtt),

Ad(εR(�m))Jab = Jab − εR( �̃m) + ε2Z(mamb
tt −ma

ttm
b),

Ad(εR(�m))R(�n) = R(�n) + εZ(�mtt · �n− �m · �ntt), Ad(εJab)R(�m) = R( �̂m),
Ad(εJab)Jcd = Jcd cos ε+ [Jab, Jcd] sin ε

(
(a, b) �= (c, d) �= (b, a)

)
,

(A.4)

where

m̃a = mb, m̃b = −ma, m̃c = 0, a �= b �= c �= a,

m̂d = md cos ε+ m̃d sin ε, m̂c = mc, a �= b �= c �= a, d ∈ {a; b}.
Four adjoint actions are better found by means of integrating a system of form (A.2).
As a result we obtain that

Ad(ε∂t)Z(χ(t)) = Z(χ(t+ ε)), Ad(εD)Z(χ(t)) = Z(e2εχ(te2ε)),
Ad(ε∂t)R(�m(t)) = R(�m(t+ ε)), Ad(εD)R(�m(t)) = R(e−ε �m(te2ε)).

(A.5)

Cases where adjoint actions coincide with the identical mapping are omitted.

Note A.2 If Z(χ(t)) ∈ A(NS)[C∞((t0, t1),R)] with −∞ < t0 or t1 < +∞, the
adjoint representation Ad(ε∂t) (Ad(εD)) gives an equivalence relation between the
operators Z(χ(t)) and Z(χ(t + ε)) (Z(χ(t)) and Z(e2εχ(te2ε))) that belong to the
different algebras

A(NS)[C∞((t0, t1),R)] and A(NS)[C∞((t0 − ε, t1 − ε),R)]
(A(NS)[C∞((t0, t1),R)] and A(NS)[C∞((t0e−2ε, t1e

−2ε),R)])

respectively. An analogous statement is true for the operator R(�m). Equivalence of
subalgebras in Theorems A.1 and A.2 is also meant in this sense.
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Note A.3 Besides the adjoint representations of operators (1.2) we make use of di-
screte transformation (1.6) for classifying the subalgebras of A(NS),

To prove the theorem of this section, the following obvious lemma is used.

Lemma A.1 Let N ∈ N.

A. If χ ∈ CN ((t0, t1),R), then ∃ η ∈ CN ((t0, t1),R) : 2tηt + 2η = χ.

B. If χ ∈ CN ((t0, t1),R), then ∃ η ∈ CN ((t0, t1),R) : 2tηt − η = χ.

C. If mi ∈ CN ((t0, t1),R) and a ∈ R, then ∃ li ∈ CN ((t0, t1),R) :
2tl1t − l1 + al2 = m1, 2tl2t − l2 − al1 = m2.

A.2 One-dimensional subalgebras

Theorem A.1 A complete set of A(NS)-inequivalent one-dimensional subalgebras
of A(NS) is exhausted by the following algebras:

1. A1
1(κ) = 〈D + 2κJ12〉, where κ ≥ 0.

2. A1
2(κ) = 〈∂t + κJ12〉, where κ ∈ {0; 1}.

3. A1
3(η, χ) = 〈J12 + R(0, 0, η(t)) + Z(χ(t))〉 with smooth functions η and χ.

Algebras A1
3(η, χ) and A1

3(η̃, χ̃) are equivalent if ∃ ε, δ ∈ R, ∃λ ∈ C∞((t0, t1),R):

η̃(t̃) = e−εη(t), χ̃(t̃) = e2ε(χ(t) + λtt(t)η(t) − λ(t)ηtt(t)), (A.6)

where t̃ = te−2ε + δ.

4. A1
4(�m,χ) = 〈R(�m(t)) + Z(χ(t))〉 with smooth functions �m and χ: (�m,χ) �≡

(�0, 0). Algebras A1
4(�m,χ) and A1

4( �̃m, χ̃) are equivalent if ∃ ε, δ ∈ R, ∃C �= 0, ∃B ∈
O(3), ∃�l ∈ C∞((t0, t1),R3):

�̃m(t̃) = Ce−εB�m(t), χ̃(t̃) = Ce2ε
(
χ(t) +�ltt(t) · �m(t) − �mtt(t) ·�l(t)

)
, (A.7)

where t̃ = te−2ε + δ.

Proof. Consider an arbitrary one-dimensional subalgebra generated by

V = a1D + a2∂t + a3J12 + a4J23 + a5J31 +R(�m) + Z(χ).

The coefficients a4 and a5 are omitted below since they always can be made to vanish
by means of the adjoint representations Ad(ε1J12) and Ad(ε2J31).

If a1 �= 0 we get ã1 = 1 by means of a change of basis. Next, step-by-step we
make a2, �m, and χ vanish by means of the adjoint representations Ad(− 1

2a2a
−1
1 ∂t),

Ad(R(�l)), and Ad(Z(χ)), where

�l ∈ C∞((t0 + 1
2a2a

−1
1 , t1 + 1

2a2a
−1
1 ),R3),

η ∈ C∞((t0 + 1
2a2a

−1
1 , t1 + 1

2a2a
−1
1 ),R),

and �l, η are solutions of the equations

2t�lt −�l + a3a
−1
1 (l2,−l1, 0)T = �̂m, 2tηt + 2η = χ̂+

1
2
(�ltt · �̂m−�l · �̂mtt)
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with �̂m(t) = a−1
1 �m(t − 1

2a2a
−1
1 ) and χ̂(t) = a−1

1 χ(t − 1
2a2a

−1
1 ). Such �l and η exist in

virtue of Lemma A.1. As a result we obtain the algebra A1
1(κ), where 2κ = a3a

−1
1 .

In case κ < 0 additionally one has to apply transformation (1.6) with b = 1.
If a1 = 0 and a2 �= 0, we make ã2 = 1 by means of a change of basis. Next, step-

by-step we make �m and χ vanish by means of the adjoint representations Ad(R(�l))
and Ad(Z(χ)), where �l ∈ C∞((t0, t1),R3), η ∈ C∞((t0, t1),R), and

a2
�lt + a3(l2,−l1, 0)T = �m, a2ηt = χ+

1
2
(�ltt · �m−�l · �mtt).

If a3 = 0 we obtain the algebra A1
2(0) at once. If a3 �= 0, using the adjoint repre-

sentation Ad(εD) and transformation (1.6) (in case of need), we obtain the algebra
A1

2(1).
If a1 = a2 = 0 and a3 �= 0, after a change of basis and applying the adjoint

representation Ad(R(−a−1
3 m2, a−1

3 m1, 0)) we get the algebra A1
3(η, χ̃), where η =

a−1
3 m3 and χ̃ = a−1

3 χ+ a−2
3 (m1

ttm
2 −m1m2

tt). Equivalence relation (A.6) is generated
by the adjoint representations Ad(εD), Ad(δ∂t), and Ad(R(0, 0, λ)).

If a1 = a2 = a3 = 0, at once we get the algebra A1
4(�m,χ). Equivalence relation

(A.7) is generated by the adjoint representations Ad(εD), Ad(δ∂t), Ad(R(�l)), and
Ad(εabJab).

A.3 Two-dimensional subalgebras

Theorem A.2 A complete set of A(NS)-inequivalent two-dimensional subalgebras
of A(NS) is exhausted by the following algebras:

1. A2
1(κ) = 〈∂t, D + κJ12〉, where κ ≥ 0.

2. A2
2(κ, ε) = 〈D, J12 +R(0, 0,κ|t|1/2) + Z(εt−1)〉, where κ ≥ 0, ε ≥ 0.

3. A2
3(κ, ε) = 〈∂t, J12 + R(0, 0,κ) + Z(ε)〉, where κ ∈ {0; 1}, ε ≥ 0 if κ = 1 and

ε ∈ {0; 1} if κ = 0.

4. A2
4(σ,κ, µ, ν, ε) = 〈D + 2κJ12, R

(|t|σ+1/2(ν cos τ, ν sin τ, µ)
)

+ Z(ε|t|σ−1)〉,
where τ = κ ln |t|, κ > 0, µ ≥ 0, ν ≥ 0, µ2 + ν2 = 1, εσ = 0, and ε ≥ 0.

5. A2
5(σ, ε) = 〈D, R(0, 0, |t|σ+1/2) + Z(ε|t|σ−1)〉, where εσ = 0 and ε ≥ 0.

6. A2
6(σ, µ, ν, ε) = 〈∂t + J12, R(νeσt cos t, νeσt sin t, µeσt) +Z(εeσt)〉, where µ ≥ 0,

ν ≥ 0, µ2 + ν2 = 1, εσ = 0, and ε ≥ 0.

7. A2
7(σ, ε) = 〈∂t, R(0, 0, eσt) +Z(εeσt)〉, where σ ∈ {−1; 0; 1}, εσ = 0, and ε ≥ 0.

8. A2
8(λ, ψ

1, ρ, ψ2) = 〈J12 + R(0, 0, λ) + Z(ψ1), R(0, 0, ρ) + Z(ψ2)〉 with smooth
functions (of t) λ, ρ, and ψi: (ρ, ψ2) �≡ (0, 0) and λttρ − λρtt ≡ 0. Algebras
A2

8(λ, ψ
1, ρ, ψ2) and A2

8(λ̃, ψ̃
1, ρ̃, ψ̃2) are equivalent if ∃C1 �= 0, ∃ ε, δ, C2 ∈ R,

∃ θ ∈ C∞((t0, t1), R):

λ̃(t̃) = eε(λ(t) + C2ρ(t)), ρ̃(t̃) = C1e
−ερ(t),

ψ̃1(t̃) = e2ε
(
ψ1(t) + θtt(t)λ(t) − θ(t)λtt(t) +

+ C2(ψ2(t) + θtt(t)ρ(t) − θ(t)ρtt(t))
)
,

ψ̃2(t̃) = C1e
2ε(ψ2(t) + θtt(t)ρ(t) − θ(t)ρtt(t)),

(A.8)

where t̃ = te−2ε + δ.
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9. A2
9(�m

1, χ1, �m2, χ2) = 〈R(�m1(t)) +Z(χ1(t)), R(�m2(t)) +Z(χ2(t))〉 with smooth
functions �mi and χi:

�m1
tt · �m2 − �m1 · �m2

tt = 0, rank
(
(�m1, χ1), (�m2, χ2)

)
= 2.

Algebras A2
9(�m

1, χ1, �m2, χ2) and A2
9( �̃m1, χ̃1, �̃m2, χ̃2) are equivalent if ∃ ε, δ ∈ R,

∃ {aij}i,j=1,2 : det{aij} �= 0, ∃B ∈ O(3), ∃�l ∈ C∞((t0, t1),R3):

�̃mi(t̃) = e−εaijB�m
j(t),

χ̃i(t̃) = e2εaij

(
χj(t) +�ltt(t) · �mj(t) −�l(t) · �mj

tt(t)
)
,

(A.9)

where t̃ = te−2ε + δ.

10. A2
10(κ, σ) = 〈D + κJ12, Z(|t|σ)〉, where κ ≥ 0, σ ∈ R.

11. A2
11(σ) = 〈∂t + J12, Z(eσt)〉, where σ ∈ R.

12. A2
12(σ) = 〈∂t, Z(eσt)〉, where σ ∈ {−1; 0; 1}.

The proof of Theorem A.2 is analogous to that of Theorem A.1. Let us take an
arbitrary two-dimensional subalgebra generated by two linearly independent operators
of the form

V i = ai
1D + ai

2∂t + ai
3J12 + ai

4J23 + ai
5J31 +R(�mi) + Z(χi),

where ai
n = const (n = 1, 5) and [V 1, V 2] ∈ 〈V 1, V 2〉. Considering the different

possible cases we try to simplify V i by means of adjoint representation as much as
possible. Here we do not present the proof of Theorem A.2 as it is too cumbersome.

A.4 Three-dimensional subalgebras

We also constructed a complete set of A(NS)-inequivalent three-dimensional subal-
gebras. It contains 52 classes of algebras. By means of 22 classes from this set one
can obtain ansatzes of codimension three for the Navier–Stokes field. Here we only
give 8 superclasses that arise from unification of some of these classes:

1. A3
1 = 〈D, ∂t, J12〉.

2. A3
2 = 〈D + κJ12, ∂t, R(0, 0, 1)〉, where κ ≥ 0. Here and below κ, σ, ε1, ε2, µ,

ν, and aij are real constants.

3. A3
3(σ, ν, ε1, ε2) = 〈D, J12 + ν

(
R(0, 0, |t|1/2 ln |t|)+Z(ε2|t|−1 ln |t|))+Z(ε1|t|−1),

R(0, 0, |t|σ+1/2) + Z(ε2|t|σ−1)〉, where νσ = 0, ε1 ≥ 0, ν ≥ 0, and σε2 = 0.

4. A3
4(σ, ν, ε1, ε2) = 〈∂t, J12+Z(ε1)+ν

(
R(0, 0, t)+Z(ε2t)

)
, R(0, 0, eσt)+Z(ε2eσt)〉,

where νσ = 0, σε2 = 0, and, if σ = 0, the constants ν, ε1, and ε2 satisfy one of the
following conditions:

ν = 1, ε1 ≥ 0; ν = 0, ε1 = 1, ε2 ≥ 0; ν = ε1 = 0, ε2 ∈ {0; 1}.

5. A3
5(κ, �m

1, �m2, χ1, χ2) = 〈D + 2κJ12, R(�m1) + Z(χ1), R(�m2) + Z(χ2)〉, where
κ ≥ 0, rank(�m1, �m2) = 2,

t�mi
t − 1

2 �m
i + κ(mi2,−mi1, 0)T = aij �m

j ,

tχi
t + χi = aijχ

j , aij = const,
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(a11 + a22)
(
a21 �m

1 · �m1 + (a22 − a11)�m1 · �m2 − a12 �m
2 · �m2 +

+ 2κ(m12m21 −m11m22)
)

= 0.
(A.10)

This superclass contains eight inequivalent classes of subalgebras that can be obtained
from it by means of a change of basis and the adjoint actions

Ad(δ1D), Ad(δ2J12), Ad(R(�n) + Z(η)),(
Ad(δD), Ad(εabJab), Ad(R(�n) + Z(η))

)
if κ > 0 (κ = 0) respectively. Here the functions �n and η satisfy the following
equations:

t�nt − 1
2�n+ κ(n2,−n1, 0)T = bi �m

i,

tηt + η = biχi + 1
2 t(�nttt · �n− �ntt · �nt) + �ntt · �n+ κ(n1n2

tt − n1
ttn

2).

6. A3
6(κ, �m

1, �m2, χ1, χ2) = 〈∂t + κJ12, R(�m1) + Z(χ1), R(�m2) + Z(χ2)〉, where
κ ∈ {0; 1}, rank(�m1, �m2) = 2,

�mi
t − κ(mi2,−mi1, 0)T = aij �m

j , tχi
t = aijχ

j ,

and aij are constants satisfying (A.10). This superclass contains eight inequivalent
classes of subalgebras that can be obtained from it by means of a change of basis and
the adjoint actions

Ad(δ1∂t), Ad(δ2J12), Ad(R(�n) + Z(η)),(
Ad(δ1∂t), Ad(δ2D), Ad(εabJab), Ad(R(�n) + Z(η))

)
if κ = 1 (κ = 0) respectively. Here the functions �n and η satisfy the following
equations:

�nt + κ(n2,−n1, 0)T = bi �m
i,

ηt = biχi + 1
2 (�nttt · �n− �ntt · �nt) + κ(n1n2

tt − n1
ttn

2).

7. A3
7(η

1, η2, η3, χ) = 〈J12 +R(0, 0, η3), R(η1, η2, 0), R(−η2, η1, 0)〉, where
ηa ∈ C∞((t0, t1),R), η1

ttη
2 − η1η2

tt ≡ 0, ηiηi �≡ 0, η3 �= 0.

Algebras A3
7(η

1, η2, η3) and A3
7(η̃

1, η̃2, η̃3) are equivalent if ∃ δa ∈ R, ∃ δ4 �= 0:

η̃1(t̃) = δ4(η1(t) cos δ3 − η2(t) sin δ3),
η̃2(t̃) = δ4(η1(t) sin δ3 + η2(t) cos δ3),
η̃3(t̃) = e−δ1η3(t),

(A.11)

where t̃ = te−2δ1 + δ2.

8. A3
8(�m

1, �m2, �m3) = 〈R(�m1), R(�m2), R(�m3)〉, where
�ma ∈ C∞((t0, t1),R3), rank(�m1, �m2, �m3) = 3, �ma

tt · �mb − �ma · �mb
tt = 0.

Algebras A3
8(�m

1, �m2, �m3) and A3
8( �̃m

1
, �̃m

2
, �̃m

3
) are equivalent if ∃ δi ∈ R

3, ∃B ∈ O(3),
∃ {dab} : det{dab} �= 0 such that

�̃ma(t̃) = dabB�m
b(t), (A.12)

where t̃ = te−2δ1 + δ2.
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B On construction of ansatzes for the Navier–Stokes
field by means of the Lie method

The general method for constructing a complete set of inequivalent Lie ansatzes of
a system of PDEs are well known and described, for example, in [27, 28]. However,
in some cases when the symmetry operators of the system have a special form, this
method can be modified [9]. Thus, in the case of the NSEs, coefficients of an arbitrary
operator

Q = ξ0∂t + ξa∂a + ηa∂ua + η0∂p

from A(NS) satisfy the following conditions:

ξ0 = ξ0(t, �x), ξa = ξa(t, �x), ηa = ηab(t, �x)ub + ηa0(t, �x),
η0 = η01(t, �x)p+ η00(t, �x).

(B.1)

(The coefficients ξa, ξ0, ηa, and η0 also satisfy stronger conditions than (B.1). For
example if Q ∈ A(NS), then ξ0 = ξ0(t), ηab = const, and so on. But conditions (B.1)
are sufficient to simplify the general method.) Therefore, ansatzes for the Navier–
Stokes field can be constructing in the following way:

1. We fix a M -dimensional subalgebra of A(NS) with the basis elements

Qm = ξm0∂t + ξma∂a + (ηmabub + ηma0)∂ua + (ηm01p+ ηm00)∂p, (B.2)

where M ∈ {1; 2; 3}, m = 1,M, and

rank{(ξm0, ξm1, ξm2, ξm3), m = 1,M} = M. (B.3)

To construct a complete set of inequivalent Lie ansatzes of codimension M for the
Navier–Stokes field, we have to use the set of M -dimensional subalgebras from Sec-
tion A. Condition (B.3) is neeeded for the existance of ansatzes connected with this
subalgebra.

2. We find the invariant independent variables ωn = ωn(t, �x), n = 1, N, where
N = 4 −M, as a set of functionally independent solutions of the following system:

Lmω = Qmω = ξm0∂tω + ξma∂aω = 0, m = 1,M, (B.4)

where Lm := ξm0∂t + ξma∂a.
3. We present the Navier–Stokes field in the form:

ua = fab(t, �x)vb(ω̄) + ga(t, �x), p = f0(t, �x)q(ω̄) + g0(t, �x), (B.5)

where va and q are new unknown functions of ω̄ = {ωn, n = 1, N}. Acting on
representation (B.5) with the operators Qm, we obtain the following equations on
functions fab, ga, f0, and g0:

Lmfab = ηmacfcb, Lmga = ηmabgb + ηma0, c = 1, 3,
Lmf0 = ηm01f0, Lmg0 = ηm01g0 + ηm00.

(B.6)

If the set of functions fab, f0, ga, and g0 is a particular solution of (B.6) and satisfies
the conditions rank{(f1b, f2,b, f3b), b = 1, 3} = 3 and f0 �= 0, formulas (B.5) give an
ansatz for the Navier–Stokes field.
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The ansatz connected with the fixed subalgebra is not determined in an unique
manner. Thus, if

ω̃l = ω̃l(ω̄), det
{
∂ω̃l

∂ωn

}
l,n=1,N

�= 0,

f̃ab(t, �x) = fac(t, �x)F cb(ω̄), g̃a(t, �x) = ga(t, �x) + fac(t, �x)Gc(ω̄),

f̃0(t, �x) = f0(t, �x)F 0(ω̄), g̃0(t, �x) = g0(t, �x) + f0(t, �x)G0(ω̄),

(B.7)

the formulas

ua = f̃ab(t, �x)ṽb(¯̃ω) + g̃a(t, �x), p = f̃0(t, �x)q(¯̃ω) + g̃0(t, �x) (B.8)

give an ansatz which is equivalent to ansatz (B.5). The reduced system of PDEs
on the functions ṽa and q̃ is obtained from the system on va and q by means of
a local transformation. Our problem is to find or “to guess”, at once, such an ansatz
that the corresponding reduced system has a simple and convenient form for our
investigation. Otherwise, we can obtain a very complicated reduced system which
will be not convenient for investigation and we can not simplify it.

Consider a simple example.
Let M = 1 and let us give the algebra 〈∂t + κJ12〉, where κ ∈ {0; 1}. For this

algebra, the invariant independent variables ya = ya(t, �x) are functionally independent
solutions of the equation Ly = 0 (see (B.4)), where

L := ∂t + κ(x1∂x2 − x2∂x1). (B.9)

There exists an infinite set of choices for the variables ya. For example, we can give
the following expressions for ya:

y1 = arctan
x1

x2
− κt, y2 = (x2

1 + x2
2)

1/2, y3 = x3.

However choosing ya in such a way, for κ �= 0 we obtain a reduced system which
strongly differs from the “natural” reduced system for κ = 0 (the NSEs for steady
flows of a viscous fluid in Cartesian coordinates). It is better to choose the following
variables ya:

y1 = x1 cos κt+ x2 sin κt, y2 = −x1 sin κt+ x2 cos κt, y3 = x3.

The vector-functions �f b = (f1b, f2b, f3b), b = 1, 3, should be linearly independent
solutions of the system

Lf1 = −κf2, Lf2 = κf1, Lf3 = 0

and the function f0 should satisfy the equation Lf0 = 0 and the condition f0 �=
0. Here the operator L is defined by (B.9). We give the following values of these
functions:

�f 1 = (cos κt, sin κt, 0), �f 2 = (− sin κt, cos κt, 0), �f 3 = (0, 0, 1), f0 = 1.

The functions ga and g0 are solutions of the equations

Lg1 = −κg2, Lg2 = κg1, Lg3 = 0, Lg0 = 0.
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We can make, for example, ga and g0 vanish. Then the corresponding ansatz has the
form:

u1 = ṽ1 cos κt− ṽ2 sin κt, u2 = ṽ1 sin κt+ ṽ2 cos κt, u3 = ṽ3, p = q̃, (B.10)

where ṽa = ṽa(y1, y2, y3) and q̃ = q̃(y1, y2, y3) are the new unknown functions. Substi-
tuting ansatz (B.10) into the NSEs, we obtain the following reduced system:

ṽaṽ1
a − ṽ1

aa + q̃1 + κy2ṽ
1
1 − κy1ṽ

1
2 − κṽ2 = 0,

ṽaṽ2
a − ṽ2

aa + q̃2 + κy2ṽ
2
1 − κy1ṽ

2
2 + κṽ1 = 0,

ṽaṽ3
a − ṽ3

aa + q̃3 + κy2ṽ
3
1 − κy1ṽ

3
2 = 0,

ṽa
a = 0.

(B.11)

Here subscripts 1,2, and 3 of functions in (B.11) denote differentiation with respect
to y1, y2, and y3 accordingly. System (B.11), having variable coefficients, can be
simplified by means of the local transformation

ṽ1 = v1 − κy2, ṽ2 = v2 + κy1, ṽ3 = v3, q̃ = q + 1
2 (y2

1 + y2
2). (B.12)

Ansatz (B.10) and system (B.11) are transformed under (B.12) into ansatz (2.2) and
system (2.7), where

g1 = −κx2, g2 = κx1, g3 = 0, g0 = 1
2κ

2(x2
1 + x2

2), (B.13)

γ1 = −2κ, and γ2 = 0. Therefore, we can give the values of ga and g0 from (B.13)
and obtain ansatz (2.2) and system (2.7) at once.

The above is a good example how a reduced system can be simplified by means of
modifying (complicating) an ansatz corresponding to it. Thus, system (2.7) is simpler
than system (B.11) and ansatz (2.2) is more complicated than ansatz (B.10).

Finally, let us make several short notes about constructing other ansatzes for the
Navier–Stokes field.

Ansatz corresponding to the algebra A1
4(�m,χ) (see Subsection A.2) can be cons-

tructed only for such t that �m(t) �= �0. For these values of t, the parameter-function χ
can be made to vanish by means of equivalence transformations (A.7).

Ansatz corresponding to the algebra A2
8(λ, ψ

1, ρ, ψ2) (see Subsection A.3) can be
constructed only for such t that ρ(t) �= 0. For these values of t, the parameter-function
ψ2 can be made to vanish by means of equivalence transformations (A.8). Moreover,
it can be considered that λtρ − λρt ∈ {0; 1}. The algebra obtained finally is denoted
by A2

8(λ, χ, ρ, 0).
Ansatz corresponding to the algebra A2

9(�m
1, χ1, �m2, χ2) (see Subsection A.3) can

be constructed only for such t that rank(�m1, �m2) = 2. For these values of t, the
parameter-functions χi can be made to vanish by means of equivalence transforma-
tions (A.9).

The algebras A2
10(κ, σ), A2

11(σ), and A2
12(σ) can not be used to construct ansatzes

by means of the Lie algorithm.
In view of equivalence transformation (A.11), the functions ηi in the algebra

A3
7(η

1, η2, η3) (see Subsection A.4) can be considered to satisfy the following conditi-
on:

η1
t η

2 − η1η2
t ∈ {0; 1

2}.
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