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Symmetry reduction and exact solutions
of the Navier—Stokes equations

W.I. FUSHCHYCH, R.O. POPOVYCH

Ansatzes for the Navier—Stokes field are described. These ansatzes reduce the Navier-
Stokes equations to system of differential equations in three, two, and one independent
variables. The large sets of exact solutions of the Navier—Stokes equations are
constructed.

1 Introduction

The Navier—Stokes equations (NSEs)
iy + (@ V)i — A+ Vp =0,

divi =0 (1D
which describe the motion of an incompressible viscous fluid are the basic equations
of modern hydrodynamics. In (1.1) and below @ = {u®(¢,#)} denotes the velocity
field of a fluid, p = p(t, Z) denotes the pressure, & = {z,}, O = 9/0t, 0y = 0/0xq,
V = {8.}, A = V-V is the Laplacian, the kinematic coefficient of viscosity and fluid
density are set equal to unity. Repead indices denote summation whereby we consider
the indices a, b to take on values in {1,2,3} and the indices ¢, j to take on values in
{1,2}.

The problem of finding exact solutions of non-linear equations (1.1) is an important
but rather complicated one. There are some ways to solve it. Considerable progress in
this field can be achieved by means of making use of a symmetry approach. Equations
(1.1) have non-trivial symmetry properties. It was known long ago [37, 2] that they
are invariant under the eleven-parametric extended Galilei group. Let us denote it by
G1(1,3). This group includes the Galilei group and scale transformations. The Lie
algebra AG:(1,3) of G1(1,3) is generated by the operators

P07 Jaba D7 Paa Gav
where
PO = 8t, D = 2t8t + $aaa - u“@ua — 2p6‘p,

Jab = T,0p — 140, + Uaaub — ubaua, a 75 b,
Gy =t0q + Oya, P, =0,.

Relatively recently it was found by means of the Lie method [8, 5, 26] that the
maximal Lie invariance algebra (MIA) of the NSEs (1.1) is the infinite-dimensional
algebra A(NS) with the basis elements

O, D, Ja, R(mM), Z(x), (1.2)
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where
R(m) = R(m(t)) = m*(t)0q + m¢(t)Oye — m$,(t) 240y, (1.3)

Z(x) = Z(x(t)) = x(t)0y, (1.4)

m?® = m®(t) and x = x(¢) are arbitrary smooth functions of ¢ (degree of their
smoothness is discussed in Note A.1).

The algebra AG;1(1,3) is a subalgebra of A(NS). Indeed, setting m® = d,p, where
b is fixed, we obtain R(m) = 0y, and if m® = 04t then R(m) = Gy. Here d,y is the
Kronecker symbol (6, =1 if a = b, d = 0 if a # b).

Operators (1.2) generate the following invariance transformations of system (1.1):

-

O :  atT) =it +ed), Ppt,T) =plt+e i)

translations with respect to t),

Jap:  a(t, %) = Bu(t, BT%), p(t,T)=p(t, B'T)

(space rotations),

D: a(t, @) = efi(e*t,ec), p(t,T) = e*p(et, e )

(scale transformations), (1.5)

R(m) : a(t, @) = (t, & — m(t)) + i (t),
(these transformations include the space translations

and the Galilei transformations),

Z(x): alt, @) =it, @), pt,7) =p(t, &)+ x(t).

Here ¢ € R, B = {Buy} € O(3), i.e. BBT = {0,}, BT is the transposed matrix.
Besides continuous transformations (1.5) the NSEs admit discrete transformations
of the form
t=t, Tq=2xq, a#b, Iy=—xp,

1.6
ﬁ:pa aa:uaaG'#ba ab:_ub’ ( )

where b is fixed. Invariance under transformations (1.5) and (1.6) means that (ﬁ, p) is
a solution of (1.1) if (@, p) is a solution of (1.1).

A complete review of exact solutions found for the NSEs before 1963 is contained
in [1]. We should like also to mark more modern reviews [16, 7, 36] despite their
subjects slightly differ from subjects of our investigations. To find exact solutions
of (1.1), symmetry approach in explicit form was used in [2, 31, 32, 6, 20, 21, 4,
17, 15, 12, 10, 11, 30]. This article is a continuation and a extention of our works
[15, 12, 10, 11, 30]. In it we make symmetry reduction of the NSEs to systems
of PDEs in three and two independent variables and to systems of ODEs, using
subalgebraic structure of A(N.S). We investigate symmetry properties of the reduced
systems of PDEs and construct exact solutions of the reduced systems of ODEs when
it is possible. As a result, large classes of exact solutions of the NSEs are obtained.
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The reduction problem for the NSEs is to describe ansatzes of the form [9]:

u = fab(tvf)vb(w) + ga(ta f)? p= fo(tvf)Q(w) + go(tvf) (17)

that reduce system (1.1) in four independent variables to systems of differential equati-
ons in the functions v* and ¢ depending on the variables w = {w,} (n = 1, N), where
N takes on a fixed value from the set {1,2,3}. In formulas (1.7) f, g¢, f°, ¢°, and
wy, are smooth functions to be described. In such a general formulation the reducti-
on problem is too complex to solve. But using Lie symmetry, some ansatzes (1.7)
reducing the NSEs can be obtained. According to the Lie method, first a complete
set of A(NS)-inequivalent subalgebras of dimension M =4 — N is to be constructed.
For N =3, N =2, and N = 1 such sets are given in Subsections A.2, A.3, and
A4, correspondingly. Knowing subalgebraic structure of A(N.S), one can find explicit
forms for the functions f%°, ¢¢, f°, ¢°, and w, and obtain reduced systems in the
functions v¥ and ¢. This is made in Section 2 (N = 3), Section 3 (N = 2) and Secti-
on 4 (N = 1). Moreover, in Subsection 2.3 symmetry properties of all reduced systems
of PDEs in three independent variables are investigated, and in Subsection 4.3 exact
solutions of the reduced systems of ODEs are constructed. Symmetry properties and
exact solutions of some reduced systems of PDEs in two independent variables are
discussed in Sections 5 and 6. In Section 7 we make symmetry reduction of a some
reduced system of PDEs in three independent variables.

In conclusion of the section, for convenience, we give some abbreviations, notati-
ons, and default rules used in this article.

Abbreviations:
the NSEs: the Navier—Stokes equations

the MIA: the maximal Lie invariance algebra (of either a some equation or a some
system of equations)

a ODE: a ordinary differential equation

a PDE: a partial differential equation

Notations:

C*((to,t1),R): the set of infinite-differentiable functions from (to,¢;) into R, where
—o0 <ty <ty <400

C>((to,t1),R?): the set of infinite-differentiable vector-functions from (¢o,t;) into
R3, where —co <ty < t1 < 400

Oy = 8/atv Oa = 6/3;5(1, Oye = 8/8uaa

Default rules:

Repead indices denote summation whereby we consider the indices a, b to take on
values in {1,2,3} and the indices 4, j to take on values in {1,2}.

All theorems on the MIAs of PDEs are proved by means of the standard Lie
algorithm.

Subscripts of functions denote differentiation.



Symmetry reduction and exact solutions of the Navier-Stokes equations 183

2 Reduction of the Navier—Stokes equations
to systems of PDEs in three independent variables

2.1 Ansatzes of codimension one

In this subsection we give ansatzes that reduce the NSEs to systems of PDEs in three
independent variables. The ansatzes are constructed with the subalgebraic analysis of
A(NS) (see Subsection A.2) by means of the method discribed in Section B.

2

Looul = [t[712 (v cosT — v?sinT) + 2at7! — seaat ™!,

u? = [t|7Y2 (vl sinT 4+ v? cos T) + Lot 4 semit T,

2.1
ud = [t| 71203 + st
p=t| g+ 32702 + %t’zxaaca,
where
yr = [t| V2 (zy cosT + wosinT), yo = [t|7V/?(—z sinT 4 x5 cosT),
ys = [t| YV %x3, »%>0, T=sxnlt.
Here and below  v® = v*(y1, 92, ¥3), ¢ = q(y1,y2,y3), 7 = (23 + 23)'/2.
2. ul = vl cos st — v?sin st — sxxy,
u? = vl sin »t + v? cos st + »x,
& — o, (2.2)
p=q+ 357,
where
Y1 = X1 cos xt + xosin xt, Yo = —xy sin st + xo cOs xt,
ys = w3, x€{0;1}.
3. ul =xir ol —zor % 4+ 2072,
u? = xor— ol + zyr~t? + 2or—2
(2.3)

ud = v3 +n(t)r~1v? + n,(t) arctan zo /21,
p=q— tnu()(n(t) " e — 1r2 4 x(t) arctan z /a1,
where
y1=t, ya=r, ys3=ux3—n(t)arctanzs/xz1, n,x € C((to,t1),R).

Note 2.1 The expression for the pressure p from ansatz (2.3) is indeterminate in the
points ¢ € (to,t1) where n(t) = 0. If there are such points ¢, we will consider ansatz
(2.3) on the intervals (¢f,t}) that are contained in the interval (¢, ¢1) and that satisfy
one of the conditions:

a) n(t)#0 Vite(tgtr);
b) nt)=0 Vte (g, t7).

In the last case we consider 7y /n := 0.
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p=q— 5(m )" (M - 71)y:)? — (7 17) 7 (M - 3) (7 T) + (2.4)

yizn‘-f, Y3 = t, T7L7ﬁz ECOO((t07t1),R3).
== —1 =2 =1 2

item=n' [’ =iy -0t =0, |7'=1. (2.5)

Note 2.2 There exist vector-functions 7’ which satisfy conditions (2.5). They can be
constructed in the following way: let us fix the vector-functions k' = k*(t) such that
Eoom=k k=0, |k| =1, and set
it = k' costp(t) — k2 sin(t), 2.6)
72 = k' sin g (t) + k2 cos ¢(t). .
Then 7} - 7% =k} - k2 — by = 0 il ¢ = [(k} - k?)dt.

2.2 Reduced systems

1-2. Substituting ansatzes (2.1) and (2.2) into the NSEs (1.1), we obtain reduced
systems of PDEs with the same general form

Uav; - v;a +q + 71”2 = 07

v — Vi, + g2 — vt =0, @7
i3 — 3, +q3 =0, '
vy = V2.

Hereafter subscripts 1, 2, and 3 of functions denote differentiation with respect to y1,
y2, and ys, accordingly. The constants v; take the values

. v = -2 72:—% it £>0, ~1 =2 72:% it t<o0.
2. vy =23 =0
For ansatzes (2.3) and (2.4) the reduced equations have the form
3. vl ot + 030 —yr t? — (vdy + (1 + 0%y 2)vds) — 2ny5 202 + g2 =0,
v +v'v3 + %03 +yp ol — (vdy + (14 0Py %)uds) +

+ 2ny5 20k + 295702 —myy tas + xws T =0,

= _ _ (2.8)
v} +vtod + 0308 — (v + (1+ n?yy 2)vds) — 275 Pvg + 2my; "o +
+ 20y vy 02 + (14 1%y32)gs — muan~tys — xnyy 2 =0,
yy tol + ol + o3 = 0.
4. vy + 070l — vk 4 g+ p'(ys)v® = 0,
v3 +vivd — vl =0, (2.9)

U;'; + p3(y3) = 07
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(2.10)

2.3 Symmetry of reduced systems

Let us study symmetry properties of systems (2.7), (2.8), and (2.9). All results of this
subsection are obtained by means of the standard Lie algorithm [28, 27]. First, let us
consider system (2.7).

Theorem 2.1 The MIA of system (2.7) is the algebra

a)  (Oa, Iy, J112> if m#0;
b) <a(lv 8q, J;b> ii m=0,v2#0
¢) (0ay0q, gy, Di) if 71 =72=0.

Here JY = y,0p — ypOa + %0y — 0°0ye , D} = 4404 — v%0ya — 2¢0,.
Note 2.3 All Lie symmetry operators of (2.7) are induced by operators from A(NS):

The operators J!, and Di are induced by Ju, and D. The operators ¢,d, (c, = const)
and g, are induced by either

R(|t|*?(c1 cosT — casinT, ¢y sinT 4 ¢acosT,¢3)),  Z(|t|71),
where 7 = »1In|¢t], for ansats (2.1) or
R(cq cos st — co sin st ¢y sin st + co cos xt, c3),  Z(1)

for ansatz (2.2), respectively. Therefore, Lie reductions of system (2.7) give only
solutions that can be obtained by reducing the NSEs with two- and three-dimensional
subalgebras of A(NS).

Let us continue to system (2.8). We denote A™2* as the MIA of (2.8). Studying
symmetry properties of (2.8), one has to consider the following cases:
A.n,x =0. Then

AR = (9, Dy, Ri(v(y1)), 2 (Mw1))),
where
D3 = 2y101 + Y202 + Y303 — v40ye — 2¢Oy,
Ri(¥(y1)) = 03 +¢10ps — 11y30y,  ZH(AMy1)) = My1)9y-

Here and below ¢ = ¢(y;) and A = A(y1) are arbitrary smooth functions of y; = t.

B. n =0, x 0. In this case an extension of A™a* exists for y = (C1y1 + Ca)71,
where Cp,Cy = const. Let C; # 0. We can make C5 vanish by means of equivalence
transformation (A.6), i.e., x = Cyfl, where C' = const. Then

AP =Dy, Ri(¥ (1)), 2" (A(y0)))-
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If ¢y =0, x =C = const and
A™ = (91, Ry (¥(y1)), Z (A1)

For other values of y, i.e., when x11x # x1X1,
AP = (R (4p(y1)), Z (A1)

C. n # 0. By means of equivalence transformation (A.6) we make x = 0. In this
case an extension of A™#* exists for n = +£|Cry; + C’2|1/2, where C7,Cy = const. Let
C1 # 0. We can make Cs vanish by means of equivalence transformation (A.6), i.e.,
n = C|y1|/?, where C = const. Then

A™ = (DY, Ro(|y1['/2), Ra(Jyn [V I [gn]), Z (A1),
where Rao(9(y1)) = w05 +¢10,3. If C1 =0, i.e.,, n = C = const,
AT = (91, 83,5103 + Dps 21 (A(y1)))-
For other values of 7, i.e., when (n?); # 0,

A" = (Ry(n(y1)), Ra(n(y1) [(n(y1))~2dy1), Z*(A(y1)))-

Note 2.4 In all cases considered above the Lie symmetry operators of (2.8) are
induced by operators from A(NS): The operators 9, D3, and Z*(A(y1)) are induced
by 8¢, D, and Z(\(t)), respectively. The operator R(0,0,(¢)) induces the operator

Ri(¢¥(y1)) for n = 0 and the operator Ro(¥(y1)) (if ¥11m — ¥ = 0) for n # 0.
Therefore, the Lie reduction of system (2.8) gives only solutions that can be obtained
by reducing the NSEs with two- and three-dimentional subalgebras of A(N.S).

When n = x = 0, system (2.8) describes axially symmetric motion of a fluid and
can be transformed into a system of two equations for a stream function ! and a
function U? that are determined by

\Ilé = y2U1> \IJ% = _y2v3a \112 = y2U2-

The transformed system was studied by L.V. Kapitanskiy [20, 21].
Consider system (2.9). Let us introduce the notations

t=ys, p=plt)=[p*(t)dt,
R3 (wl(ﬂv ¢2 (t)> = ¢layl + w%azﬂ - w%tyiam
Zr () = A1)y, S = 0ys — p'(t)yidy,
E(x(t) = 2x0 + xt¥i0y, + (Xeeyi — X40*)Opi — (2X¢q + SX21¢Y;5) g
Jly = y102 — Y201 + 102 — v20,1.
Theorem 2.2 The MIA of(2.9) is the algebra
1) (R3(9'(t), ¥2(1), Z' (A1), S, E(x' (1)), EOC (L)), v°0ys, Jig),
where x' = e~ P [ePOdt and x* = e~ P if p' = 0;

2) (Rs(¥'(1), ¥2(1)), Z' (A1), S, E(x(t)) +2a10°9ys + 2a2J1,),
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where ay, ay, and as are fixed constants, x = e~ *®) (f ePOdt + CL3), if

pt = <2%”/)_5_“1 (C1 cos(az In p) — Cy sin(az In p)),
p* = e%”p*%*‘“ (Cy sin(az In p) + Cs cos(az In p))
with p=p(t)=|[e Csy = const, (C1,C2) # (0,0);

3) (Rs(4' (1), 0%(1), Z' (A1), S, B(x(1)) +2a10° 0y + 2a2 1),

where ay and ay are fixed constants, x = e "), if

—c Pfalﬁ(C’l cos(azp) — Casin(azp)),
p—aip (Cl Sin(azﬁ) + 02 COS(G/QpA))

!
p° =

vl Nlw

with p = p(t) = [ePDdt, Cy,Cy = const, (Cy,Cs) # (0,0);
4) (Ra(¥*(t), ¥2(1)), Z' (A1), S)

in all other cases.
Here ' = ¢! (t), A\ = \(t) are arbitrary smooth function of t = ys.

Note 2.5 If functions p® are determined by (2.10), then e?®) = C|si(t)|, where C =
const, and the condition p* = 0 implies that 7 = |17 (¢)|€, where & = const and |¢] = 1.

Note 2.6 The vector-functions 7i* from Note 2.2 are determined up to the transfor-
mation

At =flcosd —filsind, 72 =n'sind + 72 cosd,
where § = const. Therefore, § can be chosen such that Cy =0 (then C; # 0).

Note 2.7 The operators Rs(¢!,92) + S and Z1()\) are induced by R(I) + Z(x) and
Z (M), respectively. Here | = it + ¢3m, 43 (m - m) + 24 (73t - m) =

X = 507 (e 7)Y = 5 (0 AN+ (e 7)Y = 0.

If 77 = |mi|é, where & = const and |é] = 1, the operator Ji, is induced by elJos +
€2J31 + 63J12.
For

m = (33e7 (B2 cos T, Basin T, ﬁl)T

with 7 = st + 6 and 3, = const, where 37 + 35 = 1, the operator 9; + s.J;5 induces
the operator 9y, — B12¢Jiy + ov39,s if the following vector-functions 7 are chosen:

il = k' cos BT + k2 sin T, 7= — k' sin BT + k2 cos BT, (2.11)

where k' = (—sin,cos7,0)T and k2 = (3 cos T, By sinT, —32)7.
For

i = Bt + Ba| /2 (Ba cos T, BasinT, B1)T
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with 7 = slIn|t + 4] + 6 and B,,8:s = const, where 37 + 35 = 1, the operator
D + 26,0y + 25J15 induces the operator

D3 + 2840y, — 2B13¢J15 + 20030,3,

where D} = y;0,, + 2y30,, — v'0,i — 2q9,, if the vector-functions 7" are chosen in
form (2.11). In all other cases the basis elements of the MIA of (2.9) are not induced
by operators from A(NS).

Note 2.8 The invariance algebras of systems of form (2.9) with different parameter-
functions p3 = p3(t) and p3 = p3(t) are similar . It suggests that there exists a local
transformation of variables which make p3 vanish. So, let us transform variables in
the following way:

Gi = yiez?®, gy = [erDat,

B = v+ () B0, B =, .12

d=qe"" + gy ((0°(1)%) — 207 () e,

As a result, we obtain the system

U4 + 00} — 05 + @i + ' (53) 5% = 0,
o3 4+ v/} — 03, =0,
=0

for the functions 9% = 9%(¢1,92,7s) and ¢ = (91,72, ys). Here subscripts 1, 2, and
3 denote differentiation with respect to ¢, 2, and ¢s, accordingly. Also p(3) =
pi(t)efgp(t).

3 Reduction of the Navier—Stokes equations
to systems of PDEs in two independent variables

3.1 Ansatzes of codimension two

In this subsection we give ansatzes that reduce the NSEs to systems of PDEs in two
independent variables. The ansatzes are constructed with the subalgebrical analysis of
A(NS) (see Subsection A.3) by means of the method discribed in Section B.
1. ul=(R)" (21 — sex2)wt — zow? + zy237 10?),
= (rR)"Y((wg + 21wt + z1w? + o237 10?),
u? = z3(rR) " tw! — R~1w?,
p=R7

(3.1)

where z; = arctanzo/x; — #In R, 29 = arctanr/x3, 3 > 0.
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Here and below w® = w(z1, 22), s = s(z1,22), 7 = (23 + x%)l/Q, R= (22 + 2%+
x3)Y/2, 5, ¢, o, u, and v are real constants.
2. ul = [t7Y 2 Yagw! — mow?) + St ey a2,

u? = [tV 2 Y zaw! + zqw?) + St e + 202,

(3.2)
u® = [t|7V2wP 4 serTtw? + At s,
p=lt|"'s — 3772 + $t72R? + ¢|t| ! arctan xa /21,
where z; = [t| =127, zp = [t| /%25 — scarctanzo/x1, 32 >0, £ > 0.
3. ul =rY(mw! — xow?) + 21772,
u? = r Y (@ow' + z1w?) + 29772,
(3.3)

ud = w? + ser~tw?,

p=s— %T*Z + carctanzg /a1,

where z1 =1, 20 = 23 — warctanao/xzq, 2 € {0;1}, e > 0if x =1 and € € {0;1} if
»=0.

4. u' = t| 7V (pw' + vw?) cos T — [t| 72w sinT +
+ vt lcosT + %t*1x1 — st L,
u? = |t| 72 (g 4+ vw®) sinT + |t~/ 2w? cos T +
+vétsinT 4 2t ey 4 st ay, (3.4)
ud = [t]72 (—vw! + pw®) + pétt + St e,
p=t|7ts — 51722 + LR + LA 4
+ elt| 732 (vwy cos T + vag sinT + pxs),
where
21 = [t| V2 (pxy cos T + pag sinT — vas),
29 = |t|/?(xy cos T — 21 sinT),
& =o(vrycosT + vegsinT + pxs) + 2xv(xg cosT — 21 8in7),
T=sxlnlt|, x>0, pu>0, v>0 pwW+v2=1, 0e=0, >0.
5. wl=[t|7V2w! + 171wy,
'LL2 — |t‘*1/2w2 + %tilxg, (3 5)
u? = [t 72w + (0 + $)tLas, .

p=t|"'s — 307t a3 + 2R + et 73/ 2a,
where

zZ1 = |t|71/2$1, Z9 = ‘t|71/2’l‘2, gg = O, 9 Z 0.
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6. ul= (uwl + uw3) cost —w?sint + v€ cost — xa,

u? = (pw! + vw?)sint + w? cost + v€sint + x4,

(3.6)
u? = (—vw' + pw?) + pé,
p=s— %52 + %’I"Q + e(vay cost + vegsint + uxs),
where
z1 = (uxy cost + pxgsint — vas),
zo = (xo cost — xq sint),
¢ =o(vrycost + vegsint + pxs) + 2v(xe cost — 1 sint),
u>0, v>0 p?+v2=1, o0e=0, >0.
7. u=w', wr=w? W’ =w+ous,
L oo (3.7)
p=8s— 50725+ exs,
where
21 =21, 2z2=2x9, oce=0, e€{0;1}.
8. ul =zw! —xr—2(w? — x(t)),
U2 - wal + 1'17"72(11)2 - X(t))7 (3 8)
ud = (p(t)) " H(w? + pi(t)xs + € arctan xo /21, '
p=s5— %ptt(t)(p(t))*lxg + x:(t) arctan xo /1,
where
21 = t; z22 =T, €& {07 1}7 X P € COO((thtl) R)
9. G=w+ NN B)mi — ANk - )k,
Ui (3.9

mlom2 —mlom =0, k=m!xm2 i =m?xk,
P=kxml, A=At)=k-k#£0 Vte (to,t1).

3.2 Reduced systems

Substituting ansatzes (3.1)-(3.9) into the NSEs (1.1), we obtain the following systems
of reduced equations:

1. w?w] +wiw) — w'w? cot zp — (w')? — (w? + rw')?sin” 25 —

— (w3)? — ((5® +sin"? z0)wi; + why — sewl — 2w3 — 2w} —

— 2w!) sin 29 + wl cos zg — w! sin~! 29 — (28 + 281 sin? 20=10
2 )
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w? + wiwi + w? (w? + 23cw!) cot 29 —
—se((wh)? + (w?)? + (w? + sew?)?sin® 25) —
— ((3% + sin ™ zo)w}; + w3y + 3sw? + 23¢(wi + sew] +w'))sinzy +
+ (2w} 4 2w$ cot zg — w? — 2ew!) sin ! 29 —
— (w% + 232wl cos 29 + 23¢s sin? zy + (1 + »?sin? z9)s1 =0, (3.10)
w$ + w3ws — (w?)? cot 2o — (w? + rwt)? sin 29 cos 29 —
- ((% +sin 2 zo)w; + w3y + sewd 4 2wl) sin zo +
+ (2w + w3 + w} + sw]) cos 23 + sy sin’ 25 = 0,
wh +w? + w3 =0.
Hereafter numeration of the reduced systems corresponds to that of the ansatzes in
Subsection 3.1. Subscripts 1 and 2 denote differentiation with respect to the variables
z1 and zp, accordingly.
2-3. wlw] + wiw] — 27 ww? — (vl + (14 %22;2)’11}%2) -
— 2%21_210% + 51 =0,
wlw? +wdw3 + zl Lwlw? — (wn (1 Jr 22 P wdy) +
+ 23z w2—|—2z 2w? — sy sy d ezt =0, (3.11)
wrwd + wiwd — 23z 2wtw? — (wi + (1 + 2227 ?)wd,) +
+ 22(27 2w?) ) — 25227 wd + (1 + 3227 %) s — 3272 = 0,
w] +wi + 27wt + 4 =0,
where 7 = +3/2 for ansatz (3.2) and v = 0 for ansatz (3.3). Here and below the
upper and lower sign in the symbols “+£” and “F” are associated with ¢ > 0 and ¢ < 0,

respectively.
4-7. For ansatzes (3.4)-(3.7) the reduced equations can be written in the form

ww}—w + 51 + apw? =0,

wiw? — w 5 T So — Qaow L oqw? = s
i 2 ! (3.12)

w’ wi —wii+a4w + a5 =0,

wi = Q3

where the constants a,, (n =1,5), take on the values

4. o =423w, ag=F2xpu, az3=F(0+3/2), ay==L0, az=c.

5. a3 =0, ag =0, as=F(0c+3/2), ag==0, as=c¢.

6. oy =2v, g = =24, ag = —o, oy = 0o, as = €.

7. ap =0, as =0, az = —o, ay = 0, as = €.

8. wh+ (w')? — 25 H(w? — x)? + zowlws — wiy — (3.13)
— 322w% + 22_152 =0, '
w? + zowrwd — w3y + 25 'wi =0, (3.14)

w3 + zowwd — wiy — 25 'wd + 25 2 (w? — x) =0, (3.15)
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2wl + zowl + p1/p = 0. (3.16)
9. Wy — AMDaa + S0k + A"L(@ - W)l + 28 = 0, (3.17)
k- by = 0, (3.18)

where y; =t and
g=¢(t) =22 2(m) - m2 —m' - m)ky x k+ A2k - ky — kg - k).
Let us study symmetry properties of reduced systems (3.10) and (3.11).
Theorem 3.1 The MIA of (3.10) is given by the algebra (01).

Theorem 3.2 The MIA of (3.11) is given by the following algebras:

a) (02,05, D? = 2;0; — W¥Dpa — 250,) if Y= x=¢=0;
b) <82788> lf (77%76) 7é (0,0,0)

All the Lie symmetry operators of systems (3.10) and (3.11) are induced by
elements of A(NS). So, for system (3.10) the operator 9y is induced by Jy5. For
system (3.11), when v = 0 (y = £3/2), the operators D?, 85, and 95 (92 and 9)
are induced by D, R(0,0,1), and Z(1) (R(0,0,[t|~'/2) and Z(|t|=')), accordingly.
Therefore, the Lie reductions of systems (3.10) and (3.11) give only solutions that
can be obtained by reducing the NSEs with three-dimensional subalgebras of A(NS)
immediately to ODEs.

Investigation of reduced systems (3.13)-(3.16), (3.17)-(3.18), and (3.12) is given
in Sections 5 and 6.

4 Reduction of the Navier—Stokes equations
to ordinary differential equations

4.1 Ansatzes of codimension three

By means of subalgebraic analysis of A(NN.S) (see Subsection A.3) and the method
described in Section B one can obtain the following ansatzes that reduce the NSEs to
ODEs:
1. ul=2,R2p! — 29(Rr)~1e? + zya3r 1 R2¢3,
u? = 1o R720! + 21 (Rr)"1p? + xow3r "t R72p3,
ud = x3R2p! — rR™2¢3,

p=R"2h,

(4.1)

where w = arctanr/x3. Here and below ¢ = ¢%(w), h = h(w), r = (22 + 23)/2,
R = (2% + 23 +a3)'/%.
2wl =17zt —wa?),  w? =17 (2! + 11,

3 _ ,.—1,,3

4.2
rTe®, p=r_"h, “2

u
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where w = arctan za/x1 — > 1Inr, 3 > 0.
3. wt =m|t| et — mer 2% 4 JatTh,
u? = wolt] Tret + mrT2p? + Jaat T,
u? = [t|7V20% + (0 + Dast ™t + v|t|V/2t L arctan zo /21, (4.3)
p=t|'h+ §t72R? — Lo2xdt 2 +
+ €1|t|_1 arctan l‘g/l‘l + 52I3|t‘_3/2,
where w = |t|_1/2r, vo=0,e00=0,e;>0,v>0.
4, ul =29t — zor2¢?%
2 1 -2 2
uc=x +x1r
s 2390 1 ®, (44)
u’ = ¢° + oxg + varctan xy/x,
p=h-— %azxg + ey arctan o /x1 + €223,
where w =71, vo =0, eg0 =0, and for o = 0 one of the conditions
v=1,620 v=0,e=1,2>0;, v=e =0, g3 €{0;1}
is satisfied.
Two ansatzes are described better in the following way:
5. The expressions for u® and p are determined by (2.1), where
vl = a1p! + agp?® + bywi,
v? = ©? + byjwi,
3 1 3 (4.5)
v? =azp’ — a1p” + bgwi,
p=h+ cliw; + cojww; + %dijwiwj.
In formulas (4.5) we use the following definitions:
w1 = a1y1 + a2y3, W2 =Y2, W =w3=0a2y1 — a1y3;
a; =const, a?+a3=1; ay=0Iil v =0;
Y1 = —2, '72:—% it t>0 and -~ =2, 72:% it t<o.
bai, Bi, cij, and d;; are real constants that satisfy the equations
bi; = a1B;, b3 = aaB;, coi +azyibe; =0,
b21Bi + bazbai — y1a1B;i + d2; = 0, (4.6)

BB + Baby; +v1a1B; +dy; = 0,
(B1 + b22)(Ba + a1y — ba1) =0.

6. The expressions for u® and p have form (2.2), where v® and ¢ are determined

by (4.5), (4.6), and v; = —2s¢, o = 0.

Note 4.1 Formulas (4.5) and (4.6) determine an ansatz for system (2.7), where
equations (4.6) are the necessary and sufficient condition to reduce system (2.7)

by means of an ansatz of form (4.5).
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7. ul = pleosas/n® — p?sinas/n® + 1101 (t) + 220%(1),
u? = plsinag/n® + p? coswz/n® — x102(t) + 2201 (1),
u® = @* + 0} (n°) s,

p=h=dui ()" :

x3 — sni’ (n'n') "2,
where w = t,

n® € C>®((to,t1),R), m>#0, nin'#0, nin®—n'n? € {0;3},
0r = nin'(in?)=t, 62 = (nin® —n'nd)(nin?) "t

where w = t, m® € C%((to,t1),R), m% - mb —ma - m?, =0,
A=At) = (mt xm?)-m3#0 VteE (ty,t1),
At =m?2 xm3, #2=m3xm!, @ =m!xm2

4.2 Reduced systems

(4.7)

(4.8)

Substituting the ansatzes 1-8 into the NSEs (1.1), we obtain the following systems of

ODE in the functions ¢® and h:

L. 903%{, — % — ‘P&;w — cp&) cotw —2h =0,

O30 + 2P cotw — 2, — P2 cotw + @2 sin >

w =0,

PPl — PP cotw — @3, — ¢l cotw + P sinT?w — 2], + hy =0,

ol + @3 + o3 cotw = 0.

2. (¢? — spl)pl — (14 22l , — ot — ©?p? — 3h, — 2h = 0,

(9 = 20" 2 — (1 + %), — 20502, + @L,) + by = 0,
(2 — ") 3 — (1 + 322, — o1 ® — 0® — 25093 =0,
2 — 2oy, =0.

3-4. plo! w0 +wplel — e, — 3wl +wTHhy =0,

w2 — @2, +w gl 461 =0,
welpd + 019® +vw™2? — @3 —w Tl + 62 =0,
2<p1 +w<p&) + 09 =0,

3) if >0,
o1 = —o0, oy =—(0+32) it t<O0.

4. o1 =09 =o0.

5-6. ©3pl — b, — pie’ + e+ caw =0,
O3% — 02, — p2ip’ + 12 4 caow + y2a20® = 0,
O30 — 3., +7a20° + hey, =0,

3
P = 0,

(4.9)

(4.10)

(4.11)

(4.12)
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where p111 = —Bi, pi2 = —Ba—7101, po1 = —ba1+7101, poe = —baa, 0 = y1—B1—baa.
Ty + 010! +020% — ()T + () 2! =0,
02 — 0%t + 070 + () TPl + () T2e? = 0,

) (4.13)
@3 +nP(nP) e =0,
20" + ()~ =0.

8. o+ AU @b =0,
@ (17 - p)iy (4.14)

=a

e - m¢ = 0.

4.3 Exact solutions of the reduced systems

1. Ansatz (4.1) and system (4.9) determine the class of solutions of the NSEs (1.1)
that are called the steady axially symmetric conically similar flows of a viscous fluid
in hydrodynamics. This class of solutions was studied in a number of works (for
example, see references in [16]). For ©? = 0 it was shown, by N.A. Slezkin [34], that
system (4.9) is reduced to a Riccati equation. The general solution of this equation
was expressed in terms of hypergeometric functions. Later similar calculations were
made by V.I. Yatseev [38] and H.B. Squire [35]. The particular case in the class of
solutions with ¢? = 0 is formed by the Landau jets [24]. For swirling flows, where
©? # 0, the order of system (4.9) can be reduced too. For example [33], an arbitrary
solution of (4.9) satisfies the equation

2

©rp?sin?w — sinw(®,, sin™! W)y + 2P, cot w + 2& = const,

where @ = (92 — 2¢303)sin®w — @3 coswsinw, and the Yatseev results [38] are
completely extended to the case ¢?sinw = const.
2. System (4.10) implies that

©? = 2! + Oy,
h=3(1+ 52l + (2% + 2 — 5C1)p* + Co,
(1 + 22l + (42 — C1)pl + o' + 40! + (4.15)

+ (145" YC? +203) =0,

(L4 5%)d, = (Cr = 25)) + (1 + ") = 0.
If ¢? = 0, the solution determined by ansatz (4.10) and formulas (4.15) coincides with
the Hamel solution [18, 23]. In Section 6 we consider system (6.14) which is more

general than system (4.10).
3-4. Let us integrate the last equation of system (4.11), i.e.,

Lpl = Clw_2 - %0'2. (4.16)

Taking into account the integration result, the other equations of system (4.11) can
be written in the form

_ _: 1
he = w™3pp? + Clw™ — fojw,

02, — (C1+ Dw™! — Loow) @l =e1,
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3, — ((C1 = Dw™ — Logw)pd — 0193 = vw=2¢% + &5. (4.17)
Therefore,
h=[w3p?@?dw — 1C3w™2 — Lo3uw?, (4.18)
= ot Cy [ ol e o 1
) 4.19
+€1f|w|cl+1€7%”2wz (f|w|7clfle%”2‘”2dw)dw. (*4.19)
If o1 =0, it follows that
* = Oy +Cs [ |w]@ e 572 dw +
(4.20)

+ [|w|@rtem a0 (f jw|~Crtleiree’ (g, +uw*2g02)dw)dw.

Let o1 # 0 (and, therefore, v = 0). Then, if o9 # 0, the general solution of equation
(4.17) is expressed in terms of Whittaker functions:

3 _ | ,|3C1—1,— 102w -1, 1 11 1 2
@° = w21 eT52Y W (—0105  + ;C1 — 3, 701, 702w7),

where W (¢, u, 7) is the general solution of the Whittaker equation
A4T°Wor = (12 — doer + 4 — DW. (4.21)

If oo = 0, the general solution of equation (4.16) is expressed in terms of Bessel
functions:

1
¢ = Wl Zyc, ((—o) V%),
where Z,(7) is the general solution of the Bessel equation
27 + 12 4 (12 = V?)Z = 0. (4.22)

Note 4.2 If o9 =0, all quadratures in formulas (4.18)-(4.20) are easily integrated.
For example,
Cy+ Csln|w| + islwg it ¢ =-2,
?=< Co+ 03%(4}2 + %61w2(lnw — %) it Cy=0,
Cy + 03(01 + 2)_1|w|01+2 - %alele it C; #-2,0.

5-6. Let 0 = 0. Then the last equation of system (4.12) implies that ¢* = Cy =
const. The other equations of system (4.12) can be written in the form

h=—maz [ (W), (4.23)

Piow = Coply + pijp? = vii + vaiw,
where V11 = C11, V21 = C21, V12 = C12 +’}’20/2C’0, V99 = C292. System (423) is a linear
nonhomogeneous system of ODEs with constant coefficients. The form of its general
solution depends on the Jordan form of the matrix M = {;;}. Now let us transform
the dependent variables

' = €ijW,
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where the constants e;; are determined by means of the system of linear algebraic
equations

eijiik = pagee (65, k =1,2)

with the condition det{e;;} # 0. Here M = {/i;;} is the real Jordan form of the matrix
M. The new unknown functions 1" have to satisfy the following system

bw — Covl, + flij )’ = i + Daiw, (4.24)
where vi; = e;;U15, v2; = e;jia;. Depending on the form of M, we consider the
following cases:

A. det M = 0 (this is equivalent to the condition det M =0 ).

i. M= (8 8), where € € {0;1}. Then

P2 = O + Coreov — %~22061w2 — (D12 — 2205 1) Cy M,
Pl = O3 + Cre® — 15, Oyl w? — (011 — i Cy 1) C tw +
+ 5(—%922052 3 %(512 — 2522061)052w2 + (425)
+(C1 + (71 = 202265 1) C5 ) O — o Hwe )
for Cy # 0, and
P? = C1 + Cow + §ipaw® + 1202, | (4.26)

1,[)1 = Cg + C’4w + %(1721 — CQ)CL)g + %(1711 — C’l)oﬂ — ﬁﬂgﬂd‘a — iﬂlgw
for C() =0.

aal 0
0 O
formula (4.25) for Cy # 0 or by formula (4.26) for Cy = 0. The form of ¢! is given
by formula (4.28) (see below).

B. det M # 0 (this is equivalent to the condition det M # 0).

ii. M = ) , where 31, € R\{0}. Then the form of +? is given either by

i M= < 0 ) , where 3¢; € R\{0}. Then

0 s
V% = Dygsy 'w + (g — Colagrey )y ' + C16%H (W) + Co6%2 (W), (4.27)
P = D1 tw + (11 — Colarsey M) '+ C30' (W) + Cub? (w), (4.28)
where

0! (w) = exp(5(Co — VDi)w), 02(w) = exp(5(Co + vD;)w)
if Di:Cg—él%i > 0,

011 (w) = 2w cos(3v=Diw), 0?(w)= e2Cow sin(3v—Diw)
if D; <0,
Qil(w) _ e%CO‘”, 9i2(w) _ we%cow

it D;,=0.
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~ b0

0 ; ) , where »; € R\{0}. Then the form of 1?2 is given by formula
2

(4.27), and

’(/)1 = (]711 — (1712 - 00522%51)%51 - Co(ﬂzl - 522%;1)%51)%;1 +
+ (521 — 1722%2_1)%2_1w + 03921((4)) + 04922((.4}) — C’m’(w),

where
7 (w) = D3 'w(20% (w) — Cob% (w)) it Dy #0,
nt(w) = 1w26500‘” n?(w) = gw? exCw if Dy =0.

iii. M = ( T ) , where s;; € R, 25 # 0. Then

2 !

Pl = (se50) "N (Da1501 + Donsreo)w + (3656) " H(T11301 + Dr2sen) —
— CO(%i%i)_2 (1721(%% — %%) — 17222%1%2) + Cnﬁln(w),

V2 = (3¢;3¢;) " (=130 + Daosa )w + (5656) " H(—D11500 + Dr23e1) —
— Co(%i%i)72 (V212%1%2 + 1/22(%3 — %1)) + Cno ( )

where n = 1,4,
=/(C2 — 4301)% + (432)?,
= 1/2(y+ CF —4sa1), = 2221\ /2(y = CF + 4s11),

0" (w) = 67*(w) = exp((5Co — Pr)w) cos faw,

—0?'(w) = 0"*(w) = exp((5Co — f1)w) sin faow,

'3 (w) = 0**(w) = exp((5Co + B1)w) cos faw,

6% (w) = =0 (w) = exp((5Co + B1)w) sin fow.

If o # 0, the last equation of system (4.12) implies that ¢® = ow (translating w,

the integration constant can be made to vanish). The other equations of system (4.12)
can be written in the form

122

h=—-va 2(w)dw — 202w
. 2{90( o =5 (4.29)
Pow — OWP, + MUW =1 + VoW,

where Vi1 = €11, V91 = C21, V12 = C12, V22 = C22 + Y2020. The form of the general
solution of system (4.29) depends on the Jordan form of the matrix M = {y;;}. Now,
let us transform the dependent variables

' = e,

where the constants e;; are determined by means of the system of linear algebraic
equations

eijlijk = pagee  (i:5,k =1,2)

with the condition det{e;;} # 0. Here M = {ji;;} is the real Jordan form of the
matrix M. The new unknown functions 1 have to satisfy the following system

o — OWUL + i = Dy + D, (4.30)
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where vy; = e;ji15, Vo; = ej;la;. Depending on the form of M, we consider the
following cases:

A. det M = 0 (this is equivalent to the condition det M = 0).

i M= (8 g),where e € {0;1}. Then

1/)2 = Cl + CQ j‘e%ngdw — Uilﬂggw + 1712 j‘eéauﬂ (f 67%""’2dw)dw, (431)

Pl =C3+Cy fe%"“ﬂdw —o w4+ | ezow’ (f e 30w’ (11 — EwQ)dw)dw.

ii. M = ( g g > Then the form of 4?2 is given by formula (4.31), and

Pl = Caw + C’4(wfe%"“’2dw — 0’16%"“’2) +o g +

+ 07 o1 (ow [ ez A\ (w)dw — e%"“’z)\l(w)),
where Al(w) = [ e 7% dw.

iii. M = ( ng 8 > , where »; € R\{0;0}. Then 1?2 is determited by (4.31), and

the form of ! is given by (4.33) (see below).
B. det M # 0, det{fi;; — 0d;;} = 0 (this is equivalent to the conditions det M # 0,
det{p;; — 0d;;} = 0; here §;; is the Kronecker symbol).

[0 € _
1.M<0 0>,where5€{0,1}.Then

P2 = Chw + Cy (w fe%‘wzdw — a‘le%"“’Z) + o 15 + vspacelmm
+ 07t igg (ow fe%‘“*ﬂ)\l(w)dw - e%‘“ﬂ)\l(w)),

(4.32)

Pt = Caw + C4(wfe%"‘”2dw — o_le%‘wz) +o iy +

+ow [e279°)\2(W)dw — €279 N2 (W) + 0~ (Tgyw — e9?),

where A (w) = [ 737 dw, A2(w) =0 [ 37 (i — e9?)dw.

i. M = ng 2 ), where 51, € R\{0;0}. In this case ¥? is determined by

(4.32), and the form of +* is given by (4.33) (see below).

C. det M # 0, det{fi;; — 0d;;} # 0 (this is equivalent to the condition det M # 0,
det{p;; — 0d;;} # 0: here §;; is the Kronecker symbol).

i M= ( 0 > , where 3z; € R\{0;0}. Then

0 %)

wl = %1_11711 =+ (%1 — 0')_11;210) =+ |W|_1/2€%0w2 X
L (4.33)
).

1 -1 111 2 1 —1 1 11
X (CgM(§%10' +Z,Z,§Uu} )+C4M(§%10' +Z,—Z,§Uu}
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’(/)2 = %51512 + (%2 — 0)711722(4} =+ |w|71/2e%”°’2 X

(4.34)
(C’l ( ot + 1, 4,2aw 2) + CoM (5 o™+ 1, -1, 5 wQ)),
where M (3¢, u,7) is the Whittaker function:
M(%7/1'7T) :T%JrHei%TlFl(%"’_;U’_%72/1'—’_177—)7 (435)

and 1Fy(a,b,7) is the degenerate hypergeometric function defined by means of the
series:

+1)...(a+n—1)7m"
1Fi(a,5,7) _sz ;..Eb+n1))ﬁ’

n=1

b40,—1,-2,....
ii. M = ( S ),where % €R, 5 # 0. Then

) sl
Pl = (55¢) 7 G + sii2) + (50 — 0)? + 253) 7 (a1 — 0) P21 + s2092)w +
+ C1Renl(w) — Colmnt(w) + C3Re n?(w) — Cylmn?(w),
V2 = (3¢j3¢) " (=011 + sa1012) +
+ ((%1 — 0’)2 + %%)_1(—%21721 + (%1 — 0)1722)01 +
+ C1Imnt(w) + CoRent (w) + C3lmn?(w) + C4Re n?(w),

wl = (1711 — 1912%2_1)%2_1 + (1721 - 522(%2 - 0') )(%2 — a)_lw +
+ |w| 1/ 2ea0? (036‘1(7) + Cab?(1) — o710 (1) [ 7107 (1) Ci0" (T)dr +
+o0710%(7) fT_lel(T)CiOi(T)dT),

where 7 = Jow?,

0 = M(Gar™ + kb)) = M(pao 44 —hr).

Note 4.3 The general solution of the equation

Vpw — owh, — (n+ 1o =0,

where n is an integer and n > 0, is determined by the formula

dm 12 12 dn 1,2 —2
/d): 620'(4} Cl+c2/620'(4} 620'14) d(JJ .
dw™ dw™
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Note 4.4 If function v satisfies the equation
www - Uw’ll)w + %7/] =0 (% 7£ 70—)3
then [¢(w)dw = (¢4 o)~ (ow) — ) + C1.

7. The last equation of system (4.13) is the compatibility condition of the NSEs
(1.1) and ansatz (4.7). Integrating this equation, we obtain that

n* = Co(n'n")~", Co#0.

As 3 = —n2(n3) 713 = 201p3, 3 = Csn'n’. Then system (4.13) is reduced to the
equations

1 _ 1 1.2 2
90; x2(w)s01 xl(w)w2, (4.36)
0o = xA(w)e' + xH(w)e?,

where x!' = —Cy2(n'n")? — 6" and x? = 6% — C3C;* (n'n')?. System (4.36) implies
that

o' = exp([ x'(w)dw) (01 cos( [ x*(w)dw) — Cysin( [ XQ(w)dw)),
¢? = exp([ x*(w)dw) (6’1 sin( [ x*(w)dw) + Cy cos( [ X2(w)dw)).

8. Let us apply the trasformation generated by the operator R(k(t)), where

—

ke = A7H(A° - R)yml — @,

to ansatz (4.8). As a result we obtain an ansatz of the same form, where the functi-
ons @ and h are replaced by the new functions ¢ and h:

!

G=F— AU k)yme + k = 0,
ho=h—A"L(mg - k) (A k) + IA72(mb, - me) (@ - k) (A - k).

Let us make h vanish by means of the transformation generated by the operator
Z(—h(t)). Therefore, the functions ¢ and h can be considered to vanish. The equation
(7 - m¢) = 0 is the compatibility condition of ansatz (4.8) and the NSEs (1.1).

Note 4.5 The solutions of the NSEs obtained by means of ansatzes 5-8 are equivalent

to either solutions (5.1) or solutions (5.5).

5 Reduction of the Navier—Stokes equations
to linear systems of PDEs

Let us show that non-linear systems 8 and 9, from Subsection 3.2, are reduced to
linear systems of PDEs.
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5.1 Investigation of system (3.17)-(3.18)

Consider system 9 from Subsection 3.2, i.e., equations (3.17) and (3.18). Equation
(3.18) integrates with respect to z5 to the following expression:

k- = 1(t).

Here ¢ = 4(t) is an arbitrary smooth function of z; = ¢. Let us make the transfor-
mation from the symmetry group of the NSEs:

where Iy - mf — - mi, = 0 and
ko (=AY Dmi + 27k - Dky) + ¢ =0.

This transformation does not modify ansatz (3.9), but it makes the function (t)
vanish, i.e., k- =0. Therefore, without loss of generality we may assume, at once,
that k- @ = 0.

Let f! = fi(z1,22) = m' - . Since m}, - m? —m! - M2, = 0, it follows that
my -m? —m!-m? = C = const. Let us multiply the scalar equation (3.17) by i’
and k. As a result we obtain the linear system of PDEs with variable coefficients in

the functions f* and s:

Fi= My + CATY((m? ) 1 — (m? - mh) f2) — 20072 ((k x ky) - m?)z0 = 0,
o= 2NT2( - ky) f1 4 N2 (kg - b — 2k - Ky) 20
Consider two possible cases.

A. Let C = 0. Then there exist functions ¢* = g*(7,w), where 7 = [ A(t)dt and
w = 2, such that /= g¢ and g% — g}, = 0. Therefore,

i = A7 (gL (7, w) + 1 - B)iTt — AT (ky - Bk,
p=22"2(7 - k)i (1, w) + SN2 (kg - k — 2k - By )w? — (5.1)
— AT @) (g, - ) — %A*Z(E g (7 2) (K - &),

H
!
L
!
[NV}

|
o
~

Ml
Sl
L

X
31
Sl
5L

Il
]
o
>

Il
S
. [\v}

where mj -m? —m!-m? =
w=k- ,Tzf)\ dt,andgi—gww:O

For example, if . = (n'(t),0,0) and 7@ = (0,n2(t),0) with n¢(t) # 0, it follows that

ut = (") M nte), W =) TP nfae), WP = —('n?)(n'n?) s,
p=—3ni(n") 2 — $nZ(n?)tad +
2
+ (%(771772)%(77 )t = (') (n'n?) 1) )w?,
Whereflzf’( ) i,o=0, zf )?dt, and w = np'pPxs. 1 mt =

ww

(n*(t),n*(#),0) and :(0,0777() thn()%oaﬂdn() '(t) # 0, we obtain



Symmetry reduction and exact solutions of the Navier-Stokes equations 203

that
= (')t (g + mis) — 2 (F O0%) 2w + s — mfan)
= (n'n") 1{772 9o + i) + 0t (0 () Pw + e — nfws) }
u? = (1°) M (f + njxs),
p=2%)" (' —nin?)('n’) Pg 4+ 3T x
X {/\ Y(min® = 200 )n'n’ = 20nin'ni — 2(0°)*nin})w? +
+ )2 (P, = n' k) (@3 = 28) = 20nky® + n')arws) — winnPndad ).
Here f = f(nw), fr = foo = 0, g = g(1,w), gr — guw = 0, 7 = [(n*)*n'n'dt,

w =n*(n?x1 — nlzz), and A = (n*)*n'n’.

Note 5.1 The equation
mi-m? —mt-m2 =0 (5.2)
can easily be solved in the following Way: Let us fix arbitrary smooth vector-functions

m, 1 e C°°((to,t1),R3) such that m!(t) # 0, I(t) # 0, and @ (t)-[(t) = 0 for all
t € (to,t1). Then the vector-function m? = m?(t) is taken in the form

m2(t) = p(t)m* + 1(¢t). (5.3)
Equation (5.2) implies
p(t) = [l )" (] - T—m! - ). (5.4)

B. Let C' # 0. By means of the transformation m‘ — a;;m7, where a;; = const and
det{a;;} = C, we make C' = 1. Then we obtain the following solution of the NSEs

(1.1)

>/
/—\
SN
<
/‘\
\_/
)
)
—
ﬂ
S
S—
+
<
o
SN~—
_|_
S
-~ =
8
|
>
L
i
X
S
\_:‘
8
N—
N—
3
|
>
L
—~
=
8
S~—
=

(
= 2A~2(q7 - Et)(ﬁij(t)gi(’r,w) + 300 (8)w?) + IA2(Ryy - K — 2K, - By )w? — (5:5)
WAL T) (G - B) — SN2 (k- i) (7 - D) (k- ).
Here m} - m? — m! - mt:I,E_mlme it =m2 x k, w2 =k xm!, A= k]2
= k-2 7= [A#)dt, and g& — g\, = 0. (8Y(t),6%(t)) (i = 1,2) are linearly
independent solutions of the system

0 + AL - m2)0" — AL - o2 = 0, (5.6)
and (6'°(t),02°(¢)) is a particular solution of the nonhomogeneous system
i+ ALt - m2)0t — ANt mt)e? = 2372 ((k x ky) - i), (5.7)
For example, if m! (ncosz/)msinw,o) and m? = (— 77sin1/),77cosz/1,0)7 where
=7(t) #0 and ¢ = —% [(n)~2dt (therefore, mj - m* — m' - m7 = 1), we obtain

ul=n" (f1 cosw — f2sinv + nuzy — %77_1.752),
u? =t (fsing + f2cos )+ mws + 50 1),
u? = =2 s,

2

p = (nun — 3nene)n a3 — 5 (nun ™

— I Y.
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Here f' = fi(r,w), fi — fi, =0, 7= [(n)*dt, and w = (n)%x3.
Note 5.2 As in the case C' =0, the solutions of the equation

my-m? —mtom =1 (5.8)
can be sought in form (5.3). As a result we obtain that

p(t) = [ |mt[~2(m} - T—mt I — 1)dt. (5.9)

Note 5.3 System (5.6) can be reduced to a second-order homogeneous differential
equation either in 6%, i.e.,

(At =268) + (ot m) it 72), + it %) 6t =0 (5.10)
t
(then 62 = || "2(AG + (" - @2)61)), or in 62, ie.,
(M2 26 )+ (= (Gt i) =), + 7% ~2) 6% = 0 (5.11)
t

(then 6 = |m2|=2(=\07 + (m! - m?)0?)). Under the notation of Note 5.1 equation
(5.10) has the form:

(- 08}, + [m|~2(m; - T —m" - )6 = 0. (5.12)

The vector-functions /! and [ are chosen in such a way that one can find a fundamen-
tal set of solutions for equation (5.12). For example, let m x my # 0 Vt € (to,t1). Let
us introduce the notation 7 := m! and put I = n(t)m x My, where n € C((to,11),R),
n(t) 7é 0Vt e (to,tl). Then

M l=0, iig-l—m-l, =0, m?>=—([|m|"2dt)m +mi x i,
k=i x (i x i), A= (n)2[m[2|m x | 2,
72 = 2w x my, i@t = ([ w7 2dt) a2 + (n)2[m x 1|2,

011 (t) = [(n)~2|m x | ~2dt, 0% (t) =1— 6 [ |m|2dt,
012) =1, 022(t) = — [ || 2,
010(t) = 2 [ (((70 x 17e) - g ) 170 x 170e| =2 4 [~ |~ At )= 2| x a7 | ~2dlt
620(t) = —010(t) [ |m|2dt + 2 [~ |m|dt.
Consider the following cases: m x my = 0, i.e., m = x(t)@, where x(t) €

C*((to,t1), R), x(t) # 0Vt € (to,t1), @ = const, and |@| = 1. Let us put

[(t) = n* ()b + n*(t)¢,
where n,n2 € C*((to,t1),R), (n'(t),n2(t)) # (0,0) Yt € (to,t1), b = const, |b] = 1,
a-b=0, and ¢=a x b. Then

m? = —(x [ x72dt)@ +n'b+n?¢, k= xn'é— xnb,

A=), @2 = (0 +n?e), A= (fx2dt)a? + xn'n'a,

911 — f(nini)—ldt7 921 =1— 911 fX_2dta 012 — 1’ 922 — _fX_2dt7

010 =2 [(min' —wPny)x""(n'n")~"dt, 620 = =010 [x~2dt.
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Note 5.4 In formulas (5.1) and (5.5) solutions of the NSEs (1.1) are expressed in
terms of solutions of the decomposed system of two linear one-dimensional heat
equations (LOHESs) that have the form:

G = G- (5.13)

The Lie symmetry of the LOHE are known. Large sets of its exact solutions were
constructed [27, 3]. The @Q-conditional symmetries of LOHE were investigated in [14].
Moreover, being decomposed system (5.13) admits transformations of the form

g (W) = Fl(1,w, ¢l (1,w)), 7 =GYrw), o' =HYrw),
P u") = Frw @ (rw)), ™ =Grw), o = H(rw),

where (G, H') # (G? H?), i.e. the independent variables can be transformed in
the functions g' and g2 in different ways. A similar statement is true for system
(5.19)-(5.20) (see below) if e = 0.

Note 5.5 [t can be proved that an arbitrary Navier—Stokes field (i, p), where

—

@ = d(t,w) + (K (t) - D)1 (t)

with k1" € C((to,t1),R3), k* x k2 # 0, and w = (k' x k2) - &, is equivalent to
either a solution from family (5.1) or a solution from family (5.5). The equivalence
transformation is generated by R(mi) and Z(x).

5.2 Investigation of system (3.13)-(3.16)

Consider system 8 from Subsection 3.2, i.e., equations (3.13)-(3.16). Equation (3.16)
immediately gives

wl = —%ptp_l +(n- 1)2;2_2, (5.14)

where n = n(t) is an arbitrary smooth function of z; = ¢. Substituting (5.14) into
remaining equations (5.13)-(5.15), we get

@2 =3((pp™ e — 3(pep™ ")) 22 —mzy ' — (0 — 1)%25° + (w? — x)?23%, (5.15)
1

w} —why + (N2 " — §pep~ ' z2)ws =0, (5.16)

wh = wdy + (075" — Lo~ 2wl + (w? — )22 = 0. (5.17)

Recall that p = p(t) and x = x(t) are arbitrary smooth functions of ¢; € € {0;1}.
After the change of the independent variables

7= [lp®)|dt, =z=|p(t)]*?2 (5.18)
in equations (5.16) and (5.17), we obtain a linear system of a simpler form:
w2 —w?, +7(7)z" w2 =0, (5.19)

wd — w3 4 (H(1) — 2)27 wd + e(w? — x(1))2z72 =0, (5.20)
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where 7)(7) = n(¢t) and x(7) = x(¢). Equation (5.15) implies
= 1 ((oep™")e = 3(pep™")?) 23 — e In | 22| —
=3 =127 + [(w(r,2) = X(7))?2 *dz.
Formulas (5.14), (5.18)—(5.21), and ansatz (3.8) determine a solution of the NSEs
(1.1).

If e = 0 system (5.19)-(5.20) is decomposed and consists of two translational
linear equations of the general form

frt ’F](T)Zilfz — [ =0, (5.22)

where 77 = 7 (] = 1, — 2) for equation (5.19) ((5.20)). Tilde over 7 is omitted below.
Let us investigate symmetry properties of equation (5.22) and construct some of its
exact solutions.

(5.21)

Theorem 5.1 The MIA of (5.22) is given by the following algebras

a) = (f0y, g(7,2)9s) if n(T)# const;
b) Ly=(d;, D, 0, [0y, g(7,2)d) if n(r)=const, n¢&{0;—-2};
¢) Ly=(0-, D, II, 0, + $nz"'f0y, G = 270, — (2 — nz"'7) 0y, fOy,

g(1,2)0f) if ne€{0;—-2}.

Here D = 270, + 20., Tl = 4720, + 4720, — (2> + 2(1 — n)7)fds; g = g(7,2) is an
arbitrary solution of (5.22).

When 7 = 0, equation (5.22) is the heat equation, and, when n = —2, it is reduced
to the heat equation by means of the change f = zf.

For the case n = const equation (5.22) can be reduced by inequivalent one-
dimensional subalgebras of Ly. We construct the following solutions:

For the subalgebra (0. + afdy), where a € {—1;0;1}, it follows that

[=eT2(Ci1),(2) + C2Y,(2)) il a=-—1,
f=e2"(CiI,(2) + CoK,(2)) il a=1,
f=C1zm 4+ Cy if a=0 and n# -1,
f=Cilnz+Cy if a=0 and n=-1.

Here J, and Y, are the Bessel functions of a real variable, whereas I, and K, are
the Bessel functions of an imaginary variable, and v = 1(n + 1).

For the subalgebra (D + 2afd;), where a € R, it follows that
f=lrlrem2 w2 DW (3 (n = 1) = a, §(n + 1),w)
with w = ZZ 2771, Here W (s, u,w) is the general solution of the Whittaker equation
4 Wy = (wW? — doew + 4p* — D)W,
For the subalgebra (0. +II + af0y), where a € R, it follows that
f=4r2+1)i0D exp(—7w + Laarctan 27)p(w)
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with w = 22(472 4+ 1)~1. The function ¢ is a solution of the equation
dwpuw +2(1 = n)pw + (w — a)p = 0.
For example if a = 0, then ¢(w) = w# (ClJ#(%w) + CQY#(%W)), where pn = 1(n+1).
Consider equation (5.22), where 7 is an arbitrary smooth function of 7.
Theorem 5.2 Equation (5.22) is Q-conditional invariant under the operators
Q' =0, +g'(1,2)0: + (¢*(7.2) f + ¢°(7.2)) Oy (5.23)
if and only if

gt —nz gl +nz72gt — gl +2glg" — 2Tt +2¢2 =0,

gk + gk — gk +2glgF =0, k=23, (5.24)
and

Q= 0.+ B(r,2,1)d; (5.25)
if and only if

B, —nz?B+4+n2"'B, - B.., — 2BB.; — BzBff —o. (5.26)

An arbitrary operator of Q-conditional symmetry of equation (5.22) is equivalent to
either an operator of form (5.23) or an operator of form (5.25).

Theorem 5.2 is proved by means of the method described in [13].

Note 5.6 It can be shown (in a way analogous to one in [13]) that system (5.24) is
reduced to the decomposed linear system

frameT e = 2 =0 (5.27)

by means of the following non-local transformation

1 r2 1,2
1 zzf 7f zz -1
ST T
o fLE -1 (5.28)

UYEEY AN
g =fL -z 2+ g R - g2
Equation (5.26) is reduced, by means of the change
B=-®,/0;, ®=(1,2f)
and the hodograph transformation
Yo=T, y1=2 Y= V=7
to the following equation in the function ¥ = W(yo, y1, y2):

\ijﬂ + 77(’#0)91_1‘1'1;1 - \ijﬂh =0.
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Therefore, unlike Lie symmetries @-conditional symmetries of (5.22) are more
extended for an arbitrary smooth function n = n(r). Thus, Theorem 5.2 implies that
equation (5.22) is Q-conditional invariant under the operators

0., X=0.+n-12"9., G=2r+C)d.— 2f0;

with C' = const. Reducing equation (5.22) by means of the operator GG, we obtain the
following solution:

f=0Cy(z2 =2 [(n(r) — 1)dr) + C. (5.29)

In generalizing this we can construct solutions of the form
N
f=Y TFr)2*, (5.30)

where the coefficients 7% = T*(7) (k = 0, N) satisfy the system of ODEs:
2k +2)(n(r) =2k —1)TF1 =0, k=0,N—-1, TN =o0. (5.31)

Equation (5.31) is easily integrated for arbitrary N € N. For example if N = 2, it
follows that

f= 03{24 — 422[ (n(r) — 3)dr+ 8f< —1) [(n(r) - 3)d7)d7} +
+ C’z{zQ -2 [(n(r) - l)dr} + C1.

An explicit form for solution (5.30) with N =1 is given by (5.29).
Generalizing the solution

f=Coexp{—z%(47 +2C)~' + [(n(r) = 1)(27 + C)dr} (5.32)

obtained by means of reduction of (5.22) by the operator GG, we can construct solutions
of the general form

f= ZS’“ (227 +C)1)*" x

(5.33)
X exp{—z (4r+2C)" + [(n(r) = 1)(27 + C’)_ldr},
where the coefficients S* = S*(7) (k = 0, N) satisfy the system of ODEs:
Sk 4+ (2k+2 —2k —1)(21 + C)725%+1 =0,
£ 2k 2)0(r) 2% - 1)(2r 1 C) 65

k=0,N—-1, SN=o.
For example if N =1, then
f:{Cl( 2027 + C)~ —2f 1)(2r +O)" 2d7>+00}><
X exp{ 247 +20)~ f H2r+C) 1dr}.

Here we do not present results for arbitrary IV as they are very cumbersome.
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Putting g2 = ¢ = 0 in system (5.24), we obtain one equation in the function g

gr =027 gs 02t — g+ 2029 — ez =0,
It follows that g* = —g./g+ (n—1)/2, where g = g(7,2) is a solution of the equation

gr+(n—2)27"g: — g.. = 0. (5.35)
Q@-conditional symmetry of (5.22) under the operator

Q=0+ (~g:/9+ (n—1)/2)0: (5.36)
gives rise to the following
Theorem 5.3 If g is a solution of equation (5.35) and

f(r,2) = fzzo 2'g(r,2")dz +

7, (209- (', 20) = (1(7') = Dg(r', 20) ) ',

where (19, 20) is a fixed point, then f is a solution of equation (5.22).

(5.37)

Proof. Equation (5.35) implies
(29)r = (29: — (n —1)g)-
Therefore, f, = zg, fr =29, — (n—1)g and
fT+nz_1fz_fzz:Zgz_(n_l)g+ng_(zg)z:0 QED
The converse of Theorem 5.3 is the following obvious
Theorem 5.4 If f is a solution of (5.22), the function
g=2z2"1f. (5.38)
satisfies (5.35).

Theorems 5.3 and 5.4 imply that, when n = 2n (n € Z), solutions of (5.22) can be
constructed from known solutions of the heat equation by means of applying either
formula (5.37) (for n > 0) or formula (5.38) (for n < 0) |n| times.

Let us investigate symmetry properties and construct some exact solutions of
system (5.19)-(5.20) for e =1, i.e., the system

wh —wl, +A(r)z ! =0, (5.39)

w} —w?, + (7(7) = 2)z 7 w? + (w' = ¥(1))27* = 0. (5.40)

If (w!,w?) is a solution of system (5.39)-(5.40), then (w!,w? + g) (where g =
g(T,z)) is also a solution of (5.39)-(5.40) if and only if the function ¢ satisfies the
following equation

gr = gz= + (1) = 2)27 9. =0 (5.41)
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System (5.39)—-(5.40), for some ¥ = ¥(7), has particular solutions of the form
N N-—-1
w! = ZTk(T)ZQk, w? = Z SF ()22,
k=0 k=0
where T°(7) = Xx(7). For example, if X(7) = —2C; [(7)(7) — 1)dT 4+ C5 and N = 1,
then
w' =C1 (22 =2 [(7(r) — 1)dr) + C2, w? = —C17.
Let x(7) = 0.

Theorem 5.5 The MIA of system (5.39)-(5.40) with x(7) = 0 is given by the
following algebras

a) {w'dyi, W(T,2)0y:) if N(T) # const;
b) (270, + 20,, Or, W'Dy, W'(T,2)0y:i) if H(T) = const, 7 # 0;
e) (270, + 20,, 0-, w27 02, WOy, WH(T,2)Dy:) if H=0.

Here (w*,w?) is an arbitrary solution of (5.39)-(5.40) with Y(7) = 0.

For the case x(7) = 0 and #(r) = const system (5.39)-(5.40) can be reduced
by inequivalent one-dimensional subalgebras of its MIA. We obtain the following
solutions:

For the subalgebra (9;) it follows that

wl=Cilnz+ Cy,
w? = iCl(ln2 z—1Inz)+ %Cg Inz+ Cs272+Cy

w! = C122 + Cs,
w? = 1022 + 5021H2Z+C’31nz+04

itn=1,

wt = Clz’Hl + Cs,
w? =1C1(N+ 1) + Co(f — 1) Mnz 4 C32"7 1 + Cy

it g {-1;1}.
For the subalgebra (9, — w'd,,:) it follows that

w' = e 220N (z), w? = e (T Dy(z),
where the functions 1! and v? satisly the system
2Pl + 2l + (22 = (0 +1))w! =0, (5.42)

222+ 22 4 (22— 20— 1)2)y? = 29l (5.43)
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The general solution of system (5.42)-(5.43) can be expressed by quadratures in terms
of the Bessel functions of a real variable J,(z) and Y, (z):

Pl =C1J41(2) + Co u+1( )
Y2 = C3J,(2) + ChY,(2) z) [ Ju( 2)dz — ZJ,(2) [V, (2)¢!(2)dz
with v = 2(f — 1);
For the subalgebra (9, + w'd,,:) it follows that
wh = AT, w? = D),
where the functions ! and 1?2 satisfy the system
2L+ 2l — (22 + 1 (n+ D)yt =0, (5.44)
2L+l = (4 1 (0 - 1)?)y? = 2yt (5.45)

The general solution of system (5.44)—(5.45) can be expressed by quadratures in terms
of the Bessel functions of an imaginary variable I, (z) and K, (2):

Pt = Cily11(2) + Co u+1( )
P2 = O31,(2) + C4 K, ( 2) [ L ()" (2)dz — 1,(2) [ K, (2)¥'(2)dz
with v =1(p - 1).
For the subalgebra (270, + 20, + aw'd,,:) it follows that

w' = 7% WA w), W = [rfte 3| F 07y ()

with w = 2277, where the functions ¢! and ¢? satisfy the system
402l = (w2 + (0= £ = D)w+ 1+ 1)> = 1) gL, (5.46)
dwy2, = (w2 +(a—3(=3)w+iH—-1)7- 1)11;2 + 2|w|V/21. (5.47)

The general solution of system (5.46)-(5.47) can be expressed by quadratures in terms
of the Whittaker functions.

6 Symmetry properties and exact solutions
of system (3.12)

As was mentioned in Section 3, ansatzes (3.4)-(3.7) reduce the NSEs (1.1) to the
systems of PDEs of a similar structure that have the general form (see (3.12)):

wiwl —wl + 51 + apw? =0,

wwf—w + 59 — apw! + aqwd =0, (6.1)
1,,,3 .
wwlfwii+oz4w + a5 =0,

w? = Qs3,

where «;, (n =1,5) are real parameters.
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Setting o = 0 (k = 2,5) in (6.1), we obtain equations describing a plane convecti-
ve flow that is brought about by nonhomogeneous heating of boudaries [25]. In this
case w' are the coordinates of the flow velocity vector, w? is the flow temperature, s
is the pressure, the Grasshoff number A is equal to —«3, and the Prandtl number o is
equal to 1. Some similarity solutions of these equations were constructed in [22]. The
particular case of system (6.1) for a3 = as = a4y = a5 = 0 and a3 = 1 was considered
in [31].

In this section we study symmetry properties of system (6.1) and construct large
sets of its exact solutions.

Theorem 6.1 The MIA of (6.1) is the algebra
1. By = (01, 02, Os) if a1 #0, ayg #0.
Ey = (01, 02, Os, Oz — a1220s) if a1 #0, ag =0, (a1,a2,a5) # (0,0,0
(01, Do, Os, s — 12205, D = 3w3ys) if a1 #0, g =0, k =2,
(01, Oa, Os, J, (W3 + a5/q)0ys) if a; =0, ay # 0.
Es5 = (01, 02, Os, J, Oy3) if a1 = a4 =0, (ao,as) # (0,0), as #0.
(
(
(

=

ot

= al; 827 asa Ja aw37 w38u13> lf ] = Qg = 5 = 07 (0[23043) 7é (030)
E; = (01, 82, Os, J, O3, D+ 2wdys) if as#0, a; =0, [ =T1,4.
8. Es= (1, 0z, O, J, Oys, D,w3dys) if ay =0, n=T1,5.

Here D = z;0; — w8y — 2505, J = 2105 — 2201 + w' D2 — w2y, 0; = 0.

A R

Note 6.1 The bases of the algebras Eg and Eg contain the operator w3d,,s that is not
induced by elements of A(NS).

Note 6.2 II a4 # 0, the constant as can be made to vanish by means of local
transformation

3

0 = wd + a5y, §5=s—ajaza) 2, (6.2)

where the independent variables and the functions w® are not transformed. Therefore,
we consider below that as = 0 if ay # 0.
Note 6.3 Making the non-local transformation

S=s+ ¥, (6.3)

where ¥y = w?, Uy = —w! (such a function ¥ exists in view of the last equation of
(6.1)), in system (6.1) with ag = 0, we obtain a system of form (6.1) with a3 = @z = 0.
In some cases (a1 #0, a3 =ay = a5 =0, as #0; a1 = a3 = ag =0, ag # 0)
transformation (6.3) allows the symmetry of (6.1) to be extended and non-Lie solutions
to be constructed. Moreover, it means that in the cases listed above system (6.1) is
invariant under the non-local transformation

=€z, w'=efw, 0=e"uwd §=e s+ az(e” —1)7,
where

60=-3 if ag=a4=0a5=0, ai,as#0;

0=2 il ag=a3=a,=0, a9, a5F#0;

6:0 if 041:0[3:0[4101510, Oég?éo.
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Let us consider an ansatz of the form:

1_ 1 3
w = ayp — azp” + biwa,

w? = asp! + a1¢® + bows,

6.4
w3 = (,02 + b3UJ2, ( )
s =h+ diws + dawiws + %d3w§7
where a? + a3 =1, w = wy; = a122 — az21, Wy = a121 + azze, B,by,d, = const,
b; = Ba;, b3(B+ ay4) =0,
3 2 (6.5)

dg = O{QB — (11b3a1, d3 = —32 — qugag,

Here and below ¢* = ¢*(w) and h = h(w). Indeed, formulas (6.4) and (6.5) determine
a whole set of ansatzes for system (6.1). This set contains both Lie ansatzes, construc-
ted by means of subalgebras of the form

<G;181 + ag07 + G,g(awS — 0412’285) + a4(‘35>, (66)

and non-Lie ansatzes. Equation (6.5) is the necessary and sufficient condition to
reduce (6.1) by means of an ansatz of form (6.3). As a result of reduction we obtain
the following system of ODEs:

O30l — Ly + 11’ + di + daw + a2p® = 0,
O30 — 2, + 2o’ + as =0,

f f (6.7)
P02 — @2, 4 hy — agp! + a1a19* =0,
@3 =0,
where 111 = —B, p12 = —aqasg, p21 = —bs, fos = —ay, 0 = ag — B. 1If 0 =0, system

(6.7) implies that
03 = Cy = const,

h=as [ o' (w)dw — ara1 [ ¢?*(w)dw,

and the functions ¢’ satisfy system (4.23), where v1; = di +a2Cy, vo1 = da, V12 = as,
voy = 0. If o # 0, then ¢ = ow (translating w, the integration constant can be made
to vanish),

h=—30%? + o [ ¢ (@ — ara [ @),

and the functions satisfy system (4.29), where 111 = dy, vo1 = do + ag0, V12 = as,
Voo = 0.

Note 6.4 Step-by-step reduction of the NSEs (1.1) by means of ansatzes (3.4)-(3.7)
and (6.4) is equivalent to a particular case of immediate reduction of the NSEs (1.1)
to ODEs by means of ansatzes 5 and 6 from Subsection 4.1.
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Table 1. Complete sets of inequivalent one-dimensional subalgebras of the algebras
E; — Eg (a and a; (I = 1,4) are real constants)

Algebra Subalgebras Values of
parameters
E; (a151 + ag0s + a383>, <89> CL% + a% =1
By | (@014 a20s + as(9ys — a1200%)), af +a3 =1,
<61 + a485>, <8w3 — OZ12285>, <85> ag #0

(a101 + a20s + a3(0ys — 12205)), (01 + a40s) af +a3 =1,
Es R S D g € {~1;0:1},

(D — 3wdys), (Dys — a1220s), (Ds) as € {—1;1}

(J + @105 + agw?dys ), (D2 + 4105 + agw?dys),

Ey
(W33 + a10s), (Ds)

<J +a10s + a28w3>, <82 +a10s + a28w3>,
(O + a105 >, < Oy)

Es

(J + @105 + agw?dys), (D2 + a105 + agw?dys), .

a b)
Es <J + a10s + a38w3>, <62 + a10s + a38w3>, as € 2{_1; 0; 1}
(w38w3 + a185>, <aw3 + a183>, <8S>

A 39 . ag € {—1;0;1},
B <D +aJ + 2w 8w3>7 <J‘|‘a185 —|—a28w3>, a; € {_1;0; 1}
(02 + 105 + a20y3), (Oys + a20s), (Os) ifas =0
D+ aJ + asw?dys), (D4 aJ + azdys),
B J 4 a105 + aqw®dys), (02 + a10s + a,wdys), | a; € {—1;0;1},
3

J + a183 + a28w3>, <62 + a185 + a28w3>, a4 ?é 0
w38ws + (1185>, (8ws + a183>, <8S>

o~ o~ o~ —~
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Now let us choose such algebras, among the algebras from Table 1, that can be
used to reduce system (6.1) and do not belong to the set of algebras (6.6). By means
of the chosen algebras we construct ansatzes that are tabulated in the form of Table 2.

Table 2. Ansatzes reducing system (6.1) (r = (27 + 23)'/?)

N Values Algebra Invgnant Ansatz
of a, variable
ay # 0, ~ , w' =172 (210" — 229%),
I|ap=0, (D — 3w30,3) w=arctan | w? = r72(20p" + 214?),
k=2,5 w3 = 7'739037 s=1""h
1 1 2 2
_ 3 wo=e, W=
9 a; =0, <82 + a10; + aw aw3>ﬂ W=7 w3 = £36a2z2 v
a5 = 0 a9 # 0 ’
s=h+aiz
’LUl = leol - 2271729027
ay =0, w? =z + 217722
3 J + a10s + a20, w=r :
ay =0 (J + 105 + a20y) w® = ¢ + ag arctan 2,
s=h+a arctani—f
wh = 21801 - 2'27”_2‘;02:
4| = 0, | (J+ a10s + asws0ys) _ w? = 290" + 211 %p?,
_ f — w=r 3_ 3 a2arctanz—2
as =0 as#0 if a4 =0 we = p-e 1
s=h+a arctani—f
a5 # 0, 2 | wh =172 (210" — 2007)
- w = arctan2 — ’
5| o ﬂ (D +aJ+ 2w38w3> —alan1 w? = 7'_2(224;01 + 21902)7
1=T1 w* =r2g% s =r"%h
wh = 7”2(21901 - 22802)7
_ z _
6|2 =0 (Dt altad,) | ¥ ACRL T vt = el +a?),
n=1,5 w —alnr w =3 +aylnr,
s=r"2h
3 ) 1_ -2 1_ 2
an =0,| (D+aJ+ajuw?dys), | w=arctan2—| ) =" (219 = 2207),
7 n=1,5 a1 #0 falanI w? =172 (220" + 219°),
’ 1 w3 :r‘“gog, s=1r"2h
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Substituting the ansatzes from Table 2 into system (6.1), we obtain the reduced
systems of ODEs in the functions ¢ and h:

L @?pl — b, — et —@?0® —2h + onp? sinw + 2¢2 =0,
©? 02 — 2, + he — 20L, + 019 cosw = 0,

; (6.8)
©?pd — B, — 3pte? — 99 =0,
02 =0.

2. ool — Pl +a2p® +hy =0,

ool — 2, — ' +ar =0, 6.9
1.3 3 2 2 3 _ ( . )

OO — Pow + (a2 + ag —a3)p® =0,

90&; = Q3.

3. wgplcp}u — @i,w + <p1<,01 — w_4<p2<p2 — 3w‘1<p}d + agw_2<p2 +w th, =0,

w2 — @2, +w ol — aw?e! + a1 =0, 6.10
1,3 3 -2, 2 1,3 _ (6.10)

WO P — P T acw TP —w T +as =0,

20 + wel = as.

4. welel — @b, + oot —w % — 3wl + apw 2P + wth, =0,
wele? — 2, +w el — axwip! + a1 =0, 6.11)
wp' ol — @3, + asw0%? —w TPl + (au — a3w)p? = 0, '
20! + wel = as.

5. (¢®—aph)pl — (1+a®)pl, — o' — ©*¢* —ah, —2h =0,

(9* —ap")pZ — (1+a*)p2, — 2(ap? + L) + hy =0, (6.12)
(©* —ap')pd — (1+a?)pd, + 20" 0® — 40 + dap? + a5 = 0, '
@2 —apl, = 0.

6. (p*—apl)pl — (1 +a®)pl, —¢'e' — ©?p* —ah, —2h =0,
(> —ap' )l — (1 +a®)pl, — 2(ap? + L) + hy =0, (6.13)
(> —ap" )l — (1+a®)pd, +arp' =0, '
2 —apl, =0

7. (¢* —aph)e, — (14 a®)py, — @'e! = @*¢? —ahy, — 20 =0,
(9 —ap)p? — (1 +a?)p2, — 2(ap? + L) + hy =0,
(2_a1 3_1 2 3 1,3 _ ,2 .3 2 3_0 (614)
©* —ap')p) — (1+a)el, + a1’ — aje’ + 2aa, 9], = 0,
@2 —apl, = 0.

Numeration of reduced systems (6.8)-(6.14) corresponds to that of the ansatzes
in Table 2. Let us integrate systems (6.8)-(6.14) in such cases when it is possible.

Below, in this section, C} = const (k =1,6).
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1. We failed to integrate system (6.8) in the general case, but we managed to find
the following particular solutions:

2) @l = —6p(w -+ Ca, 1(4—201).Ca) — 2
P?=¢>=0, h=2p"+C;
) ¢ = —6CR (e + Co0,Ca) +3C 2

<)02 = 5017 903 = 07
h = —120Fe*@p(eD + C3,0,Cy) — 2 — B2CF — 04
) ¢'=Ci, ¢*=C ¢*=0, h=—3(CF+C3).

Here (7, 501, 52) is the Weierstrass function that satisfies the equation (see [19]):
(@r)z = 4p% — sn1p — 0. (6.15)

2. If a3 = 0, the last equation of (6.9) implies that o' = Cy. It follows from the
other equations of (6.9) that

@? = O3 + C2e°1% — (0, O ! — ag)w,

h = Cﬁ — CYQCQ,W — CMQCQCfleclw + %ag(alel — OZQ)WQ
if Cy #0, and

¢? = C3 + Cow + 2a1w?,

h=Cs— ayCsw — %04202(.(]2 — %agalw?’

if C; = 0. The function ¢? satisfies the equation
02— C1p> 4 (a3 — ay — azp?)p® = 0. (6.16)
We solve equation (6.16) for the following cases:
A. CQ =a; — a201 =0:
3O (Cyer' ™ g Gyt >0,
¢° = B%CW(C4+05W), p =0,
e3C1 (Cy cos((—p1)/?w) + Cs sin((—p)/?w)), <0,
where m= %C% — a% + ay + asCs.
B. Cl =ayp = 0, 02 75 0 ([19])
@ =127, 5(3(—axCy)'/283/2),

where ¢ = w + (Csas — a3 — ay)/(azCs). Here Z,(7) is the general solution of the
Bessel equation (4.22).

C.C1 =0, a; #0 ([19]):
0= (w+ Czafl)flmw(l/, i, (%a1a2)71/2(w + 02%—1)2)’

where v = 1(3a1a2) 7Y% (a3 — ay — asC5 + $a:C%a;"). Here W (3¢, 1, 7) is the general

solution of the Whittaker equation (4.21).
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D. Cl 75 0, Cg 7é O, ayp — 0(201 =0 ([19])
('03 = G%CIWZ,, (201_1(7(1202)1/26%01“})7

where v = C; ' (CF + 4(as + a2C;5 —a%))l/z. Here Z, (1) is the general solution of the
Bessel equation (4.22).

E. Cl 7é 0, a; — 01201 7£ 0, CQ =0 ([19])
¢* = eécwgl/zzlm(%(az(alel - Olz))lﬂf?’/z),

where £ = w+ (a3 — 1C? — Csas — au)/(a2(a1C7 " — az)). Here Z,(7) is the general
solution of the Bessel equation (4.22).

If a3 # 0, then ¢! = asw (translating w, the integration constant can be made to
vanish),

©? =01+ Oy feéa?"*ﬂdw +a; fe%%“’2 (f 6*%a3“2dw)dw + aow,
h=Cs— 1(a} + ad)w? — aCiw — asCy (wfe%a?’wzdw — a;le%‘““ﬂ) —

1 2 1 2 11 2 1 2 _
—aza1(wfe§o‘3“ (fem2%% dw)dw — a3 'e23¢” [e72%% dw + o 1w),

and the function (? satisfies the equation
Pl — Qawel + (a5 — as — azg”)p* = 0. (6.17)
We managed to find a solution of (6.17) only for the case a; = Cy =0, i.e.,

@3 — eia3“’2V(aé/2(w + 2612@204?:2)’ V)7

where v = 4oz ! (o + a2Cy — ad(adaz® +1)). Here V(r,v) is the general solution of
the Weber equation

4V, = (T2 + )V (6.18)
3. The general solution of system (6.10) has the form:
o' = Clw™? + a3, (6.19)

1 2
? = Cy+ O3 [wr T ez du — %ang +

L N 6.20
+ a1 fwclJrleZ"‘?'w2 (f wiCl’le*ZO‘Sﬁdw)dw, (6.20)
93 = Cy+ Cs [wOr et dy +
+ fw01716%a3w2 (f wl—Cle*%asoﬂ (a5 + a2w72<,02)dw) dw,
h=Cs— ga3w? — LC3w™2 + [(¢*(w))2w™3dw — s [ w % (w)dw. (6.21)

4. System (6.11) implies that the functions ¢’ and h are determined by (6.19)-
(6.21), and the function ¢? satisfies the equation

Y= ((Cl—l)wfl‘i‘ %Oégw)@f) + (a2w,2(a2_¢2) - a4)803 =0. (6.22)
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We managed to solve equation (6.22) in following cases:
A. OgZCLl:O, (137505
3 = wiOrLes s W (5 . F03w?),

where 3 = 1(2 — C1 — (dou + 2aza2)03"), p = 2(C} — 4a3 + 4a2C5)/%. Here
W (3¢, 1, ) is the general solution of the Whittaker equation (4.21).
Let az = 0, then

Cy + C3lnw + 3 (ay + 2az)w?, Cr=-2,
p?={ Co+ %C’guﬂ + %ale(lnw — %), Ci1 =0,
Co + C3(Cy +2) 1w +2 — %C;l(al —aCy)w?, C1 #0,-2.
B. 03 =ay — OQCl =0:

Wi Z, (ut w), #0,
03 ={ wi%(Csw” 4+ Cow™), p=0,v%#0, (6.23)
w2 (C5 4 CgInw), pw=0,v=0,

where 1 = —ay, v = 3(C§ — 4a3 + 4a2C5)'/2. Here and below Z,(7) is the general
solution of the Bessel equation (4.22).

C.C3=0, C; #0: ¢3 is determined by (6.23), where
= %agC’fl(al —a2Cy) —ay, v= %(012 — 4a2 + 4ayCy) /2,
D. C; = a; = 0: ¢? is determined by (6.23), where
0= —%aQC’g —ay, v=(—ad2+ 0,202)1/2.
E. C3 #0, Cy € {0; -2}, az(a; — a2Ch) — 2a4Cy = 0:
¢ = w7, ('t E ),
where g1 = 2C3/%(Cy +2)73/2, v = (Cy + 2)"1(C? — 4a2 + 4a,C,) /2.
F.Cy =-2, C3 #£0, az(a1 + 2a2) + 4aq = 0 ([19]):
903 _ w’lfl/QZl/g(gCé/Qf?’/z),
where ¢ = Inw + C5 (a2 — 420y — 1).
G.C1=20C5<0, 1—a2+asCy >0
@® = W (s, i, 5(—C3)/2w?),

where 3 = 1(—C3) V2 (—day+a3 —2asas), 1 = $(1—a3+axC2)'/2. Here W (5¢, u, 7)
is the general solution of the Whittaker equation (4.21).

5-7. Identical corollaries of system (6.12), (6.13), and (6.14) are the equations
©* = ap' + Cy, (6.24)

h=a(l+a®)pl + (24 2a® — aCy)p' + Cy, (6.25)
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(1+a®)l, + (da— Cr)pl + o'o' + 49" + (1+a®) 1 (CF +2C,) = 0. (6.26)

We found the following solutions of (6.26):
AT (14 a?)~HC? +20,) < 4

/2

el = (4—(1+a*)1(C]+2Cy)) 2. (6.27)
B. I C) = 4a:
P SR 4_(CF+20s)
ol = 6p<(1+a2)1/2 +Ca, 5 30T o) ,Cs ) —2. (6.28)

Here and below (7, 51, 52) is the Weierstrass function satisfying equation (6.15). If
Cy =2 —6a® and C3 = 0, a particular case of (6.28) is the function

o' = —6(1+ a®)w? -2 (6.29)

(the constant C4 is considered to vanish).
C. Il 1 #4a, (1+a*)7Y(O? +203) —4 = —9u*:

o' = —6p’e (e + Cy,0,C3) + 3% — 2, (6.30)

where ¢ = (14 a?) ™" 2pw, p= L(4a— C1)(1+a?)~V/2. 1 C3 = 0, a paticular case of
(6.30) is the function

ol = —6p2e (e + Cy) "2 4 3u% - 2, (6.31)

where the constant C, is considered not to vanish.
The function ? has to be found for systems (6.12), (6.13), and (6.14) individually.

5. The function ¢3 satisly the equation
(1+a®)pl, — (C1+4a)p, — (20" — 4)¢° — a5 = 0.
If ! is determined by (6.27), we obtain

@3 = exp(3(1 4 a*)~1(C1 + da)w) x

C5 exp(v'/2w) + Cg exp(—1v/?w), v>0

x ¢ Cscos((—v)2w) + Cgsin((—v)?w), v<0 p+
Cs + Cgw, vr=20
—a5(2pt —4)71t 201 —4#£0

+{ —as(da+C1) tw, 20t —4=0, Ci+4a#0 },
%a5(1+a2)*1w2, 201 —4=0, C;+4a=0

where v = (1 +a?)72(C1 4+ 4a)? — (1 +a?) 71 (4 — 2¢").

6. In this case ¢ satisly the equation

(1+a*)pd, — Crd = a1".
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Therefore,
@3 = Cs5 + Coexp((1 4 a*)"1Ciw) + a1 C7 ! (f oM (w)dw +
+exp((1 4 a*)'Cw) [exp(—(1+ a2)—1()1w)<p1(w)dw)
for Cy # 0, and
= s+ Cowo + an(1 4 a2) (o [ 9 (@) — [ wip ()de)

for Cl =0.
7. The function ¢ satisfy the equation

(1+ a2, — (C1 + 2a10)9> + (a? — a10)p® = 0. (6.32)
A If ¢! is determined by (6.27), it follows that
@3 =exp(2(14a*)~1(C1 + 2a1a)w) x

Cs exp(v'/?w) + Cg exp(—v'/?w), v>0
x Q¢ Cscos((—v)2w) + Cssin((—v)?w), v<0 3,
Cs + Cew, vr=0

where v = (1 +a?)72(C1 + 2a1a)* — (1 + a®) 7! (af — a1").
B. If C) = 4a, that is, ! is determined by (6.27), we obtain
03 = eXp(a(a1 +2)(1+ az)flw)H(T),

where 7 = (1 + a?)~ /2w + C,. Here the function § = 6(7) is the general solution of
of the following Lame equation ([19]):

07 + (6a1p(7) + af +2a1 —a*(2+a1)*(1 +a®)7')0 =0
with the Weierstrass function

p(r) = p(T, %(4 —(1+a®)~ Y02 + 202)),03).

Consider the particular case when Cy = 2 — 6a? and C3 = 0 additionally, i.e., ¢!
can be given in form (6.29). Depending on the values of a and a;, we obtain the
following expression for ?:

Case 1. a; # —2, a1 # 2a*:

0 = |w|"Pexp <a(2+al)w) Z, (((2 +a1)(ar — 2a2))1/2 w) |

1+ a2 1+ a2

where v = (3 — 6ay)1/2.

Case 2. a; = —2: @3 = Csw? + Cw™3.

Case 3. a1 = 2a%:
Case 3.1. 48a% < 1: 3 = |w|'/?e2% (C5w” 4+ Cow™7), where 0 = /1 — 4842
Case 3.2. 48a% = 1, that is, a = £1/3: ¢® = [w|Y/2(C5 + Cs lnw).
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Case 3.3. 48a% > 1: ¢ = |w|'/2e2%(C5 cos(yInw) + Cgsin(yIlnw)), where

y = 1Vi8aZ 1.
C. Let the conditions
C1 #4a, (1+a*) '(CF+2Cy) —4=—-9u*

be satisfied, that is, let ¢! be determined by (6.30). Transforming the variables in
equation (6.32) by the formulas:

@3 =r71/2 exp(%(C’l + 2aa1)(1 + a2)71w)9(7')a
7= exp(—p(l +a?)"2w),
we obtain the following equation in the function 6 = 8(7):
720 + (6a17°p(7 4+ C4,0,C3) + o) = 0, (6.33)

where o = p7%(af + 2a; — $(1 + a®)7H(C} + 2aa1)?) — 3ay + . If o = 0, equation
(6.33) is a Lame equation.

In the particular case when ¢! is determined by (6.31), equation (6.33) has the
form:

72(7 + C1)20,r + (6172 + o(r + C4)?)0 = 0. (6.34)

By means of the following transformation of variables:

0 =€ —1"v(E), &=-Ci'm,

where v1(v1 — 1) + 0 = 0 and va(ve — 1) + 6a; = 0, equation (6.34) is reduced to a
hypergeometric equation of the form (see [19]):

(& — D)thee + (2(v1 + v2)€ — 201)1be + 201099 = 0.
If o = 0, equation (6.34) implies that

(74 C4)?0,7 + 60,0 = 0.
Therefore,

0 = Cs|r + Ca|'*77 4 Co|r + Co|' /P

1

1/2
247 ’

if a1 < where v = (% — 6ay)

0 = |7+ Cu|'/?(C5 + Co In |1 + C4)

1

51, and

if ayp =

0 = |7+ Cy|"?(Cs cos(vIn |7 + Cu|) + Cgsin(v In |7 + C4l))

1

1/2
247 :

if a1 > 34, where v = (6a; — 1)
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7 Exact solutions of system (2.9)

Among the reduced systems from Section 2, only particular cases of system (2.9) have
Lie symmetry operators that are not induced by elements from A(NS). Therefore,
Lie reductions of the other systems from Section 2 give only solutions that can be
obtained by means of reducing the NSEs with two- and three-dimensional subalgebras
of A(NS).

Here we consider system (2.9) with p® vanishing. As mentioned in Note 2.5, in
this case the vector-function m has the form m = n(¢t)e, where € = const, |€] = 1, and
n=mn(t) = |m(t)] # 0. Without loss of generality we can assume that & = (0,0, 1),
ie.,

m = (0,0,n(t)).
For such vector m, conditions (2.5) are satisfied by the following vector 7’
ii' = (1,0,0), 7@%=(0,1,0).

Therefore, ansatz (2.4) and system (2.9) can be written, respectively, in the forms:

ul =0t w? =12 ud= (77(75))_1(113 + m(t)zs),
-1

1 (7.1)
p=q— 3nu(t)(n(t)) a3,
where v = v(y1,y2,¥3), ¢ = q(y1,¥2,Y3), yi = @i, ys =, and
vl —&—v%} - v;'-j +q; =0,
v +vivd — vl =0, (7.2)

vi+p =0,

where p* = p?(t) = n./n.

It was shown in Note 2.8 that there exists a local transformation which make p3
vanish. Therefore, we can consider system (7.2) only with p? vanishing and extend
the obtained results in the case p® # 0 by means of transformation (2.12). However it
will be sometimes convenient to investigate, at once, system (7.2) with an arbitrary
function p3.

The MIA of (7.2) with p® = 0 is given by the algebra

B = <R3(f¢_j)a Zl()‘)a D%v at7 J112a av37 ’1_)3(9”3>

(see notations in Subsection 2.1). We construct complete sets of inequivalent one-
dimensional subalgebras of B and choose such algebras, among these subalgebras,
that can be used to reduce system (7.2) and do not lie in the linear span of the
operators R3(¢), Z1()\), Jiy, i.e., the operators which are induced by operators from
A(NS) for arbitrary p3. As a result we obtain the following algebras (more exactly,
the following classes of algebras):

The one-dimentional subalgebras:

1. B ={(Di+ 2sxJi5 + 29030,s + 2030,3), where v3 = 0.

2. Bl = (0, + »Jly +y030,s + B0,s), where y8 =0, » € {0;1}.

3. Bi={(Jl+yv30, + Z1(\(t))), where v#0, A € C®((to,t1),R).
4. B = (R3((t)) +7v°ys), where v # 0,

b(t) = (V1(1),0%(t) # (0,0) Yt € (to,11), ¥* € C=((to, t1),R).
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The two-dimentional subalgebras:

L. B} = (0 + 20,3, Dy + s J{y +70°0ys + £10,3),
where 81 =0, (v —2)52 = 0.

2. B2 = (D} + 2710305 + 28103, Jiy +12030,8 + B20,3 + Z1 (e|t| 1)),
where v161 =0, 7202 =0, y102 — 1201 = 0.

3. B2 = (D} + 2xJly + 271030, + 201045, Ra(|t|7 T2 cos, |t|7+/ 2 sinT) +
+ 72030, + 20,3 + Z1(e]t|71)), where T = xIn |t],

(1 +0)1—7P1=0, 02 =0, c0d =0.

4. Bz = (0 + W1v38v3 + 10,3, J112 + ’sz?’avz + [20,3 + Zl(€)>,
where v1 01 =0, 72082 =0, 71082 — 1261 = 0.

5. B2 = (0, + »Jly + 110303 + 10,3, R3(et cos sct, e sin set) +
+ Z1(cet) + 49v30,8 + B20,3), where (1 + 0)B1 — Y261 = 0,
ov9 =0, ec =0.

6. BE = (Ry(¥1) +70°0,s, Ra(()), where i = (1(t), 72(¢)) # (0,0)
Vite (to,t), v € C®((to, 1), R), by - P> =P -f =0, v #0.
Hereafter ! - 92 := 1p1iqp?.

Let us reduce system (7.2) to systems of PDEs in two independent variables. With
the algebras Bi-B} we can construct the following complete set of Lie ansatzes of
codimension 1 for system (7.2) with p? = 0:

Lot =72 (wl cos T — w?sinT) + Lyt — seyat L,

v? = [t|72(wlsinT + w? cosT) + Jyot ™! + seyit Tl

v = [t w3 + Bnt], (73)
g=t"'s+ 50 + Pt
where 7 = »In|t|, v8 =0,
21 = [t Y2 (yrcosT 4 yasinT), 2o = [t| /2 (—y1sinT + yg cos 7).
Here and below w® = w®(z1, 22), s = 5(21, 22), 7 = (y3 +y3)"/2.
2. v = w! cos st — w? sin st — 1o,
21 2
q=Ss+ %%27“2,
where s € {0;1}, v6 =0,
z1 = Y1 €08 st + Yo Sin st, 29 = —y1 Sin xt + Y cos xt.
3. vl =yir~tw? — yar 2w — yypr~?,
v? = yor ' +yr Pt g2, 75)

3 = e arctan Y2 /1 )

q = s+ At)arctanya /y1,
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where | = t, 20 =1, v#0, A€ Cm((to,tl),R).
4 =B (W + )+ w8+ (- G — 220 )
v} =w?exp(y($ - §) "1 - 7)) (7.6)
q=35— (7/1 1/’) (lz_Jtt y)(w y) + %(1/1 1/)) (TZtt : ?/;)(1/_1 : g)27

\_Vhere 21 =1, 22 = (é g)a Y 7é Oa v = (U17U2)7 Yy = (ylay2)7 d)l € Ooo((t07t1)7R)a
0= (7111)2711)1)'

Substituting ansatzes (7.3) and (7.4) into system (7.2) with p? = 0, we obtain a
reduced system of the form (6.1), where

a1 =0, ax=-1, az=-23x, as=7, as=p0 il t>0 and
a1 =0, ax=1, az3=2x% aq,=—-v, az=-—0 if t<0

for ansatz (7.3) and
a1 =0, ax=0, az=-23% as=7v, a3=p

for ansatz (7.4). System (6.1) is investigated in Section 6 in detail.

Because the form of ansatzes (7.3) is not changed after transformation (2.12), it is
convinient to substitute their into a system of form (7.2) with an arbitrary function p3.
As a result of substituting, we obtain the following reduced systems:

3w+ whud - (' +7)? = (w + 25w — 25 %0%) + 52 =0,

~1
wi + wdwd — wiy + 2y 'wl + X =0,

w1 + wiw 2 w%z — z;lwg + 72§2w1w2 =0, (7.7)
wd o3t = e/
4. wl+wdwd — (Y -P)wl, =0,
w} + wiwd — (¢ P)wdy + (- P)sa +2(w + ) (Y- 0)(P )7~
— 2y - ) (¢ - ) T wd 4 (24h - Py — re - ) (Y- ) TPz =0, (7.8)
wi + wiwd — (¢ P)wiy + ()T (wh + (P - 0)(¥ D)) w? =0,
w3 + 1 /n = 0.

Unlike systems 8 and 9 from Subsection 3.2, systems (7.7) and (7.8) are not reduced
to linear systems of PDEs.
Let us investigate system (7.7). The last equation of (7.7) immediately gives
(Wi + 25 w2 = wly + 25w} — 2w =0,

1

_ (7.9)
w? = (x — 1)z5 " — Smm~ 2o,

where x = x(t) is an arbitrary differentiable function of ¢ = z5. Then it follows from
the first equation of (7.7) that

5= [ 53" 7Pz~ S0c= 17237 + 1 (/) = S0n/n)?) = xeln 2ol
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Substituting (7.9) into the remaining equations of (7.7), we get

w% — w%Q + (ngl — %ntn_lzg)w% +A=0,

wi —wly + ((x —2)2 " — dmen L 22) w3 + vz *wlw? = 0. (7.10)
By means of changing the independent variables
= [In®)ldt, =z =|n(t)|"/?2, (7.11)
system (7.10) can be transformed to a system of a simpler form:
wl 1 oo =12 1 Y-l —
wé : :Z I z(;_ ;L;Zz:j\u?—k ’y; gwlw =0, (7.12)

where (1) = n(t), %(1) = x(t), and A(7) = ().
If A(t) = —2Cn(t)(x(t) — 1) for some fixed constant C, particular solutions of
(7.10) are functions

w' =Cn(t)z3, w? = f(z1,22)exp(vC [n(t)dt),

where f is an arbitrary solution of the following equation

fi—fao+ ((x =2z " —tnn~tz) fo =0. (7.13)

In the variables from (7.11), equation (7.13) has form (5.22) with 7(7) = x(t) — 2.
In the case A(t) = 8C(x(t) — 1)n(t) [n(t) — 3)dt (C' = const), particular

solutions of (7.10) are furlc‘uons

wh = C((1(0))224 — 423n(0) [ nO (D) = 3)de),

w? = f(z1,22) exp(3(v0)?n(t )22 +§( ),
where £(t) = —(yC)Y2 [ n(t)(x(t) — 3)dt + 4vC [ n(t)([ n(t) — 3)dt)dt and f is
an arbitrary solution of the following equation

fi—fa2+ (X =2)z " = (3nen ™ +2(yC)V/?)z) f2 = 0. (7.14)

After the change of the independent variables

7= [In(t)|exp(4(YC)/2 [m(t)dt)dt, == |n(t)|"/? exp(2(vC)V/2 [ n(t)dt) 2

in (7.14), we obtain equation (5.22) with 7(7) = x(¢t) — 2 again.

Let us continue to system (7.8). The last equation of (7.8) integrates with respect to
23 to the following expression: w® = —mn~'z9 + x. Here x = x(¢) is an differentiable
function of z; = y3 = t. Let us make the transformation from the symmetry group
of (7.2):

é(tvg) = 17@7:'7 - g(t)) + gt(t)7 173 = U37 Q(tvy) = Q(tvy - g(t)) - gtt(t) ' ga
where & - 1) — & -1y = 0 and

€0+ x +mn (€0) = [DI72(E- ) (e - ) + 9] 72(€ - 0)(8: - 0) = 0.



Symmetry reduction and exact solutions of the Navier-Stokes equations 227

Hereafter |¢)|2 = 1) -1). This transformation does not modify ansatz (7.6), but it makes

the function y vanish, i.e., w® = —n;n~12. Therefore, without loss of generality we

may assume, at once, that w? = —nn~12,.

Substituting the expression for w? in the other equations of (7.8), we obtain that

5= z%m—?((%zz B - D) 912 + S — ()02 -

—2 ¢t fw 21, %2 dZQ,
—mn~ 2wy — [PlPws, =0, o (7.15)
w? —mn 2wt — [YPwdy + Y072 (2 - 0) || 222 + wh)w? = 0.
The change of the independent variables
7= [(®))*dt, =z =n(t)z
reduces system (7.15) to the following form:
U)71_ - w;z = 0’
_ - (7.16)
w? —wZ, + 702 (200, - 0)hz + wh)w? =0,

where $(r) = (1), 0(7) = (¢), i(r) = n(t).
Particular solutions of (7.15) are the functions
wl = C+ 0277( )ZQ + Cg( t + f |1/J| 2dt)
w® = f(t, z0) exp(&3(t)25 + ¢! (t)Z2 +£0( ),

where (£2(t),£1(¢),£°(¢)) is a particular solution of the system of ODEs:

&2 —2mm1e% — 4|}Z|2(§2)2 + %C:37722|721|72 =0, )
& — 77t7z_1§1 - ‘{|¢|2€251 + 29 (¢ - 0)|p| +?2WW|j2 =
&) — 2101262 — [92(€M)* + v(Cr + Cs [(n(t)[¥])2dt) [ =2 = 0

and f is an arbitrary solution of the following equation

— [0 faz + ((en ™" + 4P12€%) 22 + 2|9 [2€1) fo = 0. (7.17)

Equation (7.17) is reduced by means of a local transformation of the independent
variables to the heat equation.

Consider the Lie reductions of system (7.2) to systems of ODEs. The second basis
operator of the each algebra B?, k = 1,5 induces, for the reduced system obtained
from system (7.2) by means of the first basis operator, either a Lie symmetry operator
from Table 2 or a operator giving a ansatz of form (6.4). Therefore, the Lie reduction
of system (7.2) with the algebras B? — B2 gives only solutions that can be constructed
for system (7.2) by means of reducing with the algebras B} and Bj to system (6.1).

With the algebra B? we obtain an ansatz and a reduced system of the following
forms:

U= (,2_5 + )‘71(07; . ﬂ)djéa 03 = d)d exp('y)\(g_l . g))a
b b

i) - 7)), (7.18)
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where ° = 6°(), h = h(w), w = £, A = YUY - g2 = glogl = g2,
0" = (%2, —?), 0% = (=42, '), and
B AT B =0, G (AT 6) 2P0 0) 87 =0,
A0 i)+t = 0.
Let us make the transformation from the symmetry group of system (7.2):
o(t,g) =0ty — &) + & V(ty) = (g —§), 3ty =st.y—&) —Eu T,
where
E+ATHO -+ o =0. (7.20)
It follows from (7.20) that &; = A=1(07 - )4l i.e., 0%, - € — 0" - & = 0. Therefore, this
trasformation does not modify ansatz (7.18), but it makes the functions ¢ vanish.
And without loss of generality we may assume, at once, that ¢ = 0. Then

¢ = Cexp(f(w\_lw\)th), C = const.

(7.19)

The last equation of system (7.19) is the compatibility condition of system (7.2) and
ansatz (7.18).

8 Conclusion

In this article we reduced the NSEs to systems of PDEs in three and two independent
variables and systems of ODEs by means of the Lie method. Then, we investigated
symmetry properties of the reduced systems of PDEs and made Lie reductions of
systems which admitted non-trivial symmetry operators, i.e., operators that are not
induced by operators from A(N.S). Some of the systems in two independent variables
were reduced to linear systems of either two one-dimensional heat equations or two
translational equations. We also managed to find exact solutions for most of the
reduced systems of ODEs.

Now, let us give some remaining problems. Firstly, we failed, for the present, to
describe the non-Lie ansatzes of form (1.6) that reduce the NSEs. (These ansatzes
include, for example, the well-known ansatzes for the Karman swirling flows (see
bibliography in [16]). One can also consider non-local ansatzes for the Navier—Stokes
field, i.e., ansatzes containing derivatives of new unknown functions.

Second problem is to study non-Lie (i.e., non-local, conditional, and @-conditional)
symmetries of the NSEs [13].

And finally, it would be interesting to investigate compatability and to construct
exact solutions of overdetermined systems that are obtained from the NSEs by means
of different additional conditions. Usually one uses the condition where the nonli-
nearity has a simple form, for example, the potential form (see review [36]), i.e.,
rot((Z - V)@) = 0 (the NS fields satisfying this condition is called the generalized
Beltrami flows). We managed to describe the general solution of the NSEs with the
additional condition where the convective terms vanish [29, 30]. But one can give
other conditions, for example,

ANi=0, i+ (@ V)i
and so on.
We will consider the problems above elsewhere.

0,
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Appendix

A Inequivalent one-, two-, and three-dimensional
subalgebras of A(IN.S)

To find complete sets of inequivalent subalgebras of A(N.S), we use the method given,
for example, in [27, 28]. Let us describe it briefly.

1. We find the commutation relations between the basis elements of A(NS).

2. For arbitrary basis elements V, W° of A(NS) and each € € R we calculate the
adjoint action

W(e) = Ad(eV)W" = Ad(exp(eV))W°

of the element exp(eV') from the one-parameter group generated by the operator V'
on WO, This calculation can be made in two ways: either by means of summing the
Lie series

Wi = 30 SV ) = WO S SV (A
n= 0 :

where {VO, WO} = WO, {V* W9} = [V, {V"~1 WO}], or directly by means of solving
the initial value problem
dW (e)
de
3. We take a subalgebra of a general form with a fixed dimension. Taking into

account that the subalgebra is closed under the Lie bracket, we try to simplify it by
means of adjoint actions as much as possible.

=[V.W(e)], W(0)=w". (A.2)

A.1 The commutation relations and the adjoint representation
of the algebra A(INS)

Basis elements (1.2) of A(N.S) satisfy the following commutation relations:

Jig, Jog) = —J31,  [Jos, Js1] = —Ji2,  [Ja1, Ji2] = —Jos,
at;Jab] = DaJab] = 0 [at’ ] - 2875’

(D, R(6)] = Rt = i), a3
01,2001 = Z().  [D.Z200] = Z(2bxi +2x). ‘

(
R(11), R(R)] = Z (1 - 78 — b - 7ige), [Jab,R(m)}zR(ﬁ%»
Jab, Z(X)] = [Z(x), R(M)] = [Z(x), Z(n)] =

where m% =m?°, m’®=-m®* m°=0,a#b#c#a.

ﬁﬁﬁb@ﬁﬁ
=
1
I
=
E

Note A.1 Relations (A.3) imply that the set of operators (1.2) generates an algebra
when, for example, the parameter-functions m® and x belong to C*((to,t1),R)
(C§°((to,t1),R), A((to,t1),R)), i.e., the set of infinite-differentiable (infinite-differen-
tiable finite, real analytic) functions from (¢g,¢;) in R, where —oo < tg < t; < +o00.
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But the NSEs (1.1) admit operators (1.3) and (1.4) with parameter-functions of a less
degree of smoothness. Moreover, the minimal degree of their smoothness depends
on the smoothness that is demanded for the solutions of the NSEs (1.1). Thus, if
u® € C%((to,t1) x ,R) and p € C((to,t1) x 2, R), where Q is a domain in R?, then
it is sufficient that m® € C3((to,t1),R) and x € C*((to,t1),R). Therefore, one can
consider the “pseudoalgebra” generated by operators (1.2). The prefix “pseudo-" means
that in this set of operators the commutation operation is not determined for all pairs
of its elements, and the algebra axioms are satisfied only by elements, where they are
defined. It is better to indicate the functional classes that are sets of values for the
parameters m® and x in the notation of the algebra A(N.S). But below, for simplicity,
we [ix these classes, taking m®,x € C*((to,t1),R), and keep the notation of the
algebra generated by operators (1.2) in the form A(NS). However, all calculations
will be made in such a way that they can be translated for the case of a less degree
of smoothness.

Most of the adjoint actions are calculated simply as sums of their Lie series. Thus,

Ad(e9,)D = D + 2¢9,, Ad(eD)d; = e,

Ad(eZ(x))0; = 0 — eZ(xs), Ad(Z(x))D = D — eZ(2x: + 2x),
Ad(eR(1))3 = 0y — R (1) — 162 Z (1 - 17y — 11 - 10y,
Ad(eR(17))D = D — eR(2triy — 17t) —

(A.4)

— 552Z(2tmt My — 2000 - Mgy — 4T - M),
<sR< Dab = Jap — £R() + 22 (meml, — mm?),
eR(m))R( ) R(ii) + e Z (g - 7 — 10 - lye),  Ad(eJap) R() = R(1m),
( ab)Jed = Jeqcose + [Jap, Jeq] sine ((a,b) # (¢,d) # (b, ))
where
me=mb, mb=-m* m°=0, a#b#c#a,
m? =micose + misine, m¢=m a#b#c#a, de{a;b}.

Four adjoint actions are better found by means of integrating a system of form (A.2).
As a result we obtain that

Ad(e0,)Z(x(t)) = Z(x(t+2)), Ad(eD)Z(x(t)) = Z(e? X(t€26))
Ad(edn)R(ni(t)) = R(nit +€)), Ad(eD)R((t)) = R(e™“ni(te*)).

Cases where adjoint actions coincide with the identical mapping are omitted.

(A.5)

Note A.2 If Z(x(t)) € A(NS)[C>((to,t1),R)] with —oo < o or t; < +oo, the
adjoint representation Ad(¢0:;) (Ad(eD)) gives an equivalence relation between the
operators Z(x(t)) and Z(x(t +¢)) (Z(x(t)) and Z(e*x(te*))) that belong to the
different algebras

ANS)[C=((to,t1),R)] and A(NS)[C™((ty — e, ¢, — €),R)]
(ANS)[C>((to, t1),R)] and  A(NS)[C®((toe™>,t1e”*),R)])

respectively. An analogous statement is true for the operator R(m). Equivalence of
subalgebras in Theorems A.1 and A.2 is also meant in this sense.
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Note A.3 Besides the adjoint representations of operators (1.2) we make use of di-
screte transformation (1.6) for classifying the subalgebras of A(NS),

To prove the theorem of this section, the following obvious lemma is used.

Lemma A.1 Let N € N.
A, If x € CN((to,t1),R), then 3n € CN((to,t1),R) : 2tn, +2n = x
B. Ifx€C¥((to,t1),R), then 3n € CN((to,t1),R): 2tn, —n = x.
C. If m'eCN((ty,t1),R) and a € R, then 31' € CN((tg,t1),R) :
2 — 1 +al?> =m?t, 2t — 1% —al' = m?.

A.2 One-dimensional subalgebras

Theorem A.1 A complete set of A(NS)-inequivalent one-dimensional subalgebras
of A(NS) is exhausted by the following algebras:

1. A (») = (D + 23¢J15), where 3 > 0.
2. AL(5) = (0y + 3J12), where 3 € {0;1}.

3. Ai(n,x) = (Jiz + R(0,0,n(t)) + Z(x(t))) with smooth functions n and Y.
Algebras Al(n,x) and AL(7},X) are equivalent if 3e,6 € R, I\ € C>((to,t1),R):

i(t) = e "n(t), x()=e*(x(t) + Au(t)n(t) — AMt)me (1)), (A.6)
where t = te=2¢ 4 4.

4. Aj(m,x) = (R(m(t)) + Z(x(t))) with smooth functions m and x: (Mm,x) #
(0,0). Algebras AL(m, x) and AL(m,X) are equivalent if 3,6 € R, 3C #£0, 3B €
0(3), 3T€ C=((to, 1), R®):

-

m(t) = Ce *Bii(t), x() = Ce® (x(t) + Lu(t) - m(t) — mu(t) - 1(t)), (A7)
where t = te=2 +§.

Prooi. Consider an arbitrary one-dimensional subalgebra generated by
V = a1 D + ag0; + azJiz + asJaz + a5z + R(m) + Z(x).

The coefficients a4 and a5 are omitted below since they always can be made to vanish
by means of the adjoint representations Ad(e;J12) and Ad(eaJ31).

If a1 # 0 we get a; = 1 by means of a change of basis. Next, step-by-step we
make ag, M, and x vanish by means of the adjoint representations Ad(—%agaflﬁt),

Ad(R(1)), and Ad(Z(x)), where
e C>((to + %azafl,tl + %agafl),ﬂ@),
n e COO((to + %agafl,tl + %agafl),R),
and [, n are solutions of the equations

— -

2tl_;—f+a3af1(l2,—l1,0)Tzm, 2ty +2n =X + = (l ﬁ_i—fﬁ_:&tt)

N |
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with 7(t) = ay it — Lasa;!) and x(t) = a;'x(t — Lasa;"). Such I and 7 exist in
virtue of Lemma A.1. As a result we obtain the algebra Al(s), where 2 = azaj .
In case » < 0 additionally one has to apply transformation (1.6) with b = 1.

If a1 =0 and ay # 0, we make da; = 1 by means of a change of basis. Next, step-
by-step we make 7 and x vanish by means of the adjoint representations Ad(R(f))
and Ad(Z(x)), where [ € C>((to,t1),R3), n € O“((to,tl),R), and

asly + az(1®, =14, 0)T =1, asmy = x + = (ltt 1 — 1= 1igy).

If a3 = 0 we obtain the algebra AL(0) at once. If a3 # 0, using the adjoint repre-
sentation Ad(eD) and transformation (1.6) (in case of need), we obtain the algebra

A3(1).
If a3 = az = 0 and a3 # 0, after a change of basis and applying the adjoint
representation Ad( (—az'm? a3 m',0)) we get the algebra Al(n,x), where n =

az'm? and ¥ = a3 'x + a3 2(m%tm2 — mlmtt) Equivalence relation (A.6) is generated

by the adjoint representations Ad(eD), Ad(60;), and Ad(R(0,0, ).
If a1 = az = a3 = 0, at once we get the algebra A}L(m,x). Equivalence relation

(A7) is generated by the adjoint representations Ad(eD), Ad(6d;), Ad(R(l)), and
Ad(eapJab).

A.3 Two-dimensional subalgebras
Theorem A.2 A complete set of A(NS)-inequivalent two-dimensional subalgebras
of A(NS) is exhausted by the following algebras:

1. A%(5) = (0y, D + »Jy2), where 5 > 0.

2. A3(s,¢) = (D, Jia + R(0,0, »|t|'/?) + Z(et~")), where >0, € > 0.

3. A3(s¢c,€) = (O, J12 + R(0,0,3) + Z(¢)), where 3 € {0;1}, ¢ > 0 if =1 and
e€{0;1} if e =0.

4. A¥o, 5, p,v,e) = (D + 2312, R([t|7FY2(veosT, vsinT, p)) + Z(e|t|”1)),
where 7 = xInlt], >0, u>0,v>0, u> +1v?>=1,c0=0, and ¢ > 0.

5. A%(0,€) = (D, R(0,0,[t|7T'/2) + Z(e|t|”~")), where co =0 and & > 0.

6. A3(0, p,v,e) = (9 + Ji2, R(ve®t cost,vet sint, ue’®) + Z(ee?)), where pn > 0,
v>0 u2+1v2=1¢0=0, ande>0.

7. A2(a,¢) = (04, R(0,0,e°) + Z(eet)), where o € {—1;0;1}, e =0, and ¢ > 0.

8. A2\, p,02) = (i + R(0,0,\) + Z(b1), R(0,0,p) + Z(1?)) with smooth
functions (of t) A, p, and ¢': (p,9*) # (0,0) and Aup — A\pyy = 0. Algebras
AZ(\ Y, p,0?) and AZ(N Y, p,00?) are equivalent if 3C, # 0, J¢,56,C2 € R,
60 € COO((to,tl), R)

5:(5) = e*(A(t) + Cap(t)),  p(t) = Cre~*p(t),

DH(T) = € (U1 (1) + O ()A(L) — O(t) Aee(t) +
) + Co (2 (t) + 0 (t)p(t) — 0(1)pee (1)),
P2 (1) = Cre® (P2 (t) + 01 (t)p(t) — O(t)pes (1)),

where t = te=2 + 6.

(A.8)
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9. AZ(m', Xt m? x?) = (R(m' (1)) + Z(x' (1)), R(m*(t)) + Z(x*(t))) with smooth
functions m* and x*:

My -m? —m' g =0, rank((m',x"), (M2, x%)) = 2.
Algebras A3(m', x*,m?, x?) and AQ(m {1, m2,%2) are equivalent if 3£,6 € R,
E'{aij}iJZLQ : det{aij} 7é 0, dB € 0(3) dl e C* (( ) Rg)

mi(f) = e~y Bid (1),
(D) = ai; (X7 (1) + L () - 7 (1) = U{2) -7}, (1))
where t = te™% + 6.
10. A3y(3¢,0) = (D + scJ12, Z(|t|%)), where >0, 0 € R.
11. A3 (o) = (0¢ + J1a, Z(e°)), where o € R.
12. A%,(0) = (04, Z(e°Y)), where o € {—1;0;1}.

(A.9)

The proof of Theorem A.2 is analogous to that of Theorem A.l. Let us take an
arbitrary two-dimensional subalgebra generated by two linearly independent operators
of the form

V' =a{D+ abdy + aiJia + alos + abJs + R(M') + Z(x'),

where af, = const (n = 1,5) and [V, V?] € (V! V?). Considering the different
possible cases we try to simplify V¢ by means of adjoint representation as much as
possible. Here we do not present the proof of Theorem A.2 as it is too cumbersome.

A.4 Three-dimensional subalgebras

We also constructed a complete set of A(NS)-inequivalent three-dimensional subal-
gebras. It contains 52 classes of algebras. By means of 22 classes from this set one
can obtain ansatzes of codimension three for the Navier-Stokes field. Here we only
give 8 superclasses that arise from unification of some of these classes:

1. A3 = (D, 8y, Ji2).

2. A3 = (D + sJ12, 0, R(0,0,1)), where 5 > 0. Here and below s, o, 1, &2, p,
v, and a;; are real constants.

3. A3(o,v,e1,2) = (D, Jia+v(R(0,0, [t|Y? In|t|) + Z(eaft| L In|t])) + Z(ea[t| 1),
R(0,0, [t|7TY/2) 4 Z(e5|t|7~ 1)), where vo =0, &1 >0, v > 0, and oey = 0.

4. A}(0,v,e1,82) = (O, Jiz+Z(e1) +v(R(0,0,t)+ Z(eat)), R(0,0, e)+ Z(e2)),
where vo =0, o0ey =0, and, if o = 0, the constants v, &1, and e, satisfy one of the
following conditions:

v=162>0 v=0,e=1,>0; v=e =0, g3 €{0;1}.
5. A2(, m 2, x1, x2) = (D + 2seJ12, R(mY) + Z(x1), R(m?) + Z(x?)), where
x>0, rank( nl,m? ) 2,
tmi — 57711 + 3(m2, —m™ 0)T = a;;m7,

txXi+ X' = ai;x?,  a;; = const,
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(0,11 + agg)(agl’/ﬁl . Tﬁl + (a22 — 0,11)7?11 . Tﬁ2 — alg’fﬁz . Tﬁ2 —+

+ 2s¢(m*2m?t — m11m22)) =0.

(A.10)

This superclass contains eight inequivalent classes of subalgebras that can be obtained
from it by means of a change of basis and the adjoint actions

Ad(6,D), Ad(62J12), Ad(R(7)+ Z(n)),
(Ad(6D), Ad(eapJap), Ad(R(7) + Z(n)))

if 5 > 0 (3 = 0) respectively. Here the functions 7 and 7 satisfy the following
equations:

tity — 37 + (n?, —n',0)T = by’

t’l?t + n= bZXZ + %t(ﬁttt N ﬁtt . ’ﬁ:t) + ’Fitt -7 + %(nln%t — n}tn2).

6. A3(s,mb,m2 x1, x?) = (0 + sJ12, R(MY) + Z(xY), R(m?2) + Z(x?)), where
3 € {0;1}, rank(m!, m?) = 2,
mi — w(m?, —m™ 0 = a;m!, i = aix,
and a;; are constants satisfying (A.10). This superclass contains eight inequivalent

classes of subalgebras that can be obtained from it by means of a change of basis and
the adjoint actions

Ad(6:0,), Ad(62J12), Ad(R(7) + Z(n)),
(Ad(5,:8,), Ad(02D), Ad(eapJay), Ad(R(T) + Z(n)))

if 56 = 1 (3 = 0) respectively. Here the functions 7 and 7 satisfy the following
equations:

iy + s(n?, —nt, 00T = b;mt,
e = bixi + %(ﬁm T — Ty - 71y) + 2(ntnd, — nin?).
7. A3t %0, x) = (Jiz + R(0,0,7°), R(n',n?,0), R(=n?,n",0)), where
n® € C%((to,t1),R), myn® =n'n =0, n'n' 0, 1°#0.
Algebras A3(n*,n?,n®) and A2(7',7%,73) are equivalent if 36, € R, 364 # 0:
) = 640’ (t) cos s — (1) sins),
72(t) = 64(n' (t) sin d3 + n%(t) cos &3), (A.11)
7 (F) = e (),
where £ = te=201 4 §,.
8. A3(i!, w2, m3) = (R(m'), R(M2), R(?), where

e € C((to, 1), R?), rank(m!,m2,@%) =3, ms -m —ma -, = 0.
Algebras AZ(m!,m? m3) and Ag(%l,ﬁ_f,fr‘ﬁ) are equivalent if 36; € R?, 3B € O(3),
F{dp} : det{dap} # 0 such that

ma(f) = day Bmi(t), (A.12)

where £ = te=201 4 §,.
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B On construction of ansatzes for the Navier—Stokes
field by means of the Lie method

The general method for constructing a complete set of inequivalent Lie ansatzes of
a system of PDEs are well known and described, for example, in [27, 28]. However,
in some cases when the symmetry operators of the system have a special form, this
method can be modified [9]. Thus, in the case of the NSEs, coefficients of an arbitrary
operator

Q= foat +£%00 + 1% Oue + 770827
from A(NS) satisfy the following conditions:

=8t @), €£=¢4T), n*=n®td)ud +n, D),

B.1
n° =0 (t, D)p +n"(t, ). 1)

(The coefficients &2, €9, n?, and 7° also satisfy stronger conditions than (B.1). For
example if Q € A(NS), then ¢° = ¢°(¢), n®® = const, and so on. But conditions (B.1)
are sufficient to simplify the general method.) Therefore, ansatzes for the Navier—
Stokes field can be constructing in the following way:

1. We fix a M-dimensional subalgebra of A(NS) with the basis elements

Qm, — meat T gmaaa 4 (nmabub T nmaO)aua T (nm01p 4 ,r]m,OO)ap’ (BQ)
where M € {1;2;3}, m =1, M, and
rank{(5m07£m1’§m27§m3)7 m = 17 M} = M. (B3)

To construct a complete set of inequivalent Lie ansatzes of codimension M for the
Navier-Stokes field, we have to use the set of M-dimensional subalgebras from Sec-
tion A. Condition (B.3) is neeeded for the existance of ansatzes connected with this
subalgebra.

2. We find the invariant independent variables w, = w,(t,%), n = 1, N, where
N =4 — M, as a set of functionally independent solutions of the following system:

L™w=Q"w=E0w+ ™ 0w=0, m=1,M, (B.4)

where L™ := M09, + £me9,.
3. We present the Navier—Stokes field in the form:

u = fab(tvf)vb(w) + ga(tﬂ ‘f)7 p= fo(t7‘f)Q(‘D) + go(t,f), (BS)

where v® and ¢ are new unknown functions of @ = {w,, n = 1,N}. Acting on
representation (B.5) with the operators Q™, we obtain the following equations on
functions £, g%, f9, and ¢°:

me'ab — nmacfcb’ nga _ nmabgb 4 nma07 c= 1’ 3’

B.6
meO — anl JcO7 ngO — anlgO + ,'7m00. ( )

If the set of functions £, f°, g%, and ¢° is a particular solution of (B.6) and satisfies
the conditions rank{(f'®, f2°, f3%), b=1,3} = 3 and f° # 0, formulas (B.5) give an
ansatz for the Navier-Stokes field.
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The ansatz connected with the fixed subalgebra is not determined in an unique
manner. Thus, if

&1 = (@), det{@} 40,
i On )1t (B.7)
Fob(t, 7) = foo(t, ) F(@), L, T) = g*(t, @) + Fo(t, )G (@), '
fot,7) = O, D F(@), 3Ot ) = ¢°(t, %) + fO(t, ¥)G° (@),

the formulas
u® = fot, D)D) + 5, 7), p= fO(t,2)q(®) + §°(t, ) (B.8)

give an ansatz which is equivalent to ansatz (B.5). The reduced system of PDEs
on the functions 9 and ¢ is obtained from the system on v® and ¢ by means of
a local transformation. Our problem is to find or “to guess”, at once, such an ansatz
that the corresponding reduced system has a simple and convenient form for our
investigation. Otherwise, we can obtain a very complicated reduced system which
will be not convenient for investigation and we can not simplify it.

Consider a simple example.

Let M =1 and let us give the algebra (0; + sJ12), where s € {0;1}. For this
algebra, the invariant independent variables y, = y,(t, &) are functionally independent
solutions of the equation Ly =0 (see (B.4)), where

L:= Bt + %(xlam — xgazl). (Bg)

There exists an infinite set of choices for the variables y,. For example, we can give
the following expressions for y,:

T
Yy = arctanx—1 —ut, yp = (22 +2B)V? y3 =3
2

However choosing y, in such a way, for s # 0 we obtain a reduced system which
strongly differs from the “natural” reduced system for » = 0 (the NSEs for steady
flows of a viscous fluid in Cartesian coordinates). It is better to choose the following
variables y,:

Y1 = X1 CoS xt + Tosin xt, Yo = —xysinxt + xocos xt, Y3 = T3.

The vector-functions f° = (f1t, f20, f3%), b = 1,3, should be linearly independent
solutions of the system

Lflz_%fZa Lf2:%f17 Lf3:0

and the function f9 should satisfy the equation Lf® = 0 and the condition fO #
0. Here the operator L is defined by (B.9). We give the following values of these
functions:

fl = (cos t, sin »t, 0), ]?2 = (— sin »t, cos »t, 0), fB =(0,0,1), f°=1.
The functions g¢ and ¢° are solutions of the equations

Lgt = —x¢?, Lg¢®> =x¢', Lg®=0, Lg°=0.
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We can make, for example, g¢ and ¢° vanish. Then the corresponding ansatz has the
form:

1

ul = 9 cos 2t — 92 sin zet, u? = Vlsinset +02cossxt, ud =73, p=4q, (B.10)

where 0% = 9%(y1, Y2, y3) and ¢ = §(y1, y2, y3) are the new unknown functions. Substi-
tuting ansatz (B.10) into the NSEs, we obtain the following reduced system:

VUL — DL, 4 G1 + seyai — sey103 — 202 = 0,

0902 — 02, 4 G2 + 3y203 — sy 03 + 0" =0,

~a~3  ~3 ., ~ ~3 ~3 (B.11)
V™Vg = Vg + q3 + HY2V] — MY1Vy = 07

5 =0

Here subscripts 1,2, and 3 of functions in (B.11) denote differentiation with respect
to y1, yo, and y3 accordingly. System (B.11), having variable coefficients, can be
simplified by means of the local transformation

1 1

Ol = ol — sy, D2

=024y, =03, q~:q+%(y%+y§)‘ (B.12)
Ansatz (B.10) and system (B.11) are transformed under (B.12) into ansatz (2.2) and
system (2.7), where

gl = — X2, 92 = XTI, g3 = 07 gO = %%2(‘%% + I%), (B13)
y1 = —2, and v, = 0. Therefore, we can give the values of g* and ¢° from (B.13)
and obtain ansatz (2.2) and system (2.7) at once.

The above is a good example how a reduced system can be simplified by means of
modifying (complicating) an ansatz corresponding to it. Thus, system (2.7) is simpler
than system (B.11) and ansatz (2.2) is more complicated than ansatz (B.10).

Finally, let us make several short notes about constructing other ansatzes for the
Navier—Stokes field.

Ansatz corresponding to the algebra A}(1,x) (see Subsection A.2) can be cons-
tructed only for such ¢ that 7 (t) # 0. For these values of ¢, the parameter-function x
can be made to vanish by means of equivalence transformations (A.7).

Ansatz corresponding to the algebra AZ(\, ¢!, p,%?) (see Subsection A.3) can be
constructed only for such ¢ that p(t) # 0. For these values of ¢, the parameter-function
% can be made to vanish by means of equivalence transformations (A.8). Moreover,
it can be considered that A\;p — Ap; € {0;1}. The algebra obtained finally is denoted
by AZ(A, x, p,0).

Ansatz corresponding to the algebra A3(m', x!, 72, x?) (see Subsection A.3) can
be constructed only for such ¢ that rank(m?!,m2?) = 2. For these values of ¢, the
parameter-functions x? can be made to vanish by means of equivalence transforma-
tions (A.9).

The algebras A%, (s, ), A?,(0), and A%,(co) can not be used to construct ansatzes
by means of the Lie algorithm.

In view of equivalence transformation (A.11), the functions n’ in the algebra
AZ(n',n%,m®) (see Subsection A.4) can be considered to satisfy the following conditi-
on:

nin? —ntn? € {0; 11}
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