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On the new approach to variable separation
in the two-dimensional Schrodinger equation

R.Z. ZHDANOV, I.V. REVENKO, W.I. FUSHCHYCH

Jast nBoBumipHoro piBHsiHHS Lllpeninrepa 3 moteHuiasnoMm, KU He 3a/1€2KUTh BiJ 4acoBoi
3MiHHOT, TIOBHICTIO PO3B’s3aHO 3ajauy Kjaacudikauil moTeHUiasiB, MPH SKKUX BOHO JAOMY-
CKae poaiseHHs 3MiHHUX. I/ KO2KHOTO 3 MOTeHI[iaJiB OMUCAHO BCi CHCTEMH KOOpPAHHAT,
B IKMX po3i/ioeTbcs BianosinHe piBHsiHHA Illpeninrepa.

There is a lot of papers devoted to separation of variables (SV) in the two-
dimensional Schrodinger equation

U1+ Ug gy + Ugozy = V(l‘l, 172)“ (1)

with some specific V(z1,22) (see, e.g. [1-3] and references therein). Saying about
the problem of SV in the Eq. (1), we imply two mutually connected problems. The
first one is to describe all functions V(z1,22) such that the equation (1) admits
separation of variables (classification problem). The second problem is to construct
for each function V(zq,z2) all coordinate systems making it possible to separate
corresponding Schrodinger equation.

As far as we know, the first problem has been solved provided V' = 0 [3] and
V= azl_z + ﬂxf [1] and the second one has not been considered in the literature at
all. We guess that a possible reason for this was absence of an adequate mathematical
technique to handle the classification problem. In the paper [4] we suggested a new
approach to SV in partial differential equations which enabled us to solve the problem
of SV in two-dimensional wave equation with time independent potential [4]. In the
present paper we give the complete solution of the problem of SV in the Schrodinger
equation (1) obtained within the framework of the above said approach.

Solution with separated variables is looked for in the form of the ansatz [4]

U = Q(t7f)(p0(t)(p1(wl<t7f))@Q(w2<t’f))7 (2)

where ¢o(t), ©1(w1(t, X)), p2(wa(t,¥)) are smooth functions satisfying ordinary diffe-
rential equations (ODE)

d

®o = UO(t79003)\17>\2)7
dgh; de (3)
dwga :U@ (wchgoaawz;)\lv)\Q) ) a:1727

and Q, wy, wo are functions to be determined from the requirement that ansatz (2)
reduces Eq. (1) to ODE, A1, Ay C R! are arbitrary parameters (separation constants).
[t is important to emphasize that functions @, w1, ws do not depend on the parameters
A1, Ao
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Because of the lack of space we have no possibility to adduce all necessary com-
putations. That is why, we shall restrict ourselves by pointing out main steps of
realization of the approach to SV suggested in [4].

First of all, we note that the substitution

w1 — Wi =Q(w1), w2 — w’2 =M(w2), Q— Q = QY1 (w1)Pa(wa) (4)

does not alter the structure of relations (2), (3). That is why, we introduce the
following equivalence relation: (wy,ws,Q) is equivalent to (w},w), Q') provided (4)
holds with some Qg, 1,.

Substituting (2) into (1) with account of equalities (3) and splitting obtained rela-
tion with respect to independent variables ¢g, @4, Yaa, Aa» @ = 1,2 we conclude that
up to the equivalence relation (4) equations (3) take the form

d

= (MRi(0) + AaRa(t) + Ro(t)) 0,

d?pq

dew? = ()\lBla(wa) + )\2B2a(wa) + BOa(wa))(Pa

and what is more, functions wy, ws, @ satisfy the over-determined system of nonlinear
partial differential equations

2
1) § Wiz, W2z, = 07
b=1

2
2) Z[Bal (Wl)wlszme + BaQ(WQ)WwaWQLEb] + Ra(t) = 07 a = 17 27

b=1
2 2
3) 2 Z szwazb + Q <iwat + Zwambmb> == 07 a = 17 27 (5)
b=1 b=1
2
4) [Bo1(w1)wiz,w2z, + Boz2(w2)was, wae, |Q + Qi +
b=1

2
+ 3" Quyay + Ro(HQ — V(H)Q = 0.
b=1

Thus, to solve the problem of SV for the linear Schrodinger equation it is necessary
to construct the general solution of the system of nonlinear equations (5). Roughly
speaking, to solve a linear equation one has to solve a system of nonlinear equations!
This is the reason why so far there is no complete description of all coordinate systems
providing separability of the four-dimensional d’Alembert equation.

But in the case involved we have succeeded in integration of nonlinear system (5)
for w1, we, @. First, we have established that the general solution of equations 1-3
from (5) determined up to the equivalence relation (4) splits into four inequivalent
classes

1) wp = A(t)l‘l + W (t), Wy = B(t)xg

LA B (W W
4\ At B2 o\l At B

+
5
=

Q(t,Z) = exp
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1
) wn = (e +a3) W), wn = aretg 2,

Z2
. Iw
QB = exp |~ (a7 +3)]
. L
3) xr1 = §W(t)(w% — w%) + W1(t), To = W(t)W1UJ2 + Wg(t), ( )
_ - 6
S W 9 op 0 .
Q(t, %) = exp Zw[(ﬂh — W) + (22 — Wa)*] + §(W1JU1 + Waza) |,
4) z =W({) chw-l coswy + Wi(t), w2 =W(t)shwsinws + Wa(t), ]
. ERi7 P . 1
Q(t,l‘) = exp %W[(l‘l — W1)2 + (.IQ — W2)2] + %(Wlxl + WQl‘Q)

Here A, B, W, Wy, W5 are arbitrary smooth functions on ¢. Dot means differentiation
with respect to t.

Substituting obtained expressions for @), wi, we into the last equation from the
system (5) and splitting with respect to the variables z1, x5 we get explicit forms of
potentials V' (x1,22) and systems of nonlinear ODE for functions A(t), B(t), W(t),
Wi(t), Wa(t). We have suceeded in integrating these and in constructing all coordinate
systems providing SV in the initial equation (1). Complete list of these systems takes
two dozens of pages, so we are to restrict ourselves to adducing explicit forms of
potentials V' (z1,z2) such that the Schrédinger equation (1) admits SV.

D V@ =Vitet+ad)+ v (D) o+ ad)
2) V(E) =V (j—) (e +43)
3) V(&) = [Vi(wi1) + Va(w2)](wi + w3) !,

1
where 1 = i(wf —w?), Ty =wiwy;

4) V() =[Vi(w) + Vg(oug)](sh2 wy + sin? wg)*l,
where x1 = chwi coswy, 9 = shwy sinws;

5) V(@) = Vi(z1) + Va(z2); 7)
6) V(%) = ka? + Va(xa);
) V(Z) = k122 + kow ] % + Va(za), ko # 0;
8) V(%) =kai, k#0;
9) V(%) = k122 + koxd,  kiky # 0;
10) V(%) = kya? + kox (%, kike # 0;
11) V(%) = kya? + koxd + ksay 2, kiks #0;
12) V(%) = kya? + kool + ks ? + kaay®,  kaks 0, k3 +k3 £0;
13) V(Z) = k1o, 2 + ko 2
14) V(@) =0

In the above formulae Vi, V5 are arbitrary smooth functions, k, ki, ko, k3, k4 are
arbitrary real constants.
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Note 1. The Schrodinger equation with the potential

V(%) = k(2 +23)+ W1 (%) (2 +23)"', k= const, (8)
2
is reduced to the Schrédinger equation with the potential
" ] 2\
V@) =V (2) @f ey ©)
2

by the change of variables
t'=a(t), & =pt)E u =exp(ivt)®+id(t)).

(explicit form of the functions «f(t), G(t), v(t), d(t) depends on the sign of the
parameter k in (8)). Since the above change of variables does not alter the structure
of ansatz (2), when classifying potentials V(x1,x2) providing separability of Eq. (1)
we consider potentials (7), (8) as equivalent.

Note 2. It is well-known (see, e.g. [5, 6]) that the general form of the invariance
group admitted by Eq. (1) is as follows:

— —

¢ =f(t,0), 2 =g (t,7.0), a=1,2, u =h(t70)u, (10)

where § = (61,05, ...,0,) are group parameters.
Since transformations (10) do not alter the structure of the ansatz (2), systems of
coordinates ¢/, =}, % and t, x1, x5 are considered as equivalent.

Thus, there exist fourteen inequivalent types of the Schrodinger equations of the
form (1) admitting SV. Consequently, the classification problem for Eq. (1) is solved.

Next, we shall obtain all coordinate systems providing separability of the Schré-
dinger equation having the potential V' = k2% + ko3 (the harmonic oscillator type
equation). Explicit forms of the coordinate systems to be found depend essentially
on the signs of the parameters k;, k. Here we consider the case, when k1 < 0,
ko > 0 (the cases k1 >0, ko > 0 and k; < 0, ky < 0 will be considered in a separate
publication). It means that Eq. (1) can be written in the form

1
WUt + Ugy gy + Upgas + Z(aQﬁ — bz2)u =0, (11)
where a, b, are arbitrary real constants (the factor 1/4 is introduced for further
convenience).

We have proved above that to describe all coordinate systems ¢, wi, wy providing
separability of Eq. (11) one has to construct the general solution of system (5). The
general solution of equations 1-3 from (5) splits into four inequivalent classes listed
in (6).

Analysis shows that only solutions belonging to the first class can satisfy equati-
on 4 from (5). Substituting corresponding formulae for wi, wy, @ into equation 4
from (5) with V = 1(a%z? — b*z3) and splitting with respect to zy, 2 one gets

Boi(w1) = aqwi + aswi,  Boz(wa) = f1ws + faws,

N N 2
(%) - (%) —4don At —a® =0, (12a)
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. . . 2
(%) - (g) —46,B* +b* =0, (12b)

él — 2%91 — 2(20[191 + 0[2)A4 = 0, (12C)
LA \
0y — 2292 —2(26102 + B2)B* =0, (12d)

Here a1, aa, (1, B2 are arbitrary real constants.

Integration of the system of nonlinear ODE (12a-d) is carried out in the Appendix.
Substitution of the formulae (A.4)-(A.9) into expressions 1 from (5) yields the comp-
lete list of coordinate systems providing separability of the Schrédinger equation (11).
These systems can be reduced to the canonical form if we use the Note 2. The
invariance group of Eq. (11) is generated by the following basis operators [6]:

Py=09;, I=ud, M =iud,, P =chatd,, + %(xl sh at)ud,,
b -

Py, = cosbt0,, — %(J}g sinbt)ud,, G =shatd;, + %(ml ch at)ud,, (13)
b

Go = sinbtd,, + %(.’172 o8 bt )udy .

Using the finite transformations generated by the infinitesimal operators (13) and
the Note 2 we may choose in the formulae (A.4)-(A.9) C3 = Cy = Dy =0, Cy =
Dy =1, D3 =Dy =0. As a result we come to the following assertion.

Theorem. The Schridinger equation (11) admits SV in 21 inequivalent coordinate
systems of the form
wo=1t, wi=wi(t,T), we=uws(tT), (14)

where wy is given by one of the following formulae:

z1(sha(t+C))~' +a(sha(t+C))2, zi(cha(t+C))* +a(cha(t+C))~2,
z1 exp(£a(t + O)) + aexp(xda(t + C)), x1(a+sh2a(t+ C))~Y/2, (15)
z1(a+ch2a(t+C)"V2,  x1(a+exp(+2a(t +C)))" 2, 1z

and wsy is given by one of the following formulae:
To(sinbt) ™t + B(sinbt) "2, xo(B4sin2bt) V2 . (16)

In the above formulae C, «, B are arbitrary real parameters.

It is important to note that explicit form of the coordinate systems providing
separability of Eq. (11) depends essentially on the parameters a, b contained in the
potential V' (z1,z2). It means that in the free case (V' = 0) the Schrédinger equation
does not admit SV in such coordinate systems. Consequently, they are essentially
new.
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Appendix. Integration of nonlinear ODE (12a-d).
Evidently, equations (12a-d) can be rewritten in the following unified form:

. . N\ 2 .
Y Y Y
Provided k = —a? < 0, system (A.1) coincides with equations (12a,c) and under

k =0b? > 0 — with equations (12b,d).
First of all, we note that the function z = z(¢) is determined up to addition of an
arbitrary constant. Really, the coordinate functions w, has the following structure:

We =YTq+2, a=1,2.

But the coordinate system ¢, wi, ws is equivalent to the coordinate system ¢,
wi + C1, wy + Oy, C, € R, Hence, it follows that the function z(t) is equivalent to
the function z(t) + C' with arbitrary real constant C. Consequently, provided a # 0,
we may choose in (A.1) B =0.

The case 1. a = 0. On making the change of variables in (A.1)

w="2 =% (A.2)
Y Y
we get
w=w?+k, U+kv=_py (A.3)
First, we consider the case k = —a? < 0. Then the general solutions of the first

equation from (A.3) is given by the formulae w = —actha(t + C;), w = —atha(t +
C1), w = +a, C; € R, whence

y = Cosh™? a(t+C1), y=Cych talt+ ),

A4
y = exp[+a(t + C;)], C, € R A4

The second equation of system (A.3) is linear inhomogeneous ODE. Its general solu-
tion after being substituted into (A.2) yields:
-1 BCy o
z=(Cschat + Cyshat)sh™ a(t+ C1) + Saz sh™a(t + Cy),
z = (Cychat + Cyshat)ch™a(t+ Cy) + B—Céch_Za(tJrC )
- 2 4 1 242 1) (A5)
2 = (Cy chat + Cy shat) expla(t + C1)] + % expl£dalt + C1)),

Cs,Cy € R

The case k = b% > 0 is treated in the analogous way, the general solution of (A.3)
being given by the formulae

y = Dysin™'b(t + Dy),
4 (A.6)

D
z = (C3cosbt + Cysinbt)sin ' b(t + Dy) + ﬁ2b22 sin~2b(t + D),
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The case 2. a # 0, = 0. On making the change of variables in (A.1)

z
y=expw, U= -—
Y
we get
W—w? =k+aexpdw, U+ kv=0. (A.1a)

The first ODE from (A.la) is reduced to the first-order linear ODE

1
§p’(w) —p(w) =k + aexpdw

1/2

to by the substitution w = (p(w))*/2, whence

p(w) = cexpdw + yexp2w — k, v € R

Equation @ = p(w) has a singular solution w = C' = const such that p(C) = 0. If
w # 0 then integrating equation w = p(w) and returning to the initial variable y, we

get

y(t) dr
=t+ Cy.
/ T(art + 72 — k)1/2 e

Taking the integral in the left-hand side of the above equality we obtain the general
solution of the first ODE from (A.l). It is given by the following formulae:
under k = —a® < 0

y = Cy(a+sh2a(t + C’l))_l/z7 y = Co(a+ ch2a(t + C’l))_l/Q,

A7

y = Oalo + expl2at 1 C))) /2, (A1
under k=4 >0

y = Dy(a + sin 2b(t + Dy)) /2, (A.8)

Here C1, Co, Dy, Dy are arbitrary real constants.

Integrating the second ODE from (A.la) and returning to the initial variable z we
have

under k = —a® < 0

z =y(t)(Csshat + Cy chat) (A.9)
under k =b*>0
z = y(t)(D3 cos bt + Dy sin bt)

where Cs, Cy4, D3, Dy are arbitrary real constants.
Thus, we have constructed the general solution of the system of nonlinear ODE
(A.1) which is given by formulae (A.5)-(A.9).
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