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On the new approach to variable separation
in the two-dimensional Schrödinger equation

R.Z. ZHDANOV, I.V. REVENKO, W.I. FUSHCHYCH

Для двовимiрного рiвняння Шредiнгера з потенцiалом, який не залежить вiд часової
змiнної, повнiстю розв’язано задачу класифiкацiї потенцiалiв, при яких воно допу-
скає роздiлення змiнних. Для кожного з потенцiалiв описано всi системи координат,
в яких роздiлюється вiдповiдне рiвняння Шредiнгера.

There is a lot of papers devoted to separation of variables (SV) in the two-
dimensional Schrödinger equation

iu1 + ux1x2 + ux2x2 = V (x1, x2)u (1)

with some specific V (x1, x2) (see, e.g. [1–3] and references therein). Saying about
the problem of SV in the Eq. (1), we imply two mutually connected problems. The
first one is to describe all functions V (x1, x2) such that the equation (1) admits
separation of variables (classification problem). The second problem is to construct
for each function V (x1, x2) all coordinate systems making it possible to separate
corresponding Schrödinger equation.
As far as we know, the first problem has been solved provided V = 0 [3] and

V = αx−2
1 + βx−2

2 [1] and the second one has not been considered in the literature at
all. We guess that a possible reason for this was absence of an adequate mathematical
technique to handle the classification problem. In the paper [4] we suggested a new
approach to SV in partial differential equations which enabled us to solve the problem
of SV in two-dimensional wave equation with time independent potential [4]. In the
present paper we give the complete solution of the problem of SV in the Schrödinger
equation (1) obtained within the framework of the above said approach.
Solution with separated variables is looked for in the form of the ansatz [4]

u = Q(t, �x)ϕ0(t)ϕ1(ω1(t, �x))ϕ2(ω2(t, �x)), (2)

where ϕ0(t), ϕ1(ω1(t, �x)), ϕ2(ω2(t, �x)) are smooth functions satisfying ordinary diffe-
rential equations (ODE)

dϕ0

dt
= U0(t, ϕ0, λ1, λ2),

d2ϕa

dω2
a

= Ua

(
ωa, ϕa,

dϕa

dωa
;λ1, λ2

)
, a = 1, 2,

(3)

and Q, ω1, ω2 are functions to be determined from the requirement that ansatz (2)
reduces Eq. (1) to ODE, λ1, λ2 ⊂ R

1 are arbitrary parameters (separation constants).
It is important to emphasize that functions Q, ω1, ω2 do not depend on the parameters
λ1, λ2.
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Because of the lack of space we have no possibility to adduce all necessary com-
putations. That is why, we shall restrict ourselves by pointing out main steps of
realization of the approach to SV suggested in [4].
First of all, we note that the substitution

ω1 → ω′
1 = Ω1(ω1), ω2 → ω′

2 = Ω2(ω2), Q→ Q′ = Qψ1(ω1)ψ2(ω2) (4)

does not alter the structure of relations (2), (3). That is why, we introduce the
following equivalence relation: (ω1, ω2, Q) is equivalent to (ω′

1, ω
′
2, Q

′) provided (4)
holds with some Ωa, ψa.
Substituting (2) into (1) with account of equalities (3) and splitting obtained rela-

tion with respect to independent variables ϕ0, ϕa, ϕaa, λa, a = 1, 2 we conclude that
up to the equivalence relation (4) equations (3) take the form

dϕ0

dt
= (λ1R1(t) + λ2R2(t) +R0(t))ϕ0,

d2ϕa

dω2
a

= (λ1B1a(ωa) + λ2B2a(ωa) +B0a(ωa))ϕa

and what is more, functions ω1, ω2, Q satisfy the over-determined system of nonlinear
partial differential equations

1)
2∑

b=1

ω1xb
ω2xb

= 0,

2)
2∑

b=1

[Ba1(ω1)ω1xb
ω2xb

+Ba2(ω2)ω2xb
ω2xb

] +Ra(t) = 0, a = 1, 2,

3) 2
2∑

b=1

Qxb
ωaxb

+Q

(
iωat +

2∑
b=1

ωaxbxb

)
= 0, a = 1, 2,

4)
2∑

b=1

[B01(ω1)ω1xb
ω2xb

+B02(ω2)ω2xb
ω2xb

]Q+ iQi +

+
2∑

b=1

Qxbxb
+R0(t)Q− V (�x)Q = 0.

(5)

Thus, to solve the problem of SV for the linear Schrödinger equation it is necessary
to construct the general solution of the system of nonlinear equations (5). Roughly
speaking, to solve a linear equation one has to solve a system of nonlinear equations!
This is the reason why so far there is no complete description of all coordinate systems
providing separability of the four-dimensional d’Alembert equation.
But in the case involved we have succeeded in integration of nonlinear system (5)

for ω1, ω2, Q. First, we have established that the general solution of equations 1–3
from (5) determined up to the equivalence relation (4) splits into four inequivalent
classes

1) ω1 = A(t)x1 +W1(t), ω2 = B(t)x2 +W2(t),

Q(t, �x) = exp

[
− i

4

(
Ȧ

A
x2

1 +
Ḃ

B
x2

2

)
− i

2

(
Ẇ1

A
x1 +

Ẇ2

B
x2

)]
,



Variable separation in the two-dimensional Schrödinger equation 285

2) ω1 =
1
2

ln(x2
1 + x2

2) +W (t), ω2 = arctg
x1

x2
,

Q(t, �x) = exp

[
−IẆ

4
(x2

1 + x2
2)

]
,

3) x1 =
1
2
W (t)(ω2

1 − ω2
2) +W1(t), x2 = W (t)ω1ω2 +W2(t),

Q(t, �x) = exp

[
i

4
Ẇ

W
[(x1 −W1)2 + (x2 −W2)2] +

i

2
(Ẇ1x1 + Ẇ2x2)

]
,

4) x1 = W (t) chω1 cosω2 +W1(t), x2 = W (t) shω1 sinω2 +W2(t),

Q(t, �x) = exp

[
i

4
Ẇ

W
[(x1 −W1)2 + (x2 −W2)2] +

i

2
(Ẇ1x1 + Ẇ2x2)

]
.

(6)

Here A, B, W , W1, W2 are arbitrary smooth functions on t. Dot means differentiation
with respect to t.
Substituting obtained expressions for Q, ω1, ω2 into the last equation from the

system (5) and splitting with respect to the variables x1, x2 we get explicit forms of
potentials V (x1, x2) and systems of nonlinear ODE for functions A(t), B(t), W (t),
W1(t),W2(t). We have suceeded in integrating these and in constructing all coordinate
systems providing SV in the initial equation (1). Complete list of these systems takes
two dozens of pages, so we are to restrict ourselves to adducing explicit forms of
potentials V (x1, x2) such that the Schrödinger equation (1) admits SV.

1) V (�x) = V1(x2
1 + x2

2) + V2

(
x1

x2

)
(x2

1 + x2
2)

−1;

2) V (�x) = V2

(
x1

x2

)
(x2

1 + x2
2)

−1;

3) V (�x) = [V1(ω1) + V2(ω2)](ω2
1 + ω2

2)−1,

where x1 =
1
2
(ω2

1 − ω2
2), x2 = ω1ω2;

4) V (�x) = [V1(ω1) + V2(ω2)](sh2 ω1 + sin2 ω2)−1,

where x1 = chω1 cosω2, x2 = shω1 sinω2;
5) V (�x) = V1(x1) + V2(x2);
6) V (�x) = kx2

1 + V2(x2);
7) V (�x) = k1x

2
1 + k2x

−2
1 + V2(x2), k2 �= 0;

8) V (�x) = kx2
1, k �= 0;

9) V (�x) = k1x
2
1 + k2x

2
2, k1k2 �= 0;

10) V (�x) = k1x
2
1 + k2x

−2
1 , k1k2 �= 0;

11) V (�x) = k1x
2
1 + k2x

2
2 + k3x

−2
2 , k1k3 �= 0;

12) V (�x) = k1x
2
1 + k2x

2
2 + k3x

−2
1 + k4x

−2
2 , k3k4 �= 0, k2

1 + k2
2 �= 0;

13) V (�x) = k1x
−2
1 + k2x

−2
2 ;

14) V (�x) = 0.

(7)

In the above formulae V1, V2 are arbitrary smooth functions, k, k1, k2, k3, k4 are
arbitrary real constants.
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Note 1. The Schrödinger equation with the potential

V (�x) = k(x2
1 + x2

2) + V1

(
x1

x2

)
(x2

1 + x2
2)

−1, k = const, (8)

is reduced to the Schrödinger equation with the potential

V ′(�x′) = V ′
1

(
x′1
x′2

)
(x′21 + x′2)−1 (9)

by the change of variables

t′ = α(t), �x′ = β(t)�x, u′ = exp(iγ(t)�x2 + iδ(t)).

(explicit form of the functions α(t), β(t), γ(t), δ(t) depends on the sign of the
parameter k in (8)). Since the above change of variables does not alter the structure
of ansatz (2), when classifying potentials V (x1, x2) providing separability of Eq. (1)
we consider potentials (7), (8) as equivalent.

Note 2. It is well-known (see, e.g. [5, 6]) that the general form of the invariance
group admitted by Eq. (1) is as follows:

t′ = f(t, �θ), x′a = ga(t, �x, �θ), a = 1, 2, u′ = h(t, �x, �θ)u, (10)

where �θ = (θ1, θ2, . . . , θn) are group parameters.
Since transformations (10) do not alter the structure of the ansatz (2), systems of

coordinates t′, x′1, x
′
2 and t, x1, x2 are considered as equivalent.

Thus, there exist fourteen inequivalent types of the Schrödinger equations of the
form (1) admitting SV. Consequently, the classification problem for Eq. (1) is solved.
Next, we shall obtain all coordinate systems providing separability of the Schrö-

dinger equation having the potential V = k1x
2
1 + k2x

2
2 (the harmonic oscillator type

equation). Explicit forms of the coordinate systems to be found depend essentially
on the signs of the parameters k1, k2. Here we consider the case, when k1 < 0,
k2 > 0 (the cases k1 > 0, k2 > 0 and k1 < 0, k2 < 0 will be considered in a separate
publication). It means that Eq. (1) can be written in the form

iut + ux1x1 + ux2x2 +
1
4
(a2x2

1 − b2x2
2)u = 0, (11)

where a, b, are arbitrary real constants (the factor 1/4 is introduced for further
convenience).
We have proved above that to describe all coordinate systems t, ω1, ω2 providing

separability of Eq. (11) one has to construct the general solution of system (5). The
general solution of equations 1–3 from (5) splits into four inequivalent classes listed
in (6).
Analysis shows that only solutions belonging to the first class can satisfy equati-

on 4 from (5). Substituting corresponding formulae for ω1, ω2, Q into equation 4
from (5) with V = 1

4 (a2x2
1 − b2x2

2) and splitting with respect to x1, x2 one gets

B01(ω1) = α1ω
2
1 + α2ω1, B02(ω2) = β1ω

2
2 + β2ω2,(

Ȧ

A

)·
−
(
Ȧ

A

)2

− 4α1A
4 − a2 = 0, (12a)
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(
Ḃ

B

)·
−
(
Ḃ

B

)2

− 4β1B
4 + b2 = 0, (12b)

θ̈1 − 2
Ȧ

A
θ̇1 − 2(2α1θ1 + α2)A4 = 0, (12c)

θ̈2 − 2
Ȧ

A
θ̇2 − 2(2β1θ2 + β2)B4 = 0, (12d)

Here α1, α2, β1, β2 are arbitrary real constants.
Integration of the system of nonlinear ODE (12a–d) is carried out in the Appendix.

Substitution of the formulae (A.4)–(A.9) into expressions 1 from (5) yields the comp-
lete list of coordinate systems providing separability of the Schrödinger equation (11).
These systems can be reduced to the canonical form if we use the Note 2. The
invariance group of Eq. (11) is generated by the following basis operators [6]:

P0 = ∂t, I = u∂u, M = iu∂u, P1 = ch at∂x1 +
ia

2
(x1 sh at)u∂u,

P2 = cos bt∂x2 −
ib

2
(x2 sin bt)u∂u, G1 = sh at∂x1 +

ia

2
(x1 ch at)u∂u,

G2 = sin bt∂x1 +
ib

2
(x2 cos bt)u∂u.

(13)

Using the finite transformations generated by the infinitesimal operators (13) and
the Note 2 we may choose in the formulae (A.4)–(A.9) C3 = C4 = D1 = 0, C2 =
D2 = 1, D3 = D4 = 0. As a result we come to the following assertion.
Theorem. The Schrödinger equation (11) admits SV in 21 inequivalent coordinate
systems of the form

ω0 = t, ω1 = ω1(t, �x), ω2 = ω2(t, �x), (14)

where ω1 is given by one of the following formulae:

x1(sh a(t+ C))−1 + a(sh a(t+ C))−2, x1(ch a(t+ C))−1 + a(ch a(t+ C))−2,

x1 exp(±a(t+ C)) + a exp(±4a(t+ C)), x1(a+ sh 2a(t+ C))−1/2,

x1(a+ ch 2a(t+ C))−1/2, x1(a+ exp(±2a(t+ C)))−1/2, x1

(15)

and ω2 is given by one of the following formulae:

x2(sin bt)−1 + β(sin bt)−2, x2(β + sin 2bt)−1/2, x2. (16)

In the above formulae C, α, β are arbitrary real parameters.
It is important to note that explicit form of the coordinate systems providing

separability of Eq. (11) depends essentially on the parameters a, b contained in the
potential V (x1, x2). It means that in the free case (V = 0) the Schrödinger equation
does not admit SV in such coordinate systems. Consequently, they are essentially
new.
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Appendix. Integration of nonlinear ODE (12a–d).
Evidently, equations (12a–d) can be rewritten in the following unified form:

(
ẏ

y

)·
−
(
ẏ

y

)2

− αy4 = k, z̈ − ẏ

y
ż − (αz + β)y4 = 0. (A.1)

Provided k = −a2 < 0, system (A.1) coincides with equations (12a,c) and under
k = b2 > 0 — with equations (12b,d).
First of all, we note that the function z = z(t) is determined up to addition of an

arbitrary constant. Really, the coordinate functions ωa has the following structure:

ωa = yxa + z, a = 1, 2.

But the coordinate system t, ω1, ω2 is equivalent to the coordinate system t,
ω1 + C1, ω2 + C2, Ca ∈ R

1. Hence, it follows that the function z(t) is equivalent to
the function z(t) + C with arbitrary real constant C. Consequently, provided α �= 0,
we may choose in (A.1) β = 0.

The case 1. a = 0. On making the change of variables in (A.1)

w =
ẏ

y
, v =

z

y
(A.2)

we get

ẇ = w2 + k, v̈ + kv = βy3. (A.3)

First, we consider the case k = −a2 < 0. Then the general solutions of the first
equation from (A.3) is given by the formulae w = −a cth a(t + C1), w = −a th a(t +
C1), w = ±a, C1 ∈ R

1, whence

y = C2 sh−1 a(t+ C1), y = C2 ch−1 a(t+ C1),
y = exp[±a(t+ C1)], C2 ∈ R

1.
(A.4)

The second equation of system (A.3) is linear inhomogeneous ODE. Its general solu-
tion after being substituted into (A.2) yields:

z = (C3 ch at+ C4 sh at) sh−1 a(t+ C1) +
βC4

2

2a2
sh−2 a(t+ C1),

z = (C2 ch at+ C4 sh at) ch−1 a(t+ C1) +
βC4

2

2a2
ch−2 a(t+ C1),

z = (C3 ch at+ C4 sh at) exp[±a(t+ C1)] +
β

8a2
exp[±4a(t+ C1)],

C3, C4 ∈ R
1.

(A.5)

The case k = b2 > 0 is treated in the analogous way, the general solution of (A.3)
being given by the formulae

y = D2 sin−1 b(t+D1),

z = (C3 cos bt+ C4 sin bt) sin−1 b(t+D1) +
βD4

2

2b2
sin−2 b(t+D1),

(A.6)
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The case 2. α �= 0, β = 0. On making the change of variables in (A.1)

y = expw, v =
z

y

we get

ẅ − ẇ2 = k + α exp 4w, v̈ + kv = 0. (A.1a)

The first ODE from (A.1a) is reduced to the first-order linear ODE

1
2
p′(w) − p(w) = k + α exp 4w

to by the substitution ẇ = (p(w))1/2, whence

p(w) = α exp 4w + γ exp 2w − k, γ ∈ R
1.

Equation ẇ = p(w) has a singular solution w = C = const such that p(C) = 0. If
ẇ �= 0 then integrating equation ẇ = p(w) and returning to the initial variable y, we
get ∫ y(t) dτ

τ(ατ4 + γτ2 − k)1/2
= t+ C1.

Taking the integral in the left-hand side of the above equality we obtain the general
solution of the first ODE from (A.1). It is given by the following formulae:
under k = −a2 < 0

y = C2(α+ sh 2a(t+ C1))−1/2, y = C2(α+ ch 2a(t+ C1))−1/2,

y = C2(α+ exp[±2a(t+ C1)])−1/2,
(A.7)

under k = b2 > 0

y = D2(α+ sin 2b(t+D1))−1/2. (A.8)

Here C1, C2, D1, D2 are arbitrary real constants.
Integrating the second ODE from (A.1a) and returning to the initial variable z we

have
under k = −a2 < 0

z = y(t)(C3 sh at+ C4 ch at) (A.9)

under k = b2 > 0

z = y(t)(D3 cos bt+D4 sin bt)

where C3, C4, D3, D4 are arbitrary real constants.
Thus, we have constructed the general solution of the system of nonlinear ODE

(A.1) which is given by formulae (A.5)–(A.9).
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