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Nonlocal ansatzes
for nonlinear wave equation

W.I. FUSHCHYCH, IM. TSYFRA

3anpornoHOBaHO HeJIOKaJbHI aH3allM, W10 PeAyKYIOTb HeJiHifHI XBUJIbOBI DIBHSIHHS 10
CHCTeMH XBHJIbOBHUX PIBHSIHb 3 MEHLIMM YHCJIOM He3asexxHHX 3MiHHHX. [TokasaHo, 1o i
aH3alK MOXXHa OflepXKaTH, BUKOPUCTOBYIOUH ONEPaTOpH HeJIOKaJbHOI CUMeTpil piBHAHHA.

1. In the present paper we suggest a nonlocal ansatz

ou

. = auy (z, u)py (W) + hy(z,u), p,v=0,1,2,3, (1)
I

for reduction of the second order nonlinear differential equation

0%u ou
g“”(x’u)(%cﬂ—W+F (z,u,%> =0 (2)

to the system of equations for some functions ¢, (w), w = (w1,w2,ws). The functions
au(x,u), hy(x,u) are determined from the condition that the equation (2) is reduced
to the system of equations for ¢, (w) (for more detail about the reduction method see
(1, 2]).

To illustrate the efficiency of the ansatz (1) we consider two nonlinear two-dimen-
sional equations of type (2)

u1p = ur F1(uy — u), (3)
ugo = Fa(u11), (4)
where wu,,, = aff—g%, u, = é%, Fy, Fy are smooth functions.
2. For equation (3) we shall search for ansatz (1) in the form
0 0
Gur = 1) (), 5 = pa(w) + hala,u), (5)

hi1, ha, w has to be determined in the way that functions ¢, o satisfy the system of
the ordinary differential equations with a new independent variable w [1, 2]. Substitu-
ting (5) into (3) and using the compatibility condition w;2 = us;, we obtain

8h1 8h1 8@1 Ow B

Ory  Ou (p2+ ho) + Ow Oy (1 + h1)lpr + h1 — ul,
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o, T g P g = (et hlen - —al, 6)
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Oh1  0Op1 Ow
g 9 Rk S -

P20 T 0w Dy P 1h1 + 1 —u] = Ry (w),

oh Oh

a—xi—Fa—Uth = hiFilh1 + o1 — 1], (7)
% 0o Ow

_— = F _— =
Y15, + 0w 0z, e1Fi[h1 + 1 — u] = Ro(w),

where Rj(w), Ra(w) are unknown functions. System (7) is a condition on functions
hi, he, w(x1,x9) guaranteeing that system (6) depends on the w only, i.e., ansatz (5)
reduces partial differential equation to a system of ordinary differential equations for
functions ¢1 and ¢5. Hence, in order to describe ansatzes of type (5) it is necessary
to solve nonlinear system (7). Here, we get a particular solution of system (7) only,
namely

hl = u, h2 = F1 [<p1(x2)]u, W = T9. (8)

[t is easy to verify that solution (8) satisfies system (7) and in this case reduced
system (6) takes the form

pa(2) + g—j; — o1(22) Fi 1 (a2)]. 9)

Having integrated the system

u 91

9a; = Filer@)lu+ er@) Rl (e2)] - 52 1o

it i)
axl—u w1{T2),

one can obtain particular solutions of equation (3). The solution of equation (10) is
given by the formula

u = —pi(x2) + ce®r ] Fi(pi(z2))des (11)

where ¢1(x2) is an arbitrary smooth function and C is an arbitrary constant.
3. Now we suggest the method of construction of ansatzes (1), based on a nonlocal
symmetry of the equation

O*u _F( ou 8u>. (12)

021024 b 0z, O

We consider the first order system

Vi + ViV = Fas, VY, V?), (13)
Vo + V5V = F(as, V1, V?), (14)
corresponding to the equation (12), where V* = %‘;k T3 =wu, PL =V

The problem of construction of all ansatzes from the class (l)i for equation (12) is
equivalent to the problem of finding all operators of the @-conditional symmetry [1,
2, 5].
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Theorem 1. The system (13), (14) is Q-conditionally invariant under the operators
Q1 = 0z,, Q2 = 0, + 010y, + 10, if and only if the functions n', n? satisfy the
[ollowing equation

F
17‘1/2 =0, 7721?2 = 7721?1 = 779261 =0, 77\2/1 =10
\%4
1 1 1 F  F L (15)
’ / ,
Ny _77V1F = Fz3 +n FV1 + WF‘Q -n W —77$3V .

The correctness of Theorem 1 is easily verified with the help of the infinitesimal
criterion of the Q-conditional invariance [l, 5]. Thus, arbitrary setting n'(xs, V1)
as a function on w3, V! we get classes of nonlinearities F(z3 V1, V?2) with which
equation (12) admits operators {Q1,Q2}. In the case of equation (3) n', n? are as
follows: ' =1, n? = Fy(V! —a3), F = VIF (V! — 23). It should be noted that Qs
is not a prolongation of Lie operator, but it is the nonlocal symmetry operator of the
equation (12). Operators {Q1,Q2} lead to the ansatz (10).

Then we consider the equation

upo = Fo(u11), (16)

where Fy is an arbitrary smooth function. Using the invariance of equation (16) under
the operators dzg, 0x1, O, ©10y, 20, We write it in the form of the following system

VP=V), V=V, VP=R(V?), (17)

where ugg = VO, ugy = V31, uyy = V2.

Theorem 2. The system (17) is invariant with respect to the continuous group of
transformations with the infinitesimal operator

Q = goawo + 518111 (18)
if €9, €% are a solution of the system of equations

0 _ 0 _og _ ogh _

6.1‘0 76_.1‘17 6.1‘0 a 6.1‘1 707
9 ag ., g 9
W_WF2(V)+W’ (19)
ot 9, o 9E°
_— = —F —_—.
avi ~ vVt gm
The finite transformations
zh = x0+al’, ) =z +att (20)

correspond to the operator (18). Formulae (18), (19) give the operator of the nonlocal
symmetry of equation (16). With the help of this operator, one can construct nonlocal
ansatzes reducing the equation (16) to the system of three ordinary differential equa-
tions for three unknown functions. The analogous procedure has been called an ati-
reduction in [6].

Furthermore, the finite transformations (20) can be used for generating new solu-
tions. The transformations (20) are more general than contact ones since &9, &' are
the functions on wgg, wo1, w11.
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For example, we shall take F5(uq1) = sinuqp. In this case one of the solutions of
system (19) is

€=

where C, D = const. We start from a solution of the equation u = & —sinx. Then

g(vl)2 —CcosV24D, € =cVlisinV? 4 DV, ©@1)

VO =sinzg, V=, VZ=uz,. (22)
Using the transformations (20) we obtain the system

VO =sin [wo +a (g(vl)Q —CcosV? + D)} )

V=g, +a[CVsinV? + DV, (23)

Vi=zp+a [g(V1)2 —CcosV?+ D} .
Thus, in order to find new solutions of equations (16) it is necessary to solve the
overdetermined but compatible system

VQO = sin [xo +a (%(U()l)Q — CCOSUM + D)} s

uo1 = 1 + afcuor sinugy + Dug], (24)

c
UL =g+ a [E(UM)? — Ccosuyr + D} .

The maximal local invariance group of equation (16) is the 7-parameter group. The
basic elements of the corresponding algebra are
PO = azm Pl = 8117 P2 = 8u7 D = x(]a:ro + xlaazl + 2uaua
Q1 =210y, Q2 =120y, Q3=1z1220,.
[t can be shown, that the system (24) has no solutions invariant under the operator
aoPo+ a1 P+ axPa+dD + $1Q1 + B2Q2 + B3Q3, where ag, a1, ag, d, 1, B2, B3 are
arbitrary constants. Therefore, no solution of system (24) is invariant one for equation
(16).

Further, we consider the equation

[F(u)]1 = uze. (26)

(25)

We write the equation (26) in the form of the system
F(u) =0z, Uz, =0,,. (27)

Theorem 3. The system (27) is invariant with respect to the one-parameter Lie
group generated by an operator of the form
Q= —210;, + 00, +udy, (28)
if F=g.
Operator (28) is a nonlocal symmetry operator of equation (26). We use It to
construct the nonlocal ansatz and exact solutions of the equation

CL)=W$ (29)
Inu 1
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The ansatz

_f(0) -~ T2

corresponds to operator (28), where f(0), ©(0) are unknown functions.
Substituting (30) into (27) we obtain the reduced system of ordinary differential
equations

00 +o=Inf, f =0. (31)

The solution of system (31) has the form

2 2 2 2
@:a—lng +207aerCln(HerQc)Jrcl, f:9—+c. (32)
2 2 2 2
Using the formula (30) and the substitution ﬁ = z we obtain the solution of the
equation
1 1
z1 + (—2ezzg> =0 (33)
z 2
namely
v 02
e = 5 +c,
.2 (34)
9 =

i 42— 4 OIn(02 +2c) —Inay +cp

Formulae (34) give the solution of the nonlinear diffusion equation (33). In conclusion,
we emphasize that the finite transformations

z
!

=TT a5 =0 (35)

) =e "ry, THh=1x0+al, =z

can be used for the nonlocal generating of solutions of equation (33), since the system
(27) admits the operator (28) in Lie sense. In this case the formula of generating
solutions takes the form

/ —a
n Z(e7 %y, 20 + ab)
1 —az(e %y, 20 + ab)’ (36)
where 6 is the solution of the system
0y, =—2 Leﬁ 0y, =72 (37)
1 T2 (2/)2 ) 2 )

z' is the initial solution and 2 is the new solution of the equation (33), a is an

arbitrary constant.

Suggested approach can be effectively applied for the nonlocal generating of solu-
tions of equations which are invariant with respect to the group of contact transfor-
mations.
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