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Nonlocal ansatzes
for nonlinear wave equation
W.I. FUSHCHYCH, I.M. TSYFRA

Запропоновано нелокальнi анзаци, що редукують нелiнiйнi хвильовi рiвняння до
системи хвильових рiвнянь з меншим числом незалежних змiнних. Показано, що цi
анзаци можна одержати, використовуючи оператори нелокальної симетрiї рiвняння.

1. In the present paper we suggest a nonlocal ansatz

∂u

∂xµ
= aµν(x, u)ϕν(ω) + hµ(x, u), µ, ν = 0, 1, 2, 3, (1)

for reduction of the second order nonlinear differential equation

gµν(x, u)
∂2u

∂xµ∂xν
+ F

(
x, u,

∂u

∂xµ

)
= 0 (2)

to the system of equations for some functions ϕν(ω), ω = (ω1, ω2, ω3). The functions
aµν(x, u), hµ(x, u) are determined from the condition that the equation (2) is reduced
to the system of equations for ϕν(ω) (for more detail about the reduction method see
[1, 2]).
To illustrate the efficiency of the ansatz (1) we consider two nonlinear two-dimen-

sional equations of type (2)

u12 = u1F1(u1 − u), (3)

u00 = F2(u11), (4)

where uµν ≡ ∂2u
∂xµ∂xν

, uµ = ∂u
∂xµ

, F1, F2 are smooth functions.
2. For equation (3) we shall search for ansatz (1) in the form

∂u

∂x1
= ϕ1(ω) + h1(x, u),

∂u

∂x2
= ϕ2(ω) + h2(x, u), (5)

h1, h2, ω has to be determined in the way that functions ϕ1, ϕ2 satisfy the system of
the ordinary differential equations with a new independent variable ω [1, 2]. Substitu-
ting (5) into (3) and using the compatibility condition u12 ≡ u21, we obtain

∂h1

∂x2
− ∂h1

∂u
(ϕ2 + h2) +

∂ϕ1

∂ω

∂ω

∂x2
= (ϕ1 + h1)[ϕ1 + h1 − u],

∂h2

∂x1
+

∂h2

∂u
(ϕ1 + h1) +

∂ϕ2

∂ω

∂ω

∂x1
= (ϕ1 + h1)[ϕ1 + h1 − u],

∂h1

∂x2
+

∂h1

∂u
h2 = h1F1[h1 + ϕ1 − u],

(6)
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ϕ2
∂h1

∂u
+

∂ϕ1

∂ω

∂ω

∂x2
= ϕ1F1[h1 + ϕ1 − u] = R1(ω),

∂h2

∂x1
+

∂h2

∂u
h1 = h1F1[h1 + ϕ1 − u],

ϕ1
∂h2

∂u
+

∂ϕ2

∂ω

∂ω

∂x1
= ϕ1F1[h1 + ϕ1 − u] = R2(ω),

(7)

where R1(ω), R2(ω) are unknown functions. System (7) is a condition on functions
h1, h2, ω(x1, x2) guaranteeing that system (6) depends on the ω only, i.e., ansatz (5)
reduces partial differential equation to a system of ordinary differential equations for
functions ϕ1 and ϕ2. Hence, in order to describe ansatzes of type (5) it is necessary
to solve nonlinear system (7). Here, we get a particular solution of system (7) only,
namely

h1 = u, h2 = F1[ϕ1(x2)]u, ω = x2. (8)

It is easy to verify that solution (8) satisfies system (7) and in this case reduced
system (6) takes the form

ϕ2(x2) +
∂ϕ1

∂x2
= ϕ1(x2)F1[ϕ1(x2)]. (9)

Having integrated the system

∂u

∂x1
= u + ϕ1(x2),

∂u

∂x2
= F1[ϕ1(x2)]u + ϕ1(x2)F1[ϕ1(x2)] − ∂ϕ1

∂x2
(10)

one can obtain particular solutions of equation (3). The solution of equation (10) is
given by the formula

u = −ϕ1(x2) + cex1+
∫

F1(ϕ1(x2))dx2 , (11)

where ϕ1(x2) is an arbitrary smooth function and C is an arbitrary constant.
3. Now we suggest the method of construction of ansatzes (1), based on a nonlocal

symmetry of the equation

∂2u

∂x1∂x2
= F

(
u,

∂u

∂x1
,

∂u

∂x2

)
. (12)

We consider the first order system

V 1
2 + V 1

3 V 2 = F (x3, V
1, V 2), (13)

V 1
2 + V 2

3 V 1 = F (x3, V
1, V 2), (14)

corresponding to the equation (12), where V k
i ≡ ∂V k

∂xi
, x3 ≡ u, ∂u

∂xi
≡ V i.

The problem of construction of all ansatzes from the class (1) for equation (12) is
equivalent to the problem of finding all operators of the Q-conditional symmetry [1,
2, 5].
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Theorem 1. The system (13), (14) is Q-conditionally invariant under the operators
Q1 = ∂x1 , Q2 = ∂x3 + η1∂V1 + η2∂V2 if and only if the functions η1, η2 satisfy the
following equation

η1
V2

= 0, η1
x2

= η1
x1

= η2
x1

= 0, η2
V 1 =

F

V 1
,

η1
x2

− η1
V 1F = F ′

x3
+ η1F ′

V1
+

F

V 1
F ′

V2
− η1 F

V 1
− η1

x3
V 2.

(15)

The correctness of Theorem 1 is easily verified with the help of the infinitesimal
criterion of the Q-conditional invariance [1, 5]. Thus, arbitrary setting η1(x3, V

1)
as a function on x3, V 1 we get classes of nonlinearities F (x3, V 1, V 2) with which
equation (12) admits operators {Q1, Q2}. In the case of equation (3) η1, η2 are as
follows: η1 = 1, η2 = F1(V 1 − x3), F = V 1F1(V 1 − x3). It should be noted that Q2

is not a prolongation of Lie operator, but it is the nonlocal symmetry operator of the
equation (12). Operators {Q1, Q2} lead to the ansatz (10).
Then we consider the equation

u00 = F2(u11), (16)

where F2 is an arbitrary smooth function. Using the invariance of equation (16) under
the operators ∂x0, ∂x1, ∂u, x1∂u, x2∂u we write it in the form of the following system

V 0
1 = V 1

0 , V 2
0 = V 1

1 , V 0 = F2(V 2), (17)

where u00 ≡ V 0, u01 ≡ V 1, u11 ≡ V 2.

Theorem 2. The system (17) is invariant with respect to the continuous group of
transformations with the infinitesimal operator

Q = ξ0∂x0 + ξ1∂x1 (18)

if ξ0, ξ1 are a solution of the system of equations

∂ξ0

∂x0
=

∂ξ0

∂x1
=

∂ξ1

∂x0
=

∂ξ1

∂x1
= 0,

∂ξ0

∂V 1
=

∂ξ1

∂V 0
F ′

2(V
2) +

∂ξ1

∂V 2
,

∂ξ1

∂V 1
=

∂ξ0

∂V 0
F ′

2(V
2) +

∂ξ0

∂V 2
.

(19)

The finite transformations

x′
0 = x0 + aξ0, x′

1 = x1 + aξ1 (20)

correspond to the operator (18). Formulae (18), (19) give the operator of the nonlocal
symmetry of equation (16). With the help of this operator, one can construct nonlocal
ansatzes reducing the equation (16) to the system of three ordinary differential equa-
tions for three unknown functions. The analogous procedure has been called an ati-
reduction in [6].
Furthermore, the finite transformations (20) can be used for generating new solu-

tions. The transformations (20) are more general than contact ones since ξ0, ξ1 are
the functions on u00, u01, u11.
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For example, we shall take F2(u11) = sinu11. In this case one of the solutions of
system (19) is

ξ0 =
c

2
(V 1)2 − C cos V 2 + D, ξ1 = cV 1 sin V 2 + DV 1, (21)

where C,D = const. We start from a solution of the equation u = x0x1
2 − sin x0. Then

V 0 = sinx0, V 1 = x1, V 2 = x0. (22)

Using the transformations (20) we obtain the system

V 0 = sin
[
x0 + a

( c

2
(V 1)2 − C cos V 2 + D

)]
,

V 1 = x1 + a[CV 1 sin V 2 + DV 1],

V 2 = x0 + a
[ c

2
(V 1)2 − C cos V 2 + D

]
.

(23)

Thus, in order to find new solutions of equations (16) it is necessary to solve the
overdetermined but compatible system

V00 = sin
[
x0 + a

( c

2
(u01)2 − C cos u11 + D

)]
,

u01 = x1 + a[cu01 sin u11 + Du01],

u11 = x0 + a
[ c

2
(u01)2 − C cos u11 + D

]
.

(24)

The maximal local invariance group of equation (16) is the 7-parameter group. The
basic elements of the corresponding algebra are

P0 = ∂x0 , P1 = ∂x1 , P2 = ∂u, D = x0∂x0 + x1∂x1 + 2u∂u,

Q1 = x1∂u, Q2 = x2∂u, Q3 = x1x2∂u.
(25)

It can be shown, that the system (24) has no solutions invariant under the operator
α0P0 + α1P1 + α2P2 + dD + β1Q1 + β2Q2 + β3Q3, where α0, α1, α2, d, β1, β2, β3 are
arbitrary constants. Therefore, no solution of system (24) is invariant one for equation
(16).
Further, we consider the equation

[F (u)]1 = u22. (26)

We write the equation (26) in the form of the system

F (u) = θx2 , ux2 = θx1 . (27)

Theorem 3. The system (27) is invariant with respect to the one-parameter Lie
group generated by an operator of the form

Q = −x1∂x1 + θ∂x2 + u∂u (28)

if F = 1
ln u .

Operator (28) is a nonlocal symmetry operator of equation (26). We use It to
construct the nonlocal ansatz and exact solutions of the equation(

1
ln u

)
1

= u22. (29)
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The ansatz

u =
f(θ)
x1

, θ =
x2

ϕ(θ) − ln x1
(30)

corresponds to operator (28), where f(θ), ϕ(θ) are unknown functions.
Substituting (30) into (27) we obtain the reduced system of ordinary differential

equations

θϕ′ + ϕ = ln f, f ′ = θ. (31)

The solution of system (31) has the form

ϕ =
θ2

2
ln

θ2 + 2c

2
− θ2

2
+ C ln(θ2 + 2c) + c1, f =

θ2

2
+ c. (32)

Using the formula (30) and the substitution 1
ln u = z we obtain the solution of the

equation

z1 +
(

1
z2

e
1
z z2

)
2

= 0 (33)

namely

e
1
z =

θ2

2
+ c,

θ =
x2

θ2

2 ln θ2+2c
2 − θ2

2 + C ln(θ2 + 2c) − lnx1 + c1

.
(34)

Formulae (34) give the solution of the nonlinear diffusion equation (33). In conclusion,
we emphasize that the finite transformations

x′
1 = e−ax1, x′

2 = x2 + aθ, z′ =
z

1 + az
, θ′ = 0 (35)

can be used for the nonlocal generating of solutions of equation (33), since the system
(27) admits the operator (28) in Lie sense. In this case the formula of generating
solutions takes the form

z′′ =
z′(e−ax1, x2 + aθ)

1 − az′(e−ax1, x2 + aθ)
, (36)

where θ is the solution of the system

θx1 = −z′x2

(
1

(z′)2
e

1
z′

)
, θx2 = z′, (37)

z′ is the initial solution and z′′ is the new solution of the equation (33), a is an
arbitrary constant.
Suggested approach can be effectively applied for the nonlocal generating of solu-

tions of equations which are invariant with respect to the group of contact transfor-
mations.
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