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Symmetry analysis and ansatzes
for the Schrodinger equations
with the logarithmic nonlinearity

W.I. FUSHCHYCH, V.I. CHOPYK

Symmetry properties of the Schrédinger equations with the nonlinearity wln(uu®) are
investigated. It is shown that these equations are invariant with respect to various
extensions of the Galilei algebra AG(1,n). The conditional symmetry of these nonlinear
Schrédinger equations are investigated. Lie, non-Lie dimensional reduction and reduction
by number of dependent variables carried out. The exact solutions of these equations
are constructed.

1. Introduction. Let us consider the Schddinger equations with the logarithmic

nonlinearity:

Su =buln(uu*), beR )]
and

Su = (M +ir)uln(uu®), Ao #0, (2)

where S = ia% +AA, 29 =t, A = ﬁ, a=1,n, \,\; € R, n is the number of
space variables.

For the case when b is a real constant the equation (1) is equivalent to the equation
suggested by I. Bialynicki-Birula and J. Mycielski [1]. The equation (1) is investigated
by many authors using different methods (see e.q. [2, 3]). For this case the equation

of continuity:

L divi—o,

0o 3)
= (wu*), 3= 0,7 in),  Ja = —IA u*au —uau* a=1,n

P = 5 J=UU1,J2,--5In)s Ja = Gxa 8xa ) — 4

is satisfied.
For the case when As # 0 the equation of continuity (3) is not satisfied and the
formula:

»

+divgy = Aaplnp
a.’EO

can be considered instead of condition (3).
For the equation (2) the conditions:

ap 0
= .a —Ta =Y,
8:1:0] + oxy b=0
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where Ty is the stress tensor, a,b = 1,n, are not satisfied (in contrast with the case
of the equation (1) [1]).

It will be shown further, that symmetry properties of the equations (1) and (2) are
essentially different.

2. Lie symmetry. It is well-known that the equations (1), (2) are invariant under
the Galilei algebra AG(1,n) generates by operators:

P():i, Pa: 0 R Jab:.’ﬂapb*xbpa,
83)0 81‘(1
) g . (4)

However, it appears that the Lie symmetry of the Schrdodinger equations with loga-
rithmic nonlinearity are not exhausted by the algebra (4).

Theorem 1. The equation (1) is invariant with respect to the algebra:
AGs(1,n) = (AG(1,n), B), (5)

where B = I — 2bxoQ, I = U% + u” ai*'

Theorem 2. The equation (2) is invariant with respect to the algebra:

AG4(1,n) = (AG(1,n),C), (6)

where C' = exp{2X\az¢} (I — i—;Q), when Ay # 0.

The above theorems can be proved using the Lie algorithm [4, 5].
The operator C' generates the following finite transformations [6]:

!/ /
Ty — g = Zo, Tg — Ty = Ta,

u— u =exp {9 (1 - l%) eXP(2/\2$0)} U,

2

(7)

where 6 is a group parameter.
Under transformations (7), the equation (2) becomes:

exp {—9 (1 - zi—i) exp(2)\2x0)} [Su" — (A1 +idg)u In(u'u’™)].

This shows that the equation (2) is invariant with respect to the operator C.
Note 1. Solutions of the equation (1) can be generated by means of transformations [1]:

To — T =To, Ta — Ty =Ta, u— u =exp{f(1— 2ibxg)}u

which are generated by the operator B.
From the commutation relations for the operator C

[C. R] =diC, [C,P] =[C,Ja] = [C,Q] = [C,Ga] =0
and for the operator B

(B, Po] = doQ,  [B, Fo] = [B, Jw) = [B,Q] = [B,Gu] =0, d1,dy €R
it follows that the algebras AG5(1,n) and AG4(1,n) differ.
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3. Lie reduction by number of independent variables. In this paper we sys-
tematically use symmetry properties of equations (1) and (2) to find their exact
solutions. The method of finding exact solutions of differential equations is based on
Lie’s ideas of invariant solutions and it is described in full detail in [4, 5].

In this section we describe the some ansatzes of codimension 1 and 2

u = f(zo,x)p(w1,w2) exp{g(wo, ) + p(w1,w2)},

where the functions f, g and new variables w; = w;(xo, ) are determined by means
of operators of subalgebras of AG3(1,n) and AG4(1,n).

Let us consider some subalgebras of AG5(1,n), which reduce the equation (1) to
system of differential equations with one and two independent variables.

1) (B+aPy, Jap), @ # 0. The ansatz and corresponding systems of reduced equati-
ons has the form:

b
u:exp{%}p(w)exp{i {—axg—i—go(w)]}, a#0, ack, (8)
where w = (x?)V/?, &2 = 2? + --- 4+ 22 and
1 -1
—p+2M\pp + A+ Ap——p =0,
a w
M+ An —1Dw™p — App? = 2bpln p,

Where[)—a—f) <,b— ﬁ—g

2) <B+CYP0,J12+5P3>, a,

_<P

P =
#0,a,0 €
u:exp{%} plwi,ws) {[——xo—i—gowl,wg)]} a#0, aeR, (9

where

Ty
wy = (22 + 232, wy =arctg = — =2

Z1 B
The system of reduced equations has the form (for the case n = 3)
a”lp+ 220101 + 2020 (Wi + B7%) + Apprr +

+ Appaa(wi 2 4+ 572) + Apwi tpr = 0,
A1t + Apaa(wi? 4 B7%) + dpwy = Ap? + ppi(wi 2 + B72) = 2bpIn p,

3) The ansatz

Tox1 b 2 3

U= exp{%}p(wl,wg) exp {z [ A R ;T + (P(wlaWZ):| } (10)

when n = 3 reduces equation (1) to the system:

2Xp101 + 2Xp202 + @ p 4+ Ap(wi Lpa + 11 + 22) = 0,

—1 2 2 —1 (11)
Ap11+ Ap2z + Awy " p2 — Ap(p1 + ¢3) = 2bpIn p — (2Aa) ™ pwy,
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where

ap dp

Pi = awi7 Y; = awia

Solving the system of reduced equations (11) one can following partial solution of the
equation (1)

2
U = exp o +@7daxa+cl+
8ab « !

. Zo 2b 2
+Z{ 6ha a0

(12)
T
—l—;o Sa:a—l—dgxa—I—cQ}},

where df,¢;,a € R, k=1,2,3, a=1,n and d{ satisfy the following conditions:

1 1 1
did$ = ———, djdi=—-—=7, did§=———
P ET A R DV
a _ja « a Jja b a ja 1
d2d2 = 4—)\2, d2d3 = —X, d3d3 = W — 2b01.

It is easy to see that the exact solution (12) of the nonlinear equation (1) is
non-analytical by b.

Note 2. The ansatzes (7)-(9) follows from the fact that the equation (1) is invariant
to the operator B.

Let us adduce some examples of reduction of equation (2).

Example 1. (C + aPs, J12). The ansatz

1
U = exp {— eXp(2>\2960)$3} p(wi,wa) x
a
\ (13)
X exp {Z {—j exp(2X20) T3 + p(wi, w2)} } , a#0,
2

where wy = xg, wo = (27 4 22)'/2 reduces equation (2) (when n = 3) to the system:

P14 2Xp2p9 + Ap(wy ' pa + pa2) = 2Xaplnp,
a2 exp(ddowr) (1 — AIAF2)p + Apaa + Awy o2 — p1 — Ayl = 21 plnp.

Example 2. The ansatz

U = exp { 2)\12a exp(2)\2x0)} p(w) exp {z [— 22;% exp(2X2x) + gp(w)} } ,  (14)

where w = (2?)'/2 reduces (2) when )\ # 0 to the system of ODE:

2X\pp + Ap@ + Apw ™ (n — 1) = 2X9pln p,
Mo+ An—Dw™lp+ App? = 2\1plnp.
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Example 3. The ansatz

u = exp {arctg 2 exp(2)\2x0)} plwi,wa) X
. (15)
X e i Ale (2A2z0) arct x2+x§+-~~—|—x,2l+ (w1, w2)
X —ex —4+=—— -7
p A pl2A2Z0 gxl zg P lwr, w2 )

where wy = xg, wo = (27 4+ x3)'/? reduces the equation (2) (when n > 2) to the
system:

A _ _ n—2
p1+ 2 eXP(4x\2w1))\—1pw2 %+ wiaps + 20pw5 02 + Appas + S P =
2 1

= 2X\plnp,
Nexp(4how )wy 2p(1 — N2XS2) + 202 (1 +wy b)) — p1 — Apw2 = 2\ pln p.

Example 4. The ansatz
u = exp(exp(2A2z0)z1p(20) X

A x2+...+x% (16)
X exp {z [/\—;xl exp(2Xaxo) + 24T + go(xg)] } ,

reduces the equation (2) when Ay # 0 to the system:

—1
5 — 2AMA; Lpexp(4 D72 opl
P — 22\ A5 “pexp(4ramo) + 570 A2plnp, an

¢ = Aexp(4hazo) + A A5 T exp(2ha20) — 2X1 Inp.

The system of equations (17) by means of the change of variables p = exp ¢ is
reduced to a linear system of ODE which has the general solution of the form

AN -1
b= —)\21 exp(4Aag) — exp(2A220) (d1 + F(2)\2)> , dy €R,
2
A 222\ A
= o BERVE P 18
® e exp (4 2xq) <1 N ) + D (A + 2d;) exp(2X2z0) + (18)

+A(n—1) / F(2)2) exp(2Xax0)dx,

where
dxo

F(6) = / exp(~60) .

The substitution of (18) into the ansatz (16) gives the following solution of the equa-
tion (2) when Ay Z0 for n =1

AN
u = exp {(% — dy) exp(2Xa0) + S5 exp(4dazo) +

A3
L Kml F20Md A AAZ — 2X02

N - )\—2x1> exp(2Aaxo) + T exp(?)\gmo)] } .

Note 3. The ansatzes (13)-(16) are obtained from the fact that the equation (2) is
invariant with respect to the algebra AG4(1,n) (as distinct from the equation (1)).
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4. Component-wise reduction. The reduction by number of dependent variables
of the equations (1), (2) is possible because of invariance these equations respectively
to the operators B and C.

1) For reduction of the equation (1) by operator B it is necessary to change or
variables:

W = F(xo, ) — i(4bxo) ' In(u/u*), V =In|u| —i(4bzo) " In(u/u*), (19)

where F' is a some real function.
Then the change of variables (19) is constructed, the equation (1) has the form:
Fo — Wo + Vo + 4\bxo(Fy — Wo + Vo) (W, + Fy) + 2Xbzo (AW — AF) = 0,
AMEFy —Wo+ Vo)(Fy —Wo + Vo) + A(AF — AW + AV) —
— 2bxo(Wy — Fy) — 4\b? 22 (W, — F,) (W, — F,) = 2bV,
WhereFuzgi—i, Wu:g%’vuz%vA:
9
B = 5.
The reduction of the equation (1) by operator B is equivalent to the condition

W =0.
Thus, we can find the solutions of the equation (1) in the form:

u = exp{V(xg,x) + (1 — 2ibxo) F(zo, )}, (20)

—836(32% and the operator B has the form

where functions V' and F' satisfy the system:

Fy + Vo — 4\bxo(F, + Vo) Fy — 2Xbzo AF = 0,

MEy +Vo)(Fo+ Vo) + MAF + V) 4 2bxo(Fy — 2 bz F, F,) = 0. @)
Case I. The functions V and F satisfy the conditions:

F= fi(zo), V= fa(zo) +ow), w=uw). (22)
Substitution of the expression (22) into (21) yields the ODE

(@ + ") (w) + ¢2(w) = 26A" 1o, (23)
where

wawa = 01(w), Aw = b(w), (24)
and

fi=ca—cxyt, fo=cxg', e, €R. (25)

Note 4. The necessary conditions of compatibility and the general solution of system
(24) construct in papers [7, 8].

For the partially case w = a4, @qgaq = 1, aq € R, a = 1,n, the equation (23)
has the form:

P+ > =202 (26)
This equation by means of change of variables

¢* = (p)
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is reduced to a linear equation:
() + 28 (p) = 4bA" Lo

The last equation can be easily integrated and the result is as follows:

—1/2
/ {g@ + cexp(—2¢) — 3 dp = (2062~ 2dw, ceR. (27)
When ¢ =0 we get from (27) the following solution of (26):
b 5 1
W—ﬁ(uH‘Cs) +35 cz €R. (28)

Summarizing results (20), (22), (25), (28) we write down the exact solution of equati-
on (1):

u = exp {%(O‘axa +e3)’ + e+ % — 2ib(cawo — Cl)} )
where ¢; € R, i =1,2,3, aga, = 1.
Case 2. V =0 and F satisly the overdetermined system:
Fy — d\baoFy Fy — 2\bzgAF = 0,
AE,F, + AAF + 2bxgFy — 4\b?23F, F, = 0.

For this case the ansatz (2) has the form:
u = exp{l — 2ibxg) F(zg,x)}. (29)

Consequence. The ansatz (29) gives the solutions of the equation (1) if the real
function F satisfy:

Fy, — NbF,F, =0, F,+MAF=0, t=ux3. (30)

The system (30) have non-trivial symmetry properties:
Theorem 3. The overdetermined system (30) is invariant with respect to the exten-
ded Galilei algebra having basis elements:
0 0
at’ OF’
GV = FP, —z,(2\0)"'P,,  DW = 2t9, 4+ 2, P,.

Pt = t:x%7 Pa; Jaba P’n+1 =

Note 5. The operator el generates the transformation:
t—t' =t — (2\b) 10,z — (4ND) 102,z — ) = p,
Ty — =24+ 60,F, F— F =F,

where 0, is a group parameter.

2) For reduction of the equation (2) (A\y # 0) by operator C it is necessary to
change of variables:

1
W = F(x,z,w), w= ) exp(—2Xaxo)(In |u| — (2iA1) " Ao In(u/u*)),
(31)
1
V=XAnlul— 25/\2 In(u/u™).
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Substituting (31) for the partially case F,, =1 into the equation (2) we get:

(201) 71V — exp(2Xawo) (Fo — Wo) + 2A[(2A\) 71V, —
—exp(2X270) (Fy — Wo)((2X2) 71V, + A1 (A2) L exp(2Xa0) (Fy — Wo)] +
+ (222) TIA[AV 4 201 exp(2X270) (AF — AW)] — (A1) 1AV =0,
A(2M1) 71V, — exp(2Xaz0) (Fy — Wo)(2M1) "1V, — exp(2Xaz0) (F, — Wo)] +
+ A[(201) LAV — exp(2X070) (AF — AW)] — (2X2) L[V +
+ 201 exp(2X220) (Fo — Wo)] — AM(4A3) [V, + 201 exp(2Xax0) (Fy — W,)] X
X [Va + 2Xg exp(2Xaqzo) (F, — W,)] -V =0,

and the operator C' has the form:

0
= —. 2
C W (32)
From (31), (32) follows that the solutions of the equation (2) (with A1, Ay # 0) we
can find in the form:
u = exp { (22 A2) TV (A2 + A1) — (A1) T F exp(2hzz0) (A2 — i) }
where the real functions V' and F satisly the system:

(2)\1)_1V0 — eXp(Q)\QJJQ)FO + 2)\[(2)\1)_1Va - eXp(Q)\gl‘o)(Fa — (2/\2)_1Va) +
+ A1 (o) " texp(2Xaz0) Fy] +
+ (2)\2)_1)\[AV + 2)\1 exp(2)\2x0)AF] - ()\1)_1)\2‘/ = 07

33
/\[(2/\1)_1Va — exp(Z)\gxo)Fa] + /\[(2)\1)_1AV — eXp(Q)\Ql‘O)AF — ( )
— (2)\2)71[% -+ 2)\1 eXp(2A2$0)F0] —
— )\(4)\%)_1[‘/@ + 2\ exp(2)\2x0)Fa]2 -V =0.
Case I: V = 0. For this case the ansatz
u = exp {— (A1) Fexp(2Xamo) (A2 — id1) }
reduces the equation (2) when A; # 0 to the system:
Fy+ )\)\1()\2)_1AF =0,
Fy+ A\ ()\2)71 exp(2>\2xo)FaFa =0.
Case 2: F = 0. For this case the ansatz
U = exp {(2)\1)\2)71‘/(/\2 + Z)\l)}
reduces the equation (2) with A; # 0 to the overdetermined system:
Vo + /\()\2)71‘/“‘/& + )\)\1()\2)71AV —2XV = 0, (34)

Vo + A2 = A2)(20A2) " WVa Vi — AMa(A1) 1AV 42X,V = 0.
For the partially case A2 = A3 the system (34) has the form:
Vo+A2X) VoV, =0, Vo + AAV F2X,V =0,
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and for the partially case 3\? = A% this system has the form:
Vo +A2X) VoV, — XV =0, V3V, FAAV = 0.

5. Conditional symmetry. The symmetry of the equations (1), (2) can be extended
essentially, if we put a certain additional condition on its solutions (see [4, 9, 10]).
As to Schrodinger equations with the logarithmic nonlinearity one of such additional
conditions is vanishing of the interior potential [11] that is equivalent to the following
condition:

Alu| =0, |u] = (uu*)'2 (35)

Theorem 4. The equation (1) is conditionally invariant with respect to the following
algebras:

1) AG5<177’L) = <AG3(1,7’L),Q1>7
where
Q1 =x0Py +z, P, — %ln(uu*_l)Q

with additional condition (35);
2) AG5(1,H) = <AG(17H)7 Q2>a
where the operator Qs is of the form [9]:

Qs = % In(uu*~1)Q + 2Py

if the module of the function u satisfies the condition

AA|u] = 2b|u|In |ul. (36)
Note 6. The operator ()1 generates the following finite transformations:

T — xh = bhx0, Ty — T, =012, u— u' = |u|(uu*1)?0
and the operator @2 generates the following transformations:
—1/262

To — xf) = O, Ty — T =24, u—u = |u|(uu*h)

where 6, and 65 are group parameters.
Theorem 5. The equation (2) is conditional invariant with respect to the algebra:

AG7(1,TL) = <AG4(1,TL),Q3>,
where
QB = Ql - QQ = xaPa - iln(uu*_l)Qa

and the operator C is of the form C = exp(2Xaz0)I. The additional condition has
the form (34).
Note 7. The operator ()3 generates the transformations:

Ty — Th=To, To— Th =010, u—u =ul(u )% a=Tn.
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The following theorems can be proved by means of conditional invariance algori-
thm (see e.g. [5, 10]).

So we can see that the additional conditions (34) and (35) expand the symmetry
of the equations (1), (2).

6. Applications: non-Lie reduction. In this section we consider some non-Lie
ansatzes for the equations (1), (2) which cannot, be obtained by means of classical
Lie approach. The examples of non-Lie reduction of the Schrédinger equations with
degree nonlinearity are adduced in [12, 13].

1) The ansatz

u = zdp(wr,ws) exp{iar, — 4bzoInzg + T00(W1, W2)]},
x T

wlz—l, w2:—2, a, €ER, a=1,n
X2 Zo

(37)

reduces the equation (1) to the system:

2p — wip1 — wapa + 2Ap1p1 + 2Xpapa + Ap(p11 + p22) = 0,
p11+ pa2 =0, (38)
A(p%—l—)\ap%—wlgol—w2@2:4b—)\aaaa—2blnp, a=3,...,n, a€R.

2) The ansatz

2
u = x%p(whwg) exp i s 4bzoInzo + zop(wi,wa)| ¢, (39)
4>\I0
where
2 2
wlzﬂ_arctg@’ W2:M
Zo T2 Lo

reduces the equation (1) (when n = 3) to the system:

2p — wip1(1 4+ w3 ?) — wapa + p2g2 + pwas + pe11 (1 +wy ) + p2a = 0,
p11(1 + w3y ?) 4 wipga + waps = 0, (40)
M1 4wy 2)p? + Ap3 — wop + ¢ — 4b + 2bInp = 0.

3) The ansatz

22
u = x%p(wl,wQ) exp {z [ L

—4brolnxg + xo@(w17w2)} } )

4)\.T() (41)
xTo I3
w1 = —, Wy = —
o Zo
reduces the equation (1) to the system (when n = 3):
1
2p — w1p1 — wapa + 2Ap1p1 + 2Ap2p2 + ol +2Xp(p11 + @22) =0,
p11+ p2z =0, (42)

Ap? + A3 — wipr — waps + ¢ — 4b+ 2blnp = 0.

Note 8. The ansatzes (37), (39), (41) are obtained as a consequence of conditional
invariance of the equation (1) respect to the algebra AG5(1,n).
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4) The ansatz

u = exp {% eXp(2>\2$o)} p(w) exp {Z [eXp (%) @W)} } ’ (43)

w= (w2)1/zexp{—%)}, a#0,

reduces equation (2) with Ay =0, A3 # 0 to the system ODE:

pé+pp+ (n— 1w pp +a twp = 2XapInp,
p+(n—1wp=0, (44)
Aap? —wp + 29 = 0.

The systems of reduced equations (38), (40), (42), (44) are overdetermined.
Therefore it is necessary to consider their compatibility.
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