
W.I. Fushchych, Scientific Works 2003, Vol. 5, 56–66.

Symmetry analysis and ansatzes
for the Schrödinger equations
with the logarithmic nonlinearity
W.I. FUSHCHYCH, V.I. CHOPYK

Symmetry properties of the Schrödinger equations with the nonlinearity u ln(uu∗) are
investigated. It is shown that these equations are invariant with respect to various
extensions of the Galilei algebra AG(1, n). The conditional symmetry of these nonlinear
Schrödinger equations are investigated. Lie, non-Lie dimensional reduction and reduction
by number of dependent variables carried out. The exact solutions of these equations
are constructed.

1. Introduction. Let us consider the Schödinger equations with the logarithmic
nonlinearity:

Su ≡ bu ln(uu∗), b ∈ R (1)

and

Su ≡ (λ1 + iλ2)u ln(uu∗), λ2 �= 0, (2)

where S = i ∂
∂x0

+ λ∆, x0 ≡ t, ∆ = ∂2

∂xa∂xa
, a = 1, n, λ, λi ∈ R, n is the number of

space variables.
For the case when b is a real constant the equation (1) is equivalent to the equation

suggested by I. Bialynicki-Birula and J. Mycielski [1]. The equation (1) is investigated
by many authors using different methods (see e.q. [2, 3]). For this case the equation
of continuity:

∂ρ

∂x0
+ div j = 0,

ρ = (uu∗), j = (j1, j2, . . . , jn), ja = −iλ

(
u∗ ∂u

∂xa
− u

∂u∗

∂xa

)
, a = 1, n

(3)

is satisfied.
For the case when λ2 �= 0 the equation of continuity (3) is not satisfied and the

formula:

∂ρ

∂x0
+ div j = λ2ρ ln ρ

can be considered instead of condition (3).
For the equation (2) the conditions:

∂ρ

∂x0
ja +

∂

∂xb
Tab = 0,
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where Tab is the stress tensor, a, b = 1, n, are not satisfied (in contrast with the case
of the equation (1) [1]).

It will be shown further, that symmetry properties of the equations (1) and (2) are
essentially different.

2. Lie symmetry. It is well-known that the equations (1), (2) are invariant under
the Galilei algebra AG(1, n) generates by operators:

P0 =
∂

∂x0
, Pa =

∂

∂xa
, Jab = xaPb − xbPa,

Q = i

(
u

∂

∂u
− u∗ ∂

∂u∗

)
, Ga = x0Pa +

xa

2λ
Q.

(4)

However, it appears that the Lie symmetry of the Schrödinger equations with loga-
rithmic nonlinearity are not exhausted by the algebra (4).

Theorem 1. The equation (1) is invariant with respect to the algebra:

AG3(1, n) = 〈AG(1, n), B〉, (5)

where B = I − 2bx0Q, I = u ∂
∂u + u∗ ∂

∂u∗ .
Theorem 2. The equation (2) is invariant with respect to the algebra:

AG4(1, n) = 〈AG(1, n), C〉, (6)

where C = exp{2λ2x0}
(
I − λ1

λ2
Q

)
, when λ2 �= 0.

The above theorems can be proved using the Lie algorithm [4, 5].
The operator C generates the following finite transformations [6]:

x0 → x′
0 = x0, xa → x′

a = xa,

u → u′ = exp
{

θ

(
1 − i

λ1

λ2

)
exp(2λ2x0)

}
u,

(7)

where θ is a group parameter.
Under transformations (7), the equation (2) becomes:

exp
{
−θ

(
1 − i

λ1

λ2

)
exp(2λ2x0)

}
[Su′ − (λ1 + iλ2)u′ ln(u′u′∗)].

This shows that the equation (2) is invariant with respect to the operator C.

Note 1. Solutions of the equation (1) can be generated by means of transformations [1]:

x0 → x′
0 = x0, xa → x′

a = xa, u → u′ = exp{θ(1 − 2ibx0)}u
which are generated by the operator B.

From the commutation relations for the operator C

[C,P0] = d1C, [C,Pa] = [C, Jab] = [C,Q] = [C,Ga] = 0

and for the operator B

[B,P0] = d2Q, [B,Pa] = [B, Jab] = [B,Q] = [B,Ga] = 0, d1, d2 ∈ R

it follows that the algebras AG3(1, n) and AG4(1, n) differ.
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3. Lie reduction by number of independent variables. In this paper we sys-
tematically use symmetry properties of equations (1) and (2) to find their exact
solutions. The method of finding exact solutions of differential equations is based on
Lie’s ideas of invariant solutions and it is described in full detail in [4, 5].

In this section we describe the some ansatzes of codimension 1 and 2

u = f(x0,x)ρ(ω1, ω2) exp{g(x0,x) + ϕ(ω1, ω2)},
where the functions f , g and new variables ωi = ωi(x0,x) are determined by means
of operators of subalgebras of AG3(1, n) and AG4(1, n).

Let us consider some subalgebras of AG3(1, n), which reduce the equation (1) to
system of differential equations with one and two independent variables.

1) 〈B +αP0, Jab〉, α �= 0. The ansatz and corresponding systems of reduced equati-
ons has the form:

u = exp
{x0

α

}
ρ(ω) exp

{
i

[
− b

α
x2

0 + ϕ(ω)
]}

, α �= 0, α ∈ R, (8)

where ω = (x2)1/2, x2 = x2
1 + · · · + x2

n and

1
α

ρ + 2λρ̇ϕ̇ + λρϕ̈ + λρ
n − 1

ω
ϕ̇ = 0,

λρ̈ + λ(n − 1)ω−1ρ − λρϕ̇2 = 2bρ ln ρ,

where ρ̇ = ∂ρ
∂ω , ϕ̇ = ∂ϕ

∂ω , ρ̈ = ∂2ρ
∂ω2 , ϕ̈ = ∂2ϕ

∂ω2 .
2) 〈B + αP0, J12 + βP3〉, α, β �= 0, α, β ∈ R

u = exp
{x0

α

}
ρ(ω1, ω2) exp

{
i

[
− b

α
x2

0 + ϕ(ω1, ω2)
]}

, α �= 0, α ∈ R, (9)

where

ω1 = (x2
1 + x2

2)
1/2, ω2 = arctg

x2

x1
− x3

β
.

The system of reduced equations has the form (for the case n = 3)

α−1ρ + 2λρ1ϕ1 + 2λρ2ϕ2(ω−2
1 + β−2) + λρϕ11 +

+ λρϕ22(ω−2
1 + β−2) + λρω−1

1 ϕ1 = 0,

λρ11 + λρ22(ω−2
1 + β−2) + λρω−1

1 − λρϕ2
1 + ρϕ2

2(ω
−2
1 + β−2) = 2bρ ln ρ.

3) The ansatz

u = exp
{x0

α

}
ρ(ω1, ω2) exp

{
i

[
x0x1

α
− b

α
x2

0 −
x3

0

6λα
+ ϕ(ω1, ω2)

]}
(10)

when n = 3 reduces equation (1) to the system:

2λρ1ϕ1 + 2λρ2ϕ2 + α−1ρ + λρ(ω−1
2 ϕ2 + ϕ11 + ϕ22) = 0,

λρ11 + λρ22 + λω−1
2 ρ2 − λρ(ϕ2

1 + ϕ2
2) = 2bρ ln ρ − (2λα)−1ρω1,

(11)



Symmetry analysis and ansatzes for the Schrödinger equations 59

where

ω1 =
λx2

0

α
− x1, ω2 = (x2

2 + x2
3)

1/2, α �= 0,

ρi =
∂ρ

∂ωi
, ϕi =

∂ϕ

∂ωi
, i = 1, 2.

Solving the system of reduced equations (11) one can following partial solution of the
equation (1)

u = exp
{

x2
0

8λαb
+

x0

α
− da

1xa + c1 +

+ i

[
− x0

6λα
− 2b

α
x2

0 +
x0

α
da
2xa + da

3xa + c2

]}
,

(12)

where da
k, ci, α ∈ R, k = 1, 2, 3, a = 1, n and da

k satisfy the following conditions:

da
1da

1 =
1

8b2λ2α
, da

1da
2 =

1
8λ2b

, da
1d

a
3 = − 1

2λα
,

da
2da

2 =
α

4λ2
, da

2da
3 = − b

λ
, da

3d
a
3 =

1
16λαb2

− 2bc1.

It is easy to see that the exact solution (12) of the nonlinear equation (1) is
non-analytical by b.

Note 2. The ansatzes (7)–(9) follows from the fact that the equation (1) is invariant
to the operator B.

Let us adduce some examples of reduction of equation (2).

Example 1. 〈C + αP3, J12〉. The ansatz

u = exp
{

1
α

exp(2λ2x0)x3

}
ρ(ω1, ω2) ×

× exp
{

i

[
− λ1

αλ2
exp(2λ2x0)x3 + ϕ(ω1, ω2)

]}
, α �= 0,

(13)

where ω1 = x0, ω2 = (x2
1 + x2

2)
1/2 reduces equation (2) (when n = 3) to the system:

ρ1 + 2λρ2ϕ2 + λρ(ω−1
2 ρ2 + ϕ22) = 2λ2ρ ln ρ,

α−2λ exp(4λ2ω1)(1 − λ2
1λ

−2
2 )ρ + λρ22 + λω−1

2 ρ2 − ρϕ1 − λρϕ2
2 = 2λ1ρ ln ρ.

Example 2. The ansatz

u = exp
{

1
2λ2α

exp(2λ2x0)
}

ρ(ω) exp
{

i

[
− λ1

2αλ2
2

exp(2λ2x0) + ϕ(ω)
]}

, (14)

where ω = (x2)1/2 reduces (2) when λ2 �= 0 to the system of ODE:

2λρ̇ϕ̇ + λρϕ̈ + λρω−1(n − 1)ϕ̇ = 2λ2ρ ln ρ,

λρ̈ + λ(n − 1)ω−1ρ + λρϕ̇2 = 2λ1ρ ln ρ.
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Example 3. The ansatz

u = exp
{

arctg
x2

x1
exp(2λ2x0)

}
ρ(ω1, ω2) ×

× exp
{

i

[
λ1

λ2
exp(2λ2x0) arctg

x2

x1
+

x2
3 + · · · + x2

n

4λx0
+ ϕ(ω1, ω2)

]}
,

(15)

where ω1 = x0, ω2 = (x2
1 + x2

2)
1/2 reduces the equation (2) (when n ≥ 2) to the

system:

ρ1 + 2λ exp(4λ2ω1)
λ1

λ2
ρω−2

2 + ω2
2ϕ2ρ2 + 2λρω−1

2 ϕ2 + λρϕ22 +
n − 2
2ω1

ρ =

= 2λ2ρ ln ρ,

λ exp(4λ2ω1)ω−2
2 ρ(1 − λ2

1λ
−2
2 ) + 2λρ2(1 + ω−1

2 ) − ρϕ1 − λρϕ2
2 = 2λ1ρ ln ρ.

Example 4. The ansatz

u = exp(exp(2λ2x0)x1ρ(x0) ×
× exp

{
i

[
λ1

λ2
x1 exp(2λ2x0) +

x2
2 + · · · + x2

n

4λx0
+ ϕ(x0)

]}
,

(16)

reduces the equation (2) when λ2 �= 0 to the system:

ρ̇ − 2λλ1λ
−1
2 ρ exp(4λ2x0) +

n − 1
2x0

= 2λ2ρ ln ρ,

ϕ̇ = λ exp(4λ2x0) + λλ1λ
−1
2 exp(2λ2x0) − 2λ1 ln ρ.

(17)

The system of equations (17) by means of the change of variables ρ = expφ is
reduced to a linear system of ODE which has the general solution of the form

φ =
λλ1

λ2
2

exp(4λ2x0) − exp(2λ2x0)
(

d1 +
n − 1

2
F (2λ2)

)
, d1 ∈ R,

ϕ =
λ

4λ2
exp(4λ2x0)

(
1 − 2λ2

1

λ2
2

)
+

λ1

2λ2
(λ + 2d1) exp(2λ2x0) +

+ λ1(n − 1)
∫

F (2λ2) exp(2λ2x0)dx,

(18)

where

F (θ) =
∫

exp(−θx0)
dx0

x0
.

The substitution of (18) into the ansatz (16) gives the following solution of the equa-
tion (2) when λ2 �= 0 for n = 1

u = exp
{

(x1 − d1) exp(2λ2x0) +
λλ1

λ2
2

exp(4λ2x0) +

+ i

[(
λλ1 + 2λ1λ2d1

2λ2
2

− λ1

λ2
x1

)
exp(2λ2x0) +

λλ2
2 − 2λλ2

1

4λ3
2

exp(2λ2x0)
]}

.

Note 3. The ansatzes (13)–(16) are obtained from the fact that the equation (2) is
invariant with respect to the algebra AG4(1, n) (as distinct from the equation (1)).
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4. Component-wise reduction. The reduction by number of dependent variables
of the equations (1), (2) is possible because of invariance these equations respectively
to the operators B and C.

1) For reduction of the equation (1) by operator B it is necessary to change or
variables:

W = F (x0,x) − i(4bx0)−1 ln(u/u∗), V = ln |u| − i(4bx0)−1 ln(u/u∗), (19)

where F is a some real function.
Then the change of variables (19) is constructed, the equation (1) has the form:

F0 − W0 + V0 + 4λbx0(Fa − Wa + Va)(Wa + Fa) + 2λbx0(∆W − ∆F ) = 0,
λ(Fa − Wa + Va)(Fa − Wa + Va) + λ(∆F − ∆W + ∆V ) −

− 2bx0(W0 − F0) − 4λb2x2
0(Wa − Fa)(Wa − Fa) = 2bV,

where Fµ = ∂F
∂xµ

, Wµ = ∂W
∂xµ

, Vµ = ∂V
∂xµ

, ∆ = ∂2

∂xa∂xa
and the operator B has the form

B = ∂
∂W .

The reduction of the equation (1) by operator B is equivalent to the condition
W = 0.

Thus, we can find the solutions of the equation (1) in the form:

u = exp{V (x0,x) + (1 − 2ibx0)F (x0,x)}, (20)

where functions V and F satisfy the system:

F0 + V0 − 4λbx0(Fa + Va)Fa − 2λbx0∆F = 0,

λ(Fa + Va)(Fa + Va) + λ(∆F + V ) + 2bx0(F0 − 2λbx0FaFa) = 0.
(21)

Case 1. The functions V and F satisfy the conditions:

F = f1(x0), V = f2(x0) + ϕ(ω), ω = ω(x). (22)

Substitution of the expression (22) into (21) yields the ODE

(ϕ̈ + ϕ̇2)θ1(ω) + ϕ̇θ2(ω) = 2bλ−1ϕ, (23)

where

ωaωa = θ1(ω), ∆ω = θ2(ω), (24)

and

f1 = c2 − c1x
−1
0 , f2 = c1x

−1
0 , c1, c2 ∈ R. (25)

Note 4. The necessary conditions of compatibility and the general solution of system
(24) construct in papers [7, 8].

For the partially case ω = αaxa, αaαa = 1, αa ∈ R, a = 1, n, the equation (23)
has the form:

ϕ̈ + ϕ̇2 = 2bλ−1ϕ. (26)

This equation by means of change of variables

ϕ̇2 = Φ(ϕ)
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is reduced to a linear equation:

Φ̇(ϕ) + 2Φ(ϕ) = 4bλ−1ϕ.

The last equation can be easily integrated and the result is as follows:
∫ [

ϕ + c exp(−2ϕ) − 1
2

]−1/2

dϕ = (2bλ−1)1/2dω, c ∈ R. (27)

When c = 0 we get from (27) the following solution of (26):

ϕ =
b

2λ
(ω + c3)2 +

1
2
, c3 ∈ R. (28)

Summarizing results (20), (22), (25), (28) we write down the exact solution of equati-
on (1):

u = exp
{

b

2λ
(αaxa + c3)2 + c2 +

1
2
− 2ib(c2x0 − c1)

}
,

where ci ∈ R, i = 1, 2, 3, αaαa = 1.
Case 2. V = 0 and F satisfy the overdetermined system:

F0 − 4λbx0FaFa − 2λbx0∆F = 0,

λFaFa + λ∆F + 2bx0F0 − 4λb2x2
0FaFa = 0.

For this case the ansatz (2) has the form:

u = exp{1 − 2ibx0)F (x0,x)}. (29)

Consequence. The ansatz (29) gives the solutions of the equation (1) if the real
function F satisfy:

Ft − λbFaFa = 0, Ft + λb∆F = 0, t = x2
0. (30)

The system (30) have non-trivial symmetry properties:

Theorem 3. The overdetermined system (30) is invariant with respect to the exten-
ded Galilei algebra having basis elements:

Pt =
∂

∂t
, t = x2

0, Pa, Jab, Pn+1 =
∂

∂F
,

G(1)
a = FPa − xa(2λb)−1Pt, D(1) = 2t∂t + xaPa.

Note 5. The operator G
(1)
a generates the transformation:

t → t′ = t − (2λb)−1θaxa − (4λb)−1θ2
a, xb → x′

b = xb,

xa → x′
a = xa + θaF, F → F ′ = F,

where θa is a group parameter.
2) For reduction of the equation (2) (λ1 �= 0) by operator C it is necessary to

change of variables:

W = F (x0,x, ω), ω =
1
2

exp(−2λ2x0)(ln |u| − (2iλ1)−1λ2 ln(u/u∗)),

V = λ1 ln |u| − i
1
2
λ2 ln(u/u∗).

(31)
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Substituting (31) for the partially case Fω = 1 into the equation (2) we get:

(2λ1)−1V0 − exp(2λ2x0)(F0 − W0) + 2λ[(2λ)−1Va −
− exp(2λ2x0)(Fa − Wa)((2λ2)−1Va + λ1(λ2)−1 exp(2λ2x0)(Fa − Wa)] +
+ (2λ2)−1λ[∆V + 2λ1 exp(2λ2x0)(∆F − ∆W )] − (λ1)−1λ2V = 0,

λ[(2λ1)−1Va − exp(2λ2x0)(Fa − Wa)(2λ1)−1Va − exp(2λ2x0)(Fa − Wa)] +
+ λ[(2λ1)−1∆V − exp(2λ2x0)(∆F − ∆W )] − (2λ2)−1[V0 +
+ 2λ1 exp(2λ2x0)(F0 − W0)] − λ(4λ2

2)
−1[Va + 2λ1 exp(2λ2x0)(Fa − Wa)] ×

× [Va + 2λ2 exp(2λ2x0)(Fa − Wa)] − V = 0,

and the operator C has the form:

C =
∂

∂W
. (32)

From (31), (32) follows that the solutions of the equation (2) (with λ1, λ2 �= 0) we
can find in the form:

u = exp
{
(2λ1λ2)−1V (λ2 + iλ1) − (λ1)−1F exp(2λ2x0)(λ2 − iλ1)

}
,

where the real functions V and F satisfy the system:

(2λ1)−1V0 − exp(2λ2x0)F0 + 2λ[(2λ1)−1Va − exp(2λ2x0)(Fa − (2λ2)−1Va) +
+ λ1(λ2)−1 exp(2λ2x0)Fa] +
+ (2λ2)−1λ[∆V + 2λ1 exp(2λ2x0)∆F ] − (λ1)−1λ2V = 0,

λ[(2λ1)−1Va − exp(2λ2x0)Fa] + λ[(2λ1)−1∆V − exp(2λ2x0)∆F −
− (2λ2)−1[V0 + 2λ1 exp(2λ2x0)F0] −
− λ(4λ2

2)
−1[Va + 2λ1 exp(2λ2x0)Fa]2 − V = 0.

(33)

Case 1: V = 0. For this case the ansatz

u = exp
{−(λ1)−1F exp(2λ2x0)(λ2 − iλ1)

}
reduces the equation (2) when λ1 �= 0 to the system:

F0 + λλ1(λ2)−1∆F = 0,

F0 + λλ1(λ2)−1 exp(2λ2x0)FaFa = 0.

Case 2: F = 0. For this case the ansatz

u = exp
{
(2λ1λ2)−1V (λ2 + iλ1)

}
reduces the equation (2) with λ1 �= 0 to the overdetermined system:

V0 + λ(λ2)−1VaVa + λλ1(λ2)−1∆V − 2λ2V = 0,

V0 + λ(λ2
1 − λ2

2)(2λ1λ2)−1VaVa − λλ2(λ1)−1∆V + 2λ2V = 0.
(34)

For the partially case λ2
1 = λ2

2 the system (34) has the form:

V0 + λ(2λ2)−1VaVa = 0, V0 + λ∆V ∓ 2λ2V = 0,
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and for the partially case 3λ2
1 = λ2

2 this system has the form:

V0 + λ(2λ2)−1VaVa − λ2V = 0,
√

3V0 ∓ λ∆V = 0.

5. Conditional symmetry. The symmetry of the equations (1), (2) can be extended
essentially, if we put a certain additional condition on its solutions (see [4, 9, 10]).
As to Schrödinger equations with the logarithmic nonlinearity one of such additional
conditions is vanishing of the interior potential [11] that is equivalent to the following
condition:

∆|u| = 0, |u| = (uu∗)1/2. (35)

Theorem 4. The equation (1) is conditionally invariant with respect to the following
algebras:

1) AG5(1, n) = 〈AG3(1, n), Q1〉,
where

Q1 = x0P0 + xaPa − i

2
ln(uu∗−1)Q

with additional condition (35);

2) AG5(1, n) = 〈AG(1, n), Q2〉,
where the operator Q2 is of the form [9]:

Q2 =
i

2
ln(uu∗−1)Q + x0P0

if the module of the function u satisfies the condition

λ∆|u| = 2b|u| ln |u|. (36)

Note 6. The operator Q1 generates the following finite transformations:

x0 → x′
0 = θ1x0, xa → x′

a = θ1xa, u → u′ = |u|(uu∗−1)1/2θ1 ,

and the operator Q2 generates the following transformations:

x0 → x′
0 = θ2x0, xa → x′

a = xa, u → u′ = |u|(uu∗−1)−1/2θ2 ,

where θ1 and θ2 are group parameters.

Theorem 5. The equation (2) is conditional invariant with respect to the algebra:

AG7(1, n) = 〈AG4(1, n), Q3〉,
where

Q3 = Q1 − Q2 = xaPa − i ln(uu∗−1)Q,

and the operator C is of the form C = exp(2λ2x0)I. The additional condition has
the form (34).
Note 7. The operator Q3 generates the transformations:

x0 → x′
0 = x0, xa → x′

a = θ3xa, u → u′ = |u|(uu∗−1)θ3 , a = 1, n.
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The following theorems can be proved by means of conditional invariance algori-
thm (see e.g. [5, 10]).

So we can see that the additional conditions (34) and (35) expand the symmetry
of the equations (1), (2).

6. Applications: non-Lie reduction. In this section we consider some non-Lie
ansatzes for the equations (1), (2) which cannot, be obtained by means of classical
Lie approach. The examples of non-Lie reduction of the Schrödinger equations with
degree nonlinearity are adduced in [12, 13].

1) The ansatz

u = x2
0ρ(ω1, ω2) exp{i[αaxa − 4bx0 ln x0 + x0ϕ(ω1, ω2)]},

ω1 =
x1

x2
, ω2 =

x2

x0
, αa ∈ R, a = 1, n

(37)

reduces the equation (1) to the system:

2ρ − ω1ρ1 − ω2ρ2 + 2λρ1ϕ1 + 2λρ2ϕ2 + λρ(ϕ11 + ϕ22) = 0,
ρ11 + ρ22 = 0,

λϕ2
1 + λϕ2

2 − ω1ϕ1 − ω2ϕ2 = 4b − λαaαa − 2b ln ρ, a = 3, . . . , n, αa ∈ R.

(38)

2) The ansatz

u = x2
0ρ(ω1, ω2) exp

{
i

[
x2

1

4λx0
− 4bx0 ln x0 + x0ϕ(ω1, ω2)

]}
, (39)

where

ω1 =
x1

x0
− arctg

x3

x2
, ω2 =

x2
2 + x2

3

x0

reduces the equation (1) (when n = 3) to the system:

2ρ − ω1ρ1(1 + ω−2
2 ) − ω2ρ2 + ρ2ϕ2 + ρω2ϕ2 + ρϕ11(1 + ω−2

2 ) + ρϕ22 = 0,

ρ11(1 + ω−2
2 ) + ω2

2ρ22 + ω2ρ2 = 0,

λ(1 + ω−2
2 )ϕ2

1 + λϕ2
2 − ω2ϕ + ϕ − 4b + 2b ln ρ = 0.

(40)

3) The ansatz

u = x2
0ρ(ω1, ω2) exp

{
i

[
x2

1

4λx0
− 4bx0 ln x0 + x0ϕ(ω1, ω2)

]}
,

ω1 =
x2

x0
, ω2 =

x3

x0

(41)

reduces the equation (1) to the system (when n = 3):

2ρ − ω1ρ1 − ω2ρ2 + 2λρ1ϕ1 + 2λρ2ϕ2 +
1
2
ρ + 2λρ(ϕ11 + ϕ22) = 0,

ρ11 + ρ22 = 0,

λϕ2
1 + λϕ2

2 − ω1ϕ1 − ω2ϕ2 + ϕ − 4b + 2b ln ρ = 0.

(42)

Note 8. The ansatzes (37), (39), (41) are obtained as a consequence of conditional
invariance of the equation (1) respect to the algebra AG5(1, n).
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4) The ansatz

u = exp
{

2
α

exp(2λ2x0)
}

ρ(ω) exp
{

i

[
exp

(
2x0

α

)
ϕ(ω)

]}
,

ω = (x2)1/2 exp
{
−x0

α

}
, α �= 0,

(43)

reduces equation (2) with λ1 = 0, λ2 �= 0 to the system ODE:

ρϕ̈ + ρ̇ϕ̇ + (n − 1)ω−1ρϕ̇ + α−1ωρ̇ = 2λ2ρ ln ρ,

ρ̈ + (n − 1)ω−1ρ̇ = 0,

λαϕ̇2 − ωϕ̇ + 2ϕ = 0.

(44)

The systems of reduced equations (38), (40), (42), (44) are overdetermined.
Therefore it is necessary to consider their compatibility.
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