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Conditional symmetries of the equations
of mathematical physics
W.I. FUSHCHYCH

We briefly present the results of research in conditional symmetries of equations of
mathematical and theoretical physics: the Maxwell, D’Alembert, Schrödinger and KdV
equations, as well as the equations of heat conduction and acoustics. Exploiting condi-
tional symmetry, we construct a wide class of exact solutions of these equations, which
cannot be obtained by the classical method of Sophus Lie.

1. Introduction
The concept and terminology of conditional symmetry and conditional invariance

were introduced and developed in the series of articles [1–11] (see also Mathematical
Reviews for the years 1983–1993). Later, this concept was exploited by other authors
for the construction of solutions of various non-linear equations of mathematical phy-
sics. It turned out that nearly all the basic non-linear equations of mathematical
physics have non-trivial conditional symmetry [2, 9, 10].

We understand the conditional symmetry of an equation as being a symmetry (local
or non-local) of some non-trivial subset of its solution set (the formal definition of the
idea of conditional symmetry can be found in Appendix 4 of [2] and in the article [3]).
The general definition of conditional symmetry as the symmetry of a subset of the
set of solutions is non-constructive and requires further specification: the analytical
description of a condition (as an equation) on the solutions of the given equation,
which extend or alter the symmetry of the starting equation. Therefore, the basic
problem in the investigation of conditional symmetries is that of describing those
supplementary equations which increase or change the symmetry of the beginning
equation. This is very complex, non-linear problem in general (even in the case of
quite simple non-linear equations), which can often be significantly more complicated
than constructing solutions of the equation at hand. It is thus meaningful to talk of
the conditional symmetry of some class of equations.

Non-trivial conditional symmetries of a PDE (partial differential equation) allows
us to obtain in explicit form such solutions which can not be found by using the
symmetries of the whole set of solutions of the given PDE. Moreover, conditional
symmetries increase significantly the class of PDEs for which we can construct
ansatzes which reduce these equations to (systems of) ODEs (ordinary differential
equations). As a rule, the reduced equations one obtains from conditional symmetries
are significantly simpler than those found by reduction using symmetries of the full
set of solutions. This allows us to construct exact solutions of the reduced equations.

Looking back, we can say today, that many mathematicians, mechanicians and
physicists, such as Euler, D’Alembert, Poincaré, Volterra, Whittaker, Bateman, impli-
citly used conditional symmetries for the construction of exact solutions of the linear
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wave equation. Some well-known solutions of this equation can not be obtained by
using only Lie symmetries of the full solution set.

2. Conditional symmetry of Maxwell’s equation
We shall first consider the first pair of Maxwell’s equations

∂E

∂t
= rotH,

∂H

∂t
= −rotE. (1)

The maximal invariance algebra (in the sense of Lie) of these equations is studied
in [2]. The basis elements of this algebra 〈∂0, ∂a, Jab,D〉 are

∂0 =
∂

∂x0
, ∂a =

∂

∂xa
, Jab = xa∂b − xb∂a + sab, a, b = 1, 2, 3,

D = xµ∂µ + const,
(2)

sab are 6 × 6 matrices realizing a representation of the group O(3). Thus the sys-
tem (1) is invariant under the four-dimensional translations ∂µ, the rotations Jab and
scale transformations D, but it is not invariant under the Lorentz boosts

J0a = x0∂a − xa∂0 + s0a, x0 = t, (3)

the matrices 〈s0a, sab〉 realizing a representation of the Lorentz group O(1, 3).
Theorem 1 ([2] 1983, [15] 1987). The system (1) is conditionally invariant under
the Lorentz boosts (3) if and only if the solutions of (1) satisfy the conditions

div E = 0, div H = 0. (4)

It is evident from this theorem, that the concept of conditional invariance of
a PDE is natural, and leads us, by purely group-theoretic means, to the fundamental,
overdetermined system of Maxwell’s equations.

3. Conditional symmetry of the wave equation
We now examine the non-linear D’Alembert equation

�u = F (u), u = u(x0, x1, x2, x3), (5)

F (u) being an arbitrary, smooth function. Equation (5) has conformal symmetry
C(1, 3) if and only if F = λu3 or F = 0 (see for instance [8, 10]). This is the
maximal symmetry of all of the solution set of equation (5). For an arbitrary function,
(5) admits only the symmetry groups P (1, 3).
Theorem 2 ([5], 1985). Equation (5), with F = 0 is conditionally invariant under
the infinite-dimensional algebra with basis elements

X = ξµ(x, u)
∂

∂xµ
+ η(x, u)

∂

∂u
, (6)

ξµ(x, u) = c00(u)xµ + cµν(u)xν + dµ(u), η(x, u) = η(u), (7)

where c00(u), cµν(u), dµ(u), η(u) are arbitrary functions of u, if one imposes the
condition

∂u

∂xµ

∂u

∂xµ
= 0. (8)
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In this way, the eikonal equation (8), significantly increases the symmetry of the
starting equation (5). The system of equations (5), (8), with F = 0, is consistent.

Theorem 3 ([10, 15], 1988, 1989). The equation (5) is conditionally invariant
under the conformal group, if

F =
3λ

u + c
, (9)

∂u

∂xµ

∂u

∂xµ
= λ, (10)

where λ, c are arbitrary constants. The operators of conformal symmetry are

Kµ = 2xµD − (xαxα − u2)
∂

∂xµ
, µ = 0, 1, 2, 3,

D = xµ ∂

∂xµ
+ u

∂

∂u
.

(11)

Remark. It is important to note, that the operators (11) differ principally from the
conformal operators for equation (5), when F = 0 or F = λu3. In those cases, the
conformal operators are

K̂µ = 2xµD − xαxα ∂

∂xµ
, D = xµ ∂

∂xµ
. (12)

The operators (11) are non-linear, whereas those in (12) are linear.

Thus the wave equation (5), (9), with non-linear condition (10), has a symmetry
possessed by neither the solution set for the linear equation, nor that for the nonlinear
equation.

4. Criteria for conditional symmetry
Let us consider some PDE

L(x, u(1), u(2), . . . , u(n)) = 0,
u(1) = (u0, u1, . . . , un), u(2) = (u01, u02, . . . , unn), . . . ,

uµ =
∂u

∂xµ
, uµν =

∂2u

∂xµ∂xν
, . . . .

(13)

Definition 1 (S. Lie, 1884). Equation (13) is invariant with respect to the opera-
tor (6) if

XsL = λL, (14)

where Xs is the s-th prolongation of (6), and λ = λ(x, u) is an arbitrary function.

Let us denote by the symbol

Q = 〈Q1, Q2, . . . , Qr〉 (15)

some set of operators which does not belong to the invariance algebra (IA) of equa-
tion (13).
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Definition 2 ([2], 1987). Equation(13) is said to be conditionally invariant under
the operators Q from (15), if there exists a supplementary condition on the solutions
of (13) of the form

L1(x, u, u(1), . . . , u(n)) = 0 (16)

such that (13) together with (16) is invariant under the Q.
Thus one has the following conditions

QsL = λ0L + λ1L1, (17)

QsL1 = λ2L + λ3L1 (18)

or

QsL
∣∣∣ L = 0

L1 = 0

= 0, QsL1

∣∣∣ L = 0
L1 = 0

= 0. (19)

An important class of supplementary conditions (16) is that for which the equation
L1 = 0 is a quasi-linear equation of first order

L1(x, u, u(1)) ≡ Qu = 0, (20)

Q = yµ(x, u)
∂

∂xµ
+ z(x, u)

∂

∂u
(21)

with yµ, z being smooth functions. In this case, we shall say that (13) is Q-conditio-
nally invariant.

In this way, the problem of finding the conditional symmetry of (13) reduces to
the solution of the equations (17), (18). The conditions (16), (20) can be considered
as equations for the construction of ansatzes for the starting equation (13). The
problem of calculating the conditional symmetry is far more complicated than the
usual method of Lie for finding the symmetry of the full solution set. In the case
of conditional symmetries, the defining equations are, as a rule, non-linear equations
which can be solved in only some cases. Fortunately, for most of the equations of
non-linear mathematical physics, one can construct partial solutions of the defining
equations.

5. A list of equations with non-trivial conditional symmetry
Conditional symmetries began to be exploited only quite recently, and the first

publications appeared only in 1983 [1, 2]. Now, the number of articles in this are
is increasing rapidly with each year, and therefore it is difficult to give a complete
list (for 1992) of important equations of mathematical physics possessing conditional
symmetry. So I shall only give those equations which we have studied and which are
interested from our Kievan point of view. We have put in brackets the year(s) when
the conditional symmetry of the given equation was found. More detailed information
about ansatzes and solutions of the above equations are to be found in the original
articles, a list of which are given in [2, 9, 11].

1. u0 + u11 = F (u) =




λu(u2 − 1),
λ(u3 − 3u + 2),
λu3,

λu(u3 + 1).

(1988, 1990)
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2. iu0 + ∆u + F (|u|)u = 0,

F (|u|) = λ1|u|4/r + λ2|u|−4/r, F (|u|) = λ3 ln(u∗u),
λ1, λ2, r arbitrary, real; λ3 arbitrary, complex.

(1990)

3. u00 = u∆u, u00 = c(x, u, u(1))∆u. (1987, 1988)

4. u01 − (F (u)u1)1 − u22 − u33 = 0. (1990)

5. u0 + ∇(F (u)∇u) = 0. (1988)

6. u0 + F (u)uk
1 + u111 = 0. (1991)

7. u0 + (ϕ(u))11 +
N

x1
(ϕ(u))1 = F (u),

u0 + u11 +
3

2x1
u1 = λu3,

u0 + uu11 +
N

x1
uu1 = λu + λ2.

(1992)

8. u0 + (u∇)u = −1
ρ
∇p,

ρ0 + div (ρu) = 0, p = f(ρ), p =
1
2
ρ2.

(1992)

9. γµ∂µΨ + F (Ψ̄Ψ)Ψ = 0. (1989)

10. (1 − uαuα)�u + uµuνuµν = 0. (1989)

6. Conditional symmetry and exact solutions of KdV type equations
To illustrate the constructive nature of conditional symmetries, we shall examine

the equation

u0 + F (u)uk
1 + u111 = 0, (22)

where F (u) is a smooth function, k �= 0 is an arbitrary, real parameter. When F (u) =
u, k = 1, equation (22) coincides with the standard KdV equation.

Theorem 4 ([11], 1991). Equation (22) is Q-conditionally invariant with respect to
the following operators

Q = xr
0∂1 + H(x, u)∂u (23)

with r an arbitrary, real parameter, in the following cases

1. F (u) = λ1u
(2−k)/k + λ2u

(1−k)/2, H(x, u) =
(

λ1k

2

)−1/k

u1/2; (24)

2. F (u) = (λ1 ln u)1−k, H(x, u) = (kλ1)−1/k; (25)

3. F (u) = (λ1 arcsin u + λ2)(1 − u2)(1−k)/2,

H(x, u) = (kλ1)−1/k(1 + u2)1/2;
(26)



14 W.I. Fushchych

4. F (u) = (λ1 sinh−1 u + λ2)(1 + u2)(1−k)/2,

H(x, u) = (kλ1)−1/k(1 + u2)1/2;
(27)

5. F (u) = λ1u, H(x, u) = (kλ1)−1/k, (28)

where r = 1/k, k �= 0, λ1, λ2 are arbitrary, real parameters.
Exploiting the operator of conditional symmetry (23), one can construct ansatzes

for the solutions of equation (22), some of which I now exhibit.
The ansatz

u =

(
x1

2

(
kλ1x0

2

)−1/k

+ ϕ(x0)

)2

gives the solution

u =

(
x1

2

(
kλ1x0

2

)−1/k

+ λx
−1/k
0 − λ2/λ1

)2

when F (u) is as in (24). The ansatz

u = exp
(
ϕ(x0) + (kλ1x0)−1/kx1

)
gives the solution

u = exp
(
−k(kλ1)−3/k

k − 2
x

1−3/k
0 + λx

−1/k
0 + (kλ1x0)−1/kx1 − λ2/λ1

)

when F (u) is as in (25) with k �= 2. The ansatz

u = sin
(
ϕ(x0) + (kλ1x0)−1/kx1

)
gives the solution

u = sin
(

k(kλ1)−3/k

k − 2
x

1−3/k
0 + λx

−1/k
0 + (kλ1x0)−1/kx1 − λ2/λ1

)

for k �= 2.
Theorem 5 ([12], 1990). The equation

u01 − (F (u)u1)1 − u22 − u33 = 0 (29)

is invariant under under the infinite-dimensional algebra

X = ai(u)Ri, i = 1, . . . , 12, (30)

where ai(u) are arbitrary, smooth functions, if one adds to (29) the condition

u0u1 − F (u)u2
1 − u2

2 − u2
3 = 0. (31)

The operators Ri are given as follows:

Rµ+1 = ∂µ, µ = 0, . . . , 3, R5 = x3∂2 − x2∂3, R6 = x2∂1 + 2x0∂2,

R7 = x3∂1 + 2x0∂3, R8 = xµ∂µ,
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R9 = x0∂0 + 2x1∂1 + 3x2∂2 + 3x3∂3 − 2
F (u)
Ḟ (u)

∂u, R10 = Ḟ (u)x0∂1 − ∂u,

R11 = x2∂0 + 2(x1 + F (u)x0)∂2, R12 = x3∂0 + 2(x1 + F (u)x0)∂3.

7. Antireduction
In [10], we have begun work on antireduction. By the term antireduction of a

PDE we understand the finding of such ansatzes which transform the given PDE into
a system of equations for some (unknown, and to be found) functions. In this process,
the number of independent variables may remain the same, or be reduced (dimensional
reduction), but the number of dependent variables increases. As a rule, one usually
exploits the converse of this, that is, one reduces to a system with fewer dependent
variables (reduction of components). To illustrate the effectiveness of antireduction,
we consider the equation for short waves in gas dynamics

2u01 − 2(x1 + u1)u11 + u22 + 2λu1 = 0. (32)

We impose the condition[
u111x

3/2
1

]
1

= 0 (33)

on (32). The general solution of (33) is

u = x
3/2
1 ϕ1 + x2

1ϕ
2 + x1ϕ

3 + ϕ4 (34)

with ϕi = ϕi(x0, x2), i = 1, 2, 3, 4 being arbitrary functions. Using (34) as an ansatz,
equation is reduced to a system with two independent variables

ϕ3 = 0, ϕ1
22 = 0, ϕ2

22 = 0, ϕ4
22 =

9
4
(ϕ2)2,

ϕ1
0 = ϕ1

(
3ϕ2 +

1
2
− λ

)
, ϕ2

0 = 2ϕ2
2 − ϕ2(1 − λ).

(35)

Solving the system (35), we found exact solutions of the starting equation (32) [11].
The above results are only a sample of those already obtained. They illustrate the

very fruitful nature of conditional symmetry and conditional invariance, and I hope
that I have been able to demonstrate that there are new aspects to this concept which
are yet to be exploited fully.
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