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Orthogonal and non-orthogonal separation
of variables in the wave equation
utt − uxx + V (x)u = 0
R.Z. ZHDANOV, I.V. REVENKO, W.I. FUSHCHYCH

We develop a direct approach to the separation of variables in partial differential equa-
tions. Within the framework of this approach, the problem of the separation of vari-
ables in the wave equation with time-independent potential reduces to solving an over-
determined system of nonlinear differential equations. We have succeeded in constructing
its general solution and, as a result, all potentials V (x) permitting variable separation
have been found. For each of them we have constructed all inequivalent coordinate
systems providing separability of the equation under study. It should be noted that the
above approach yields both orthogonal and non-orthogonal systems of coordinates.

1. Introduction
Separation of variables (SV) in two- and three-dimensional Laplace, Helmholtz,

d’Alembert and Klein–Gordon–Fock equations has been carried out in classical works
by Bocher [1], Darboux [2], Eisenhart [3], Stepvanov [4], Olevsky [5], and Kalnins
and Miller (see [6] and references therein). Nevertheless, a complete solution to the
problem of sv in a two-dimensional wave equation with time-independent potential

(� + V (x))u ≡ utt − uxx + V (x)u = 0 (1)

has not been obtained yet. In (1) u = u(t, x) ∈ C2(R2, R1), V (x) ∈ C(R1, R1).
Equations belonging to the class (1) are widely used in modern mathematical

physics and can be related to other important linear and nonlinear partial differential
equations (PDE). First, we mention the Lorentz-invariant wave equation

uy0y0 − uy1y1 + U(y2
0 − y2

1)u = 0. (2)

The above equation can be reduced to the form (1) with the change of variables [7]

t = exp(y1/2) cosh y0, x = exp(y1/2) sinh y0

and what is more, potentials V (τ), U(τ) are connected by the following relation:

U(τ) = (4τ)−1V (τ).

Another related equation is the hyperbolic type equation

vx0x0 − c2(x1)vx1x1 = 0 (3)

that is widely used in various areas of mathematical physics.
Equation (3) is reduced to the form (1) by the change of variables

u(t, x) = [c(x0)]−1/2v(x0, x1), t = x0, x =
∫

[c(x1)]−1dx1
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and what is more

V (x) = −c3/2(x1)[c1/2(x1)], (4)

where x =
∫

[c(x1)]−1dx1.
The third related equation is the nonlinear wave equation

Wtt − [c−2(W )Wx]x = 0. (5)

By substitution W = Rx, equation (5) is reduced to the form

Rtt − c−2(Rx)Rxx = 0.

Applying to the above equation the Legendre transformation

x0 = Rt, x1 = Rx, vx0 = t, vx1 = x, v = tRt + xRx − R,

we obtain (3). Consequently, the method of SV in the linear equation (1) makes it
possible to construct exact solutions of the nonlinear wave equation (5).

Let us also mention the Euler–Poisson–Darboux equation

vtt − vxx − x−1vx + m2x−2v = 0 (6)

that is reduced to an equation of the form (1)

utt − uxx + (m2 − 1/4)x−2u = 0

by the change of dependent variable v(t, x) = x−1/2u(t, x).
For the solution of (1) with separated variables ω1(t, x), ω2(t, x), we use the ansatz

u(t, x) = Q(t, x)ϕ1(ω1)ϕ2(ω2) (7)

which reduces PDE (1) to two ordinary differential equations (ODE) for functions
ϕ1, ϕ2.

There exist three possibilities for SV in (1). The first is to separate it into two
second-order ODE. The second possibility is to separate (1) into first-order and second-
order ODE, and the third possibility is to separate (1) into two first-order ODE. In
the present paper we shall investigate in detail the first two possibilities. The third
possibility requires special separate consideration and will be the topic of future
publications.

Consider the following ODE:

ϕ̈i = Ai(ωi, λ)ϕ̇i + Bi(ωi, λ)ϕi, i = 1, 2, (8)

where Ai, Bi ⊂ C2(R1 × Λ, R1) are some unknown functions, λ ∈ Λ ⊂ R
1 is a real

parameter (separation constant).

Definition 1 [7, 8]. Equation (1) separates into two ODE if substitution of the
ansatz (7) into (1) with subsequent exclusion of the second derivatives ϕ̈1, ϕ̈2

according to (8) yields an identity with respect to the variables ϕ̇i, ϕi, λ (considered
as independent).

On the basis of the above definition one can formulate a constructive procedure of
SV in (1), suggested for the first time in [7]. At the first step, one has to substitute
expression (7) into (1) and to express the second derivatives ϕ̈1, ϕ̈2 via functions ϕ̇i, ϕi
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according to (8). At the second step, the equality obtained is split with respect to the
independent variables ϕ̇i, ϕi, λ. As a result, one obtains an over-determinated system
of partial differential equations for functions Q, ω1 and ω2 with undefined coefficients.
The general solution of this system gives rise to all systems of coordinates providing
separability of (1).

Definition 2. Equation (1) separates into first- and second-order ODE

ϕ̇1 = A(ω1, λ)ϕ1,

ϕ̈2 = B1(ω2, λ)ϕ̇2 + B2(ω2, λ)ϕ2

(9)

if substitution of the ansatz (7) into (1) with subsequent exclusion of derivatives
ϕ̇1, ϕ̈2 according to (9) yields an identity with respect to the variables ϕ1, ϕ̇2, ϕ2,
λ (considered as independent).

Let us emphasize that the above approach to SV in (1) has much in common with
the non-Lie method of reduction of nonlinear PDE suggested in [9–11]. It is also
important to note that the idea to represent solutions of linear differential equations in
the “separated” form (7) goes as far as the classical works by Fourier and Euler (for
a modern exposition of the problem of SV, see Miller [12] and Koornwinder [13]).

2. Orthogonal separation of variables in equation (1)
It is evident that (1) admits SV in Cartesian coordinates ω1 = t, ω2 = x under

arbitrary V = V (x).
Definition 3. Equation (1) admits non-trivial SV if there exist at least one coordi-
nate system ω1(t, x), ω2(t, x) different from the Cartesian system providing its
separability.

Next, if one makes in (1) the following transformations:

t → C1t, x → C1x,

t → t, x → x + C2, Ci ∈ R
1

(10)

then the class of equations (1) transforms into itself and what is more

V (x) → V ′(x) = C2
1V (C1x),

V (x) → V ′(x) = V (x + C2).
(10a)

That is why potentials V (x) and V ′(x), connected by one of the above relations,
are considered as equivalent ones.

When separating variables in (1) one has to solve an intermediate problem of
description of all inequivalent potentials such that the equation admits non-trivial
SV (classification problem). The next step is to obtain a complete description of the
coordinate systems providing SV in (1) with these potentials.

First, we adduce the principal results on separation of (1) into two second-order
ODE and then give an outline of the proof of the corresponding theorems.

Theorem 1. Equation (1) admits non-trivial SV in the sense of Definition 1 iff the
function V (x) is given, up to equivalence relations (10a), by one of the following
formulae:

(1) V = mx;
(2) V = mx−2;
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(3) V = m sin−2 x;

(4) V = m sinh−2 x;

(5) V = m cosh−2 x;
(6) V = m exp x;
(7) V = cos−2 x(m1 + m2 sinx);

(8) V = cosh−2 x(m1 + m2 sinhx);

(9) V = sinh−2 x(m1 + m2 cosh x);
(10) V = m1 exp x + m2 exp 2x;
(11) V = m1 + m2x

−2;
(12) V = m.

(11)

Here m, m1, m2 are arbitrary real parameters, m2 �= 0.
Note 1. Equation (1) having the potential (6) from (11) is transformed with the change
of variables [7]

x′ = exp(x/2) cosh t, t′ = exp(x/2) sinh t

into (1) with V (x) = m.

Note 2. Equations (1) having the potentials (3), (4), (5) from (11) are transformed
into (1) with V (x) = mx−2 by means of changes of variables [7]

x′ = tan ξ + tan η, t′ = tan ξ − tan η,

x′ = tanh ξ + tanh η, t′ = tanh ξ − tanh η,

x′ = coth ξ + tanh η, t′ = coth ξ − tanh η.

Hereafter ξ = 1
2 (x + t), η = 1

2 (x − t) are cone variables.

By virtue of the above remarks, the validity of the assertion follows from Theo-
rem 1.

Theorem 2. Provided equation (1) admits non-trivial SV in the sense of Definition 1,
it is locally equivalent to one of the following equations:

(1) �u + mxu = 0;
(2) �u + mx−2u = 0;
(3) �u + cos−2 x(m1 + m2 sin x)u = 0;

(4) �u + cosh−2 x(m1 + m2 sinh x) = 0;

(5) �u + sinh−2 x(m1 + m2 cosh x) = 0;
(6) �u + expx(m1 + m2 exp x)u = 0;
(7) �u + (m1 + m2x

−2)u = 0;
(8) �u + mu = 0.

(12)

Thus, there exist eight inequivalent types of equations of the form (1) admitting
non-trivial SV.

It is well known that there are 11 coordinate systems providing separability of the
Klein–Gordon–Fock equation �u + mu = 0 into two second-order ODE [6]. Besides
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that, in [14] it was established that the Euler–Poisson–Darboux equation (6), which
is equivalent to the second equation of (12), separates in nine coordinate systems.
That is why cases V (x) = m and V (x) = mx−2 are not considered here.

As is shown below, the general form of solution with separated variables of (12) is
as follows:

u(t, x) = ϕ1(ω1(t, x))ϕ2(ω2(t, x)), (13)

where ϕ1(ω1), ϕ2(ω2) are arbitrary solutions of the separated ODE

ϕ̈i = (λ + gi(ωi))ϕi, i = 1, 2 (14)

and explicit forms of the functions ωi(t, x), gi(ωi) are given below.

Theorem 3. Equation �u + mxu = 0 separates in two coordinate systems

(1) ω1 = t ω2 = x, g1 = 0, g2 = mω2;

(2) ω1 = (x + t)1/2 + (x − t)1/2, ω2 = (x + t)1/2 − (x − t)1/2,

g1 = −1
4
mω4

1 , g2 = −1
4
mω4

2 .

(15)

Theorem 4. Equation �u+sin−2 x(m1 +m2 cos x)u = 0 separates in four coordinate
systems

(1) ω1 = t, ω2 = x, g1 = 0, g2 = cos−2 ω2(m1 + m2 sin ω2);

(2)
{

x
t

}
= arctan sinh(ω1 + ω2) ± arctan sinh(ω1 − ω2),

g1 = (m1 + m2) sinh−2 ω1, g2 = −(m1 − m2) cosh−2 ω2;

(3)
{

x
t

}
= arctan

sn (ω1 + ω2)
cn (ω1 + ω2)

± arctan
sn (ω1 − ω2)
cn (ω1 − ω2)

,

g1 = m1 dn2ω1 cn−2ω1 sn−2ω1 + m2[cn−2ω1 − dn2ω1 cn−2ω1],

g2 = m1k
4 sn2ω2 cn2ω2 dn−2ω2 + m2k

2[cn2ω2 dn−2ω2 − sn2ω2];

(4)
{

x
t

}
= arctan

(
k

k′

)1/2

cn (ω1 + ω2) ± arctan
(

k

k′

)1/2

cn (ω1 − ω2),

g1 = m1[dn2ω1 cn−2ω1 + k2 sn2ω1] + m2[(k′)2 cn−2ω1 + k2 cn2ω1],

g2 = m1[dn2ω2 cn−2ω2 + k2 sn2ω2] + m2[(k′)2 cn−2ω2 + k2 cn2ω2].

(16)

In the above formulae (16) k, k′ = (1−k2)1/2 are the moduli of corresponding elliptic
Jacobi functions, and k is an arbitrary constant satisfying the inequality 0 < k < 1.
Theorem 5. Equation �u + cosh−2 x(m1 + m2 sinh x)u = 0 separates in four coordi-
nate systems

(1) ω1 = t, ω2 = x, g1 = 0, g2 = cosh−2 ω2(m1 + m2 sinh ω2);

(2)
{

t
x

}
= − ln

[(
k′

k

)1/2

cn (ω1 + ω2)

]
± ln

[(
k′

k

)1/2

cn (ω1 − ω2)

]
,

g1 = m1(k′)2 dn−22ω1 + m2 cn 2ω1 dn−22ω1,

g2 = m1(k′)2 dn−22ω2 + m2 cn 2ω2 dn−22ω2;
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(3)
{

x
t

}
= − ln sinh

1
2
(ω1 + ω2) ± ln cosh

1
2
(ω1 − ω2),

g1 = cosh−2 ω1(m1 − m2 sinh ω1), g2 = cosh−2 ω2(m1 − m2 sinhω2);

(4)
{

x
t

}
= ln

sn 1
2 (ω1 + ω2)

cn 1
2 (ω1 + ω2)

± ln dn
1
2
(ω1 + ω2),

g1 = −m1k
2 sn2ω1 + k2m2 sn ω1 cn ω1,

g2 = −m1k
2 sn2ω2 + k2m2 sn ω2 cn ω2.

(17)

Here k, k′ = (1−k2)1/2 are the moduli of corresponding elliptic functions, 0 ≤ k ≤ 1.

Theorem 6. Equation �u + sinh−2 x(m1 + m2 cosh x)u = 0 separates in eleven
coordinate systems:

(1) ω1 = t, ω2 = x, g1 = 0, g2 = sinh−2 ω2(m1 + m2 cosh ω2);

(2)
{

x
t

}
= − ln

1
2
(ω1 + ω2) ± ln

1
2
(ω1 − ω2),

g1 = (m1 − m2)ω−2
1 , g2 = (m1 + m2)ω−2

2 ;

(3)
{

x
t

}
= − ln sin

1
2
(ω1 + ω2) ± ln sin

1
2
(ω1 − ω2),

g1 = (m1 − m2) sin−2 ω1, g2 = (m1 + m2) sin−2 ω2;

(4)
{

t
x

}
= − ln sinh

1
2
(ω1 + ω2) ± ln sinh

1
2
(ω1 − ω2),

g1 = sinh−2 ω1(m1 + m2) cosh ω1), g2 = sinh−2 ω2(m1 − m2 cosh ω2);

(5)
{

t
x

}
= − ln cosh

1
2
(ω1 + ω2) ± ln cosh

1
2
(ω1 − ω2),

g1 = sinh−2 ω1(m1 − m2 cosh ω1), g2 = sinh−2 ω2(m1 − m2 cosh ω2);

(6)
{

x
t

}
= ln tanh

1
2
(ω1 + ω2) ± ln tanh

1
2
(ω1 − ω2),

g1 = cosh−2 ω1(m1 − m2), g2 = − cosh−2 ω2(m1 + m2);

(7)
{

x
t

}
= ln tan

1
2
(ω1 + ω2) ± ln tan

1
2
(ω1 − ω2),

g1 = cos−2 ω1(m1 + m2), g2 = cos−2 ω2(m1 − m2);

(8)
{

x
t

}
= arctanh cn (ω1 + ω2) ± arctanh cn (ω1 − ω2),

g1 = (m1 + m2) dn2ω1 cn−2ω1 + (m1 − m2)k2 sn2ω1,

g2 = (m1 − m2) dn2ω2 cn−2ω2 + (m1 + m2)k2 sn2ω2;

(9)
{

x
t

}
= arctanh dn (ω1 + ω2) ± arctanh dn (ω1 − ω2),

g1 = (m1 + m2)k2 cn2ω1 dn−2ω1 + (m − m2)k2 sn2ω1,

g2 = (m1 − m2)k2 cn2ω2 cn−2ω2 + (m1 + m2)k2 sn2ω2;

(10)
{

x
t

}
= arctanh sn (ω1 + ω2) ± arctanh sn (ω1 − ω2),

(18)
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g1 = (m1 + m2) sn−2ω1 + (m1 − m2)k2 sn2ω1,

g2 = (m1 + m2)k2 cn2ω2 dn−2ω2 + (m1 − m2)k2 dn2ω2 cn−2ω2;

(11)
{

x
t

}
= ± ln cn (ω1 + ω2) ± ln cn (ω1 − ω2),

g1 = −m1 sn−2ω1 − m2 cn ω1 sn−2ω1,

g2 = −m1 sn−2ω2 − m2 cn ω2 sn−2ω2.

Here k are the moduli of corresponding elliptic functions, 0 < k < 1.

Theorem 7. Equation �u + exp x(m1 + m2 exp x)u = 0 separates in six coordinate
systems:

(1) ω1 = t, ω2 = x, g1 = 0, g2 = expω2(m1 + m2 exp ω2);

(2)
{

x
t

}
= − ln cos(ω1 + ω2) ± ln cos(ω1 − ω2),

g1 = −2m1 cos 2ω1 − 1
2
m2 cos 4ω1,

g2 = −2m1 cos 2ω2 − 1
2
m2 cos 4ω2;

(3)
{

x
t

}
= ln sinh(ω1 + ω2) ± ln sinh(ω1 − ω2),

g1 = −2m1 cosh 2ω1 − 1
2
m2 cosh 4ω1,

g2 = −2m1 cosh 2ω2 − 1
2
m2 cosh 4ω2;

(4)
{

x
t

}
= ln cosh(ω1 + ω2) ± ln cosh(ω1 − ω2),

g1 = −2m1 cosh 2ω1 − 1
2
m2 cosh 4ω1,

g2 = −2m1 cosh 2ω2 − 1
2
m2 cosh 4ω2;

(5)
{

x
t

}
= ln cosh(ω1 + ω2) ± ln sinh(ω1 − ω2),

g1 = −2m1 sinh 2ω1 − 1
2
m2 cosh 4ω1,

g2 = −2m1 sinh 2ω2 − 1
2
m2 cosh 4ω2;

(6)
{

x
t

}
= ln(ω1 + ω2) ± ln(ω1 − ω2),

g1 = 2m1 + 2m2ω
2
1 , g2 = −2m1 + 2m2ω

2
2 .

(19)

Theorem 8. Equation �u+(m1 +m2x
−2)u = 0 separates in six coordinate systems:

(1) ω1 = t, ω2 = x, g1 = 0, g2 = m1 + m2ω
−2
2 ;

(2)
{

x
t

}
= exp(ω1 + ω2) ± exp(ω1 − ω2),

g1 = 4m1 exp 2ω1, g2 = m2 cosh−2 ω2;
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(3)
{

x
t

}
= sin(ω1 + ω2) ± sin(ω1 − ω2),

g1 = 2m1 cos 2ω1 + m2 sin−2 ω1, g2 = −2m1 cos 2ω2 + m2 cos−2 ω2;

(4)
{

x
t

}
= sinh(ω1 + ω2) ± sinh(ω1 − ω2),

g1 = 2m1 sinh 2ω1 + m2 sinh−2 ω1,

g2 = −2m1 sinh 2ω2 − m2 sinh−2 ω2;

(5)
{

x
t

}
= cosh(ω1 + ω2) ± cosh(ω1 − ω2),

g1 = 2m1 cosh 2ω1 − m2 cosh−2 ω1, g2 = 2m1 cosh 2ω2 − m2 cosh−2 ω2;

(6)
{

x
t

}
= (ω1 + ω2)2 ± (ω1 − ω2)2,

g1 = −16m1ω
2
1 + m2ω

−2
1 , g2 = −16m1ω

2
2 + m2ω

−2
2 .

(20)

We now give a sketch of the proof of the above assertions. Substituting ansatz (7)
into (1), expressing functions ϕ̈i via functions ϕ̇1, ϕi by means of equalities (8) and
splitting the equation obtained with respect to independent variables ϕ̇i, ϕi we obtain
the following system of nonlinear PDE:

(1) Q�ωi + 2(Qtωit − Qxωix) + QAi(ωi, λ)(ω2
it − ω2

ix) = 0, i = 1, 2; (21)

(2) �Q + Q[B1(ω1, λ)(ω2
1t − ω2

1x) + B2(ω2, λ)(ω2
2t − ω2

2x)] + QV (x) = 0; (22)

(3) ω1tω2t − ω1xω2x = 0. (23)

Here � = ∂2
t − ∂2

x.
Thus, to separate variables in the linear PDE (1) one has to construct the general

solution of the system of nonlinear equations (21)–(23). The same assertion holds true
for any general linear differential equation, i.e. the problem of SV is an essentially
nonlinear one.

It is not difficult to become convinced of the fact that, from (23), it follows that

(ω2
1t − ω2

1x)(ω2
2t − ω2

2x) �= 0. (24)

Differentiating (21) with respect to λ and using (24) we obtain

A1λ = A2λ = 0,

whence B1λB2λ �= 0. Differentiating (22) with respect to λ, we have

B1λ(ω2
1t − ω2

1x) + B2λ(ω2
2t − ω2

2x) = 0

or

B1λ

B2λ
= −ω2

2t − ω2
2x

ω2
1t − ω2

1x

.

Differentiation of the above equality with respect to λ yields

B1λλB2λ − B1λB2λλ = 0
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or

B1λλ

B1λ
=

B2λλ

B2λ
.

Since functions B1 = B1(ω1), B2 = B2(ω2) are independent, there exists a func-
tion κ(λ) such that

Biλλ = κ(λ)Biλ, i = 1, 2.

Integrating the above differential equation with respect to λ we obtain

Bi(ωi) = Λ(λ)fi(ωi) + gi(ωi), i = 1, 2,

where fi, gi are arbitrary smooth functions.
On redefining the parameter λ → Λ(λ), we have

Bi(ωi) = λfi(ωi) + gi(ωi). (25)

Substitution of (25) into (22) with subsequent splitting with respect to λ yields the
following equations:

�Q + Q[g1(ω2
1t − ω2

1x) + g2(ω2
1t − ω2

1x)] + V (x)Q = 0, (26)

f1(ω2
1t − ω2

1x) + f2(ω2
2t − ω2

2x) = 0. (27)

Thus, system (21)–(23) is equivalent to the system of equations (21), (23), (26), (27).
Before integrating, we make a remark: it is evident that the structure of ansatz (7) is
not altered by transformation

Q → Q′ = Qh1(ω1)h2(ω2), ωi → ω′
i = Ri(ωi), i = 1, 2, (28)

where hi, Ri are smooth-enough functions. This is why solutions of the system under
study connected by relations (28) are considered to be equivalent.

Choosing the functions hi, Ri in a proper way, we can put in (21) and (27)

f1 = f2 = 1, A1 = A2 = 0.

Consequently, functions ω1, ω2 satisfy equations of the form

ω1tω2t − ω1xω2x = 0, ω2
1t − ω2

1x + ω2
2t − ω2

2x = 0,

whence

(ω1 ± ω2)2t − (ω1 ± ω2)2x = 0.

Integrating the above equations, we obtain

ω1 = F (ξ) + G(η), ω2 = F (ξ) − G(η), (29)

where F,G ⊂ C2(R1, R1) are arbitrary functions, ξ = (x + t)/2, η = (x − t)/2.
Substitution of (29) into (21) with A1 = A2 = 0 yields the following equations:

(ln Q)t = 0, (ln Q)x = 0,

whence Q = 1.
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Finally, substituting the results obtained into (26), we have

V (x) = [g1(F + G) − g2(F − G)]
dF

dξ

dG

dη
. (30)

Thus, the problem of integrating an over-determined system of nonlinear differen-
tial equations (21)–(23) is reduced to integration of the functional-differential equa-
tion (30).

Let us summarize the results obtained. The general form of solution of (1) with
separated variables is as follows

u = ϕ(F (ξ) + G(η))ϕ2(F (ξ) − G(η)) (31)

where ϕi are arbitrary solutions of (14), functions F (ξ), G(η), g1(F + G), g2(F − G)
being determined by (30).

To integrate Eq. (31) we make the hodograph transformation

ξ = P (F ), η = R(G), (32)

where Ṗ �≡ 0, Ṙ �≡ 0.
After making the transformation (32), we obtain

g1(F + G) − g2(F − G) = Ṗ (F )Ṙ(G)V (P + R). (33)

Evidently, equation (33) is equivalent to the following equation:

(∂2
F − ∂2

G)[Ṗ (F )Ṙ(G)V (P + R)] = 0

or

(
...

P Ṗ−1 − ...

R Ṙ−1)V + 3(P̈ − Ṙ)V̇ + (Ṗ 2 − Ṙ2)V̈ = 0. (34)

Thus, to integrate (30) it is enough to construct all functions P (F ), R(G), V (P + R)
satisfying (34) and to substitute them into (33).

In [8] we have proved the following assertion:

Lemma. The general solution of (34) determined up to transformation (10) is given
by one of the following formulae:

(1) V = V (x) is an arbitrary function, Ṗ = α, Ṙ = α;

(2) V = mx, Ṗ 2 = αP + β, Ṙ2 = αR + γ;
(3) V = mx−2, P = Q1(F ), R = Q2(G),

Q̇2
1 = αQ4

1 + βQ3
1 + γQ2

1 + δQ1 + ρ,

Q̇2
2 = αQ4

2 − βQ3
2 + γQ2

2 − δQ2 + ρ;
(35)

(4) V = m sinh−2 x, P = arctanhQ1(F ), R = tan Q2(G)

and Q1, Q2 are determined by (35);

(5) V = m sinh−2 x, P = arctanhQ1(F ), R = arctanh Q2(G)

and Q1, Q2 are determined by (35);

(6) V = m cosh−2 x, P = arccoth Q1(F ), R = arctanh Q2(G)
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and Q1, Q2 are determined by (35);

(7) V = m exp x,

Ṗ 2 = α exp 2P + β expP + γ, Ṙ2 = α exp 2R + δ exp R + ρ;
(8) V = cos−2 x(m1 + m2 sinx),

Ṗ 2 = α sin 2P + β cos 2P + γ, Ṙ2 = α sin 2R + β cos 2R + γ;

(9) V = cosh−2 x(m1 + m2 sinhx),

Ṗ 2 = α sinh 2P + β cosh 2P + γ, Ṙ2 = α sinh 2R − β cosh 2R + γ;

(10) V = sinh−2 x(m1 + m2 cosh x),

Ṗ 2 = α sinh 2P + β cosh 2P + γ, Ṙ2 = −α sinh 2R + β cosh 2R + γ;
(11) V = (m1 + m2 exp x) exp x,

P̈ = −Ṗ 2 + β, R̈ = −Ṙ2 + β;
(12) V = m1 + m2x

−2,

Ṗ 2 = αP 2 + βP + γ, R̈2 = αR2 − βR + γ,

(13) V = m,

Ṗ 2 = αP 2 + βP + γ, Ṙ2 = αR2 + δR + ρ.

Here α, β, γ, δ, ρ, m1, m2, m are arbitrary real parameters; x = ξ + η = P + R.
Theorems 1 and 2 are direct consequences of the above Lemma. To prove Theo-

rems 3–8 one has to integrate the ODE for P (F ), R(G) and substitute the expressions
obtained into formulae (32)

1
2
(x + t) = P (F ) ≡ P ((ω1 + ω2)/2),

1
2
(x − t) = R(G) ≡ R((ω1 − ω2)/2)

and into (33).
Thus, the problem of separation of the wave equation (1) into two second-order

differential equations is completely solved.
Since all coordinate systems ω1, ω2 satisfy equation (23), we have orthogonal

separation of variables. To obtain non-orthogonal coordinate systems providing sepa-
rability of (1) one has to carry out SV following Definition 2.

3. Non-orthogonal separation of variables in equation (1)
Utilizing the SV procedure in (1) determined by Definition 2, we come to the

following assertions (corresponding computations are omitted).

Theorem 9. Equation (1) admits SV in the sense of Definition 2 iff it is locally-
equivalent to one of the following equations:

(1) �u + mu = 0;
(2) �u + mx−2u = 0,

where m is an arbitrary real constant.
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Theorem 10. Equation �u + mu = 0 separates in two coordinate systems

(1) ω1 = ξ, ω2 = ξ + η,

ϕ̇1 = −λϕ1, ϕ̈2 = λϕ̇2 + mϕ2;
(2) ω1 = ξ, ω2 = ln ξ + ln η,

ϕ̇1 = −λω−1
1 ϕ1, ϕ̈2 = λϕ̇2 + m exp(ω2)ϕ2.

Theorem 11. Equation �u + mx−2u = 0 separates in eight coordinate systems

(1) ω1 = ξ, ω2 = ξ + η,

ϕ̇1 = −λϕ1, ϕ̈2 = λϕ̇2 + mω−2
2 ϕ2;

(2) ω1 = ξ, ω2 = arctan ξ + arctan η,

ϕ̇1 = −λ(1 + ω2
1)ϕ1, ϕ̈2 = λϕ̇2 + m sin−2 ω2ϕ2;

(3) ω1 = ξ, ω2 = arctanh ξ + arctanh η,

ϕ̇1 = −λ(1 − ω2
1)−1ϕ1, ϕ̈2 = λϕ̇2 + m sinh−2 ω2ϕ2;

(4) ω1 = ξ, ω2 = arccoth ξ + arccoth, η,

ϕ̇1 = λ(1 − ω2
1)−1ϕ1, ϕ̈2 = λϕ̇2 + m sinh−2 ω2ϕ2;

(5) ω1 = ξ, ω2 = arctanh ξ + arctanh η,

ϕ̇1 = −λ(1 − ω2
1)−1ϕ1, ϕ̈2 = λϕ̇2 − m cosh−2 ω2ϕ2,

(6) ω1 = ξ, ω2 = arccoth ξ + arccoth η,

ϕ̇1 = λ(1 − ω2
1)−1ϕ1, ϕ̈2 = λϕ̇2 − m cosh−2 ω2ϕ2;

(7) ω1 = ξ, ω2 =
1
2
(ln ξ − ln η),

ϕ̇1 = −λ(2ω1)−1ϕ1, ϕ̈2 = λϕ̇2 − m cosh−2 ω2ϕ2;
(8) ω1 = ξ, ω2 = ξ−1 + η−1,

ϕ̇1 = λω−2
1 ϕ1, ϕ̈2 = λϕ̇2 + mω−2

2 ϕ2.

In the above formulae λ is a separation constant, ξ = 1
2 (x + t), η = 1

2 (x − t).
As a direct check shows, the above coordinate systems do not satisfy (23). Conse-

quently, they are non-orthogonal.

4. Conclusion
Let us say a few words about the intrinsic characterization of SV in (1). It is

well known that the solution of the second-order linear PDE with separated variables
is a joint eigenfunction of mutually-commuting symmetry operators of the equation
under study (for more detail, see [13, 14]). Below, we construct the second-order
symmetry operator of (1) such that solution with separated variables is its eigenfunc-
tion and parameter λ is an eigenvalue.

Making in (1) the change of variables (29), we obtain

uω1ω1 − uω2ω2 = V (ξ + η)[Ḟ (ξ)Ġ(η)]−1u.

Provided (1) admits SV, by virtue of (33) there exist functions g1(F +G), g2(F−G)
such that

V (ξ + η)[Ḟ (ξ)Ġ(η)]−1 = g1(F + G) − g2(F − G).
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Since F + G = ω1, F − G = ω2, equation (36) takes the form

uω1ω1 − uω2ω2 = [g1(ω1) − g2(ω2)]u

or

Xu = 0, X = ∂2
ω1

− ∂2
ω2

− g1(ω1) + g2(ω2).

Clearly, the operators Qi = ∂2
ωi

− gi(ωi), i = 1, 2 commute with the operator X,
i.e. they are symmetry operators of (1) and, what is more, the relations

Qiu = Qiϕ1(ω1)ϕ2(ω2) = λϕ1(ω1)ϕ2(ω2) = λu, i = 1, 2

hold.
It should be noted that V.N. Shapovalov carried out classification of potentials V (x)

such that (1) admitted a non-trivial second-order symmetry operator [15] but he lost
cases (4) and (9) from Theorem 1.

It was shown by Osborne and Stuart [16] that the method of SV could be applied
to nonlinear PDE. In [8] we suggested a regular approach to SV in nonlinear par-
tial differential equations. In future publications we intend to apply this approach to
separate variables in the nonlinear wave equation utt − uxx = F (u).
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