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Anti-reduction of the nonlinear wave
equation
W.I. FUSHCHYCH, R.Z. ZHDANOV

Ми запропонували конструктивний метод зведення рiвняння з частинними похiдни-
ми до декiлькох рiвнянь з меншим числом незалежних змiнних. Застосувавши цей
пiдхiд до багатовимiрного нелiнiйного хвильового рiвняння, ми побудували низку
принципово нових анзацiв, якi редукують його до двох звичайних диференцiальних
рiвнянь.

The wide class of solutions of the multi-dimensional wave equation

�u ≡ ux0x0 − ∆3u = F (u) (1)

can be obtained by means of the following ansatz [1–3]:

u = ϕ(ω), (2)

where ϕ is an arbitrary smooth function and ω = ω(x) is the absolute invariant of
some three-dimensional subgroup of the Poincaré group P (1, 3). As a result, one
gets ordinary differential equation (ODE) for a function ϕ(ω). That is why, the term
“reduction” is used: a number of dependent and independent variables is decreased.
On the other hand, there are examples of ansatzes reducing one nonlinear partial

differential equation (PDE) to two or even to three equations [4]. Such procedure
leads to an increase of the number of dependent variables and is called an “anti-
reduction” [4].
In the present paper we suggest a regular approach to the anti-reduction of the

nonlinear differential equation (1).
Consider the ansatz

u(x) = f(x, ϕ1(ω1), ϕ2(ω2), . . . , ϕN (ωN )) (3)

and the following ordinary differential equations:

ϕ̈i = Ri(ωi, ϕi, ϕ̇i), i = 1, N, (4)

where f , Ri are smooth enough functions, ωi = ωi(x) ∈ C2(Rn, R1), i = 1, N . If
substitution of (3) into Eq. (1) with subsequent exclusion of the second derivatives ϕ̈i,
i = 1, N according to (4) yields an identity with respect to variables ϕ̇i, ϕi, i = 1, N
then we say that the anti-reduction of nonlinear PDE (1) to N ODE takes place.
In fact, the above definition contains an algorithm of the anti-reduction. We are

going to realize it, provided N = 2.
Theorem. The equation (1) with a logarithmic nonlinearity

�u = λu ln u, λ ∈ R
1 (5)
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is the only nonlinear wave equation belonging to the class of PDE (1) that admits
anti-reduction to two second-order ODE and that is more the ansatz (2) has the
form

u(x) = a(x)ϕ1(ω1)ϕ2(ω2), (6)

where a(x), ω1(x), ω2(x) are smooth functions satisfying the system of PDE

1) ω1xµ
ω2xµ

= 0,

2) a�ωi + 2axµωixµ
= 0, i = 1, 2,

3) ωixµ
ωixµ

= Qi(ωi), i = 1, 2,

4) �a = λ ln a.

(7)

Here Qi are arbitrary smooth functions, hxµ
gxµ

= hx0gx0 −
3∑

a=1
hxa

gxa
.

Omitting intermidiate computations, we adduce main steps of the proof.
Substituting (3) with N = 2 into Eq. (1), we get

fxµxµ
+

2∑

i=1

{fϕi
(ϕ̈iωixµ

ωixµ
+ ϕ̇i�ωi) + fϕiϕi

ϕ̇2
i ωixµ

ωixµ
+ 2fϕixµ

ωixµ
ϕi} +

+ 2fϕ1ϕ2 ϕ̇1ϕ̇2ω1xµ
ω2xµ

= F (f(x, ϕ1, ϕ2)).

Replacing ϕ̈i by Ri(ωi, ϕi, ϕ̇i) and splitting the obtained equality with respect to
ϕ̇1, ϕ̇2, we have

Ri = Ai(ωi, ϕi)ϕ̇2
i + Bi(ωi, ϕi)ϕ̇i + Ci(ωi, ϕi), i = 1, 2,

ω1xµ
ω2xµ

fϕ1ϕ2 = 0.

Since the equality fϕ1ϕ2 = 0 leads to the case Fuu = 0, we can put fϕ1ϕ2 �= 0
whence ω1xµ

ω2xµ
= 0.

By force of the above facts we get

1) fϕiϕi
+ Aifϕi

= 0, i = 1, 2,

2) fϕi
(Biωixµ

ωixµ
+ �ωi) + 2fϕixµ

ωixµ
= 0,

3) fxµxµ
+

2∑

i=1

Cifϕi
ωixµ

ωixµ
= F (f),

4) ω1xµ
ω2xµ

= 0.

(8)

From the first two equations of the system (8) it follows that

f = H1(ω1, ϕ1)H2(ω2, ϕ2)a(x) + b(x),

where Hi, a(x), b(x) are arbitrary smooth functions.
By redefining functions ϕi : ϕi → ϕ̃iHi(ωi, ϕi), i = 1, 2, we may choose

f = a(x)ϕ1(ω1)ϕ2(ω2) + b(x), (9)

whence A1 = A2 = 0.
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From the Eq. 2 of the system (8) by force of (9) it follows that Bi = Bi(ωi),
i = 1, 2. Consequently, by redefining functions ωi

ωi → ω̃i = Wi(ωi), i = 1, 2,

we may choose B1 = B2 = 0. As a result, the system (8) is read

1) ω1xµ
ω2xµ

= 0,

2) a�ωi + 2axµ
ωixµ

= 0, i = 1, 2,

3) (�a)ϕ1ϕ2 + �b + a[C1(ω1, ϕ1)ϕ2ω1xµ
ω1xµ

+
+ C2(ω2, ϕ2)ϕ1ω2xµ

ω2xµ
] = F (aϕ1ϕ2 + b).

(10)

The only thing left is to split Eq. 3 from (10) with respect to variables ϕ1, ϕ2.
Dividing Eq. 3 into ϕ1ϕ2 and differentiating it with respect to variables ϕ1ϕ2 we get
{(ϕ1ϕ2)−1[F (aϕ1ϕ2 + b) − �b]}ϕ1ϕ2 = 0, whence

a2x2 d2F

dω2
− ax

dF

dω
+ F = �b, x = ϕ1ϕ2, ω = ax + b. (11)

Differentiation of (11) with respect to x yields

ax
d3F

dω3
+

d2F

dω2
= 0.

Since we are interested in a nonlinear case, the inequality F̈ �= 0 holds. Hence, it
follows that

...

F (F̈ )−1 = −(ax)−1

or

F̈ (
...

F )
−1

= −ω + b.

Differentiating the above equality with respect to ω we obtain nonlinear ODE for
F (ω): F̈

...

F −2(
...

F )2 = 0, which general solution reads F (ω) = α−2
1 (α1ω +α2) ln(α1ω +

α2)+α3ω +α4 and what is more b = −α2α
−1
1 (without loss of generality we may put

b = α2 = 0).
In the above formulae α1, α2, α3, α4 are arbitrary real constants, α1 �= 0.
Substitution of the expression for F

F = λ1ω ln ω + λ1ω + λ3 (12)

into Eq. 3 from the system (10) yields

ωixµ
ωixµ

= Qi(ωi), i = 1, 2,

Ci = λ1Q
−1
i (ωi)ϕi ln ϕi, i = 1, 2,

�a = λ1a ln a + λ2a, λ3 = 0.

Since in Eq. (12) λ1 �= 0, we can rescale the function ω → kω in such a way that
F (ω) takes the form F = λ1ω ln ω. The theorem is proved.

Note. A classical example of the anti-reduction of mathematical physics equations is
the procedure of separation of variables. But the method of separation of variables can
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be effectively applied to linear second-order PDEs only, whereas the anti-reduction
procedure is evidently applicable to nonlinear differential equations.
Thus each solution of the system (7) after being substituted into ansatz (6) reduces

the nonlinear PDE (5) to two second-order QDEs

Qi(ωi)ϕ̇i = λϕi ln ϕi, i = 1, 2.

Let us write down some particular solutions of Eqs. (7) under a = 1.

1. ω1 = ln(x2
0 − x2

3), ω2 = ln(x2
1 + x2

2);
2. ω1 = ln(x2

0 − x2
3), ω2 = x1;

3. ω1 = x0, ω2 = ln(x2
1 + x2

2);
4. ω1 = ln(x2

1 + x2
2), ω2 = x3;

5. ω1 = x0, ω2 = x1;

6. ω1 = (x2
0 − x2

1 − x2
2)

−1/2, ω = x3;

7. ω1 = x0, ω2 = (x2
1 + x2

2 + x2
3)

−1/2;
8. ω1 = x1 cos ω1 + x2 sinω1 + ω2, ω2 = x1 sinω1 − x2 cos ω1 + ω3.

In the above formulae ω1, ω2, ω3 are arbitrary smooth functions on x0 + x3.
Let us emphasize that the above ansatzes can not be obtained within the frame-

work of the classical Lie approach (see, e.g. [5, 6]), because the maximal symmetry
group admitted by Eq. (5) is the Poincaré group P (1, 3) [2] and the general form of
Poincaré-invariant ansatz is given by the formula (2).
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