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Anti-reduction of the nonlinear wave
equation

W.I. FUSHCHYCH, R.Z. ZHDANOV

Mu 3anponoHyBa/iu KOHCTPYKTUBHHUI MeTON 3BelleHHS PiBHSIHHS 3 YACTUHHHUMH NOXioHU-
MH JI0 IeKiJIbKOX pPiBHSHb 3 MEHIIMM YHCJIOM He3aJle)KHHX 3MiHHHX. 3aCTOCYBaBLIM LeH
niaxix no 6araToBHMipHOro HesiHIHHOrO XBHJIBOBOTO DiBHSIHHS, MU TOOYAyBaslHd HHU3KY
MPUHIUIIOBO HOBUX aH3alliB, fKi peAyKYIOTb HOro 10 OBOX 3BHUYaHHUX AHdepeHLialbHUX
piBHAHD.

The wide class of solutions of the multi-dimensional wave equation
Ou = Upyy — Agu = F(u) (1)
can be obtained by means of the following ansatz [1-3]:

U= 90(‘*))’ (2)

where ¢ is an arbitrary smooth function and w = w(x) is the absolute invariant of
some three-dimensional subgroup of the Poincaré group P(1,3). As a result, one
gets ordinary differential equation (ODE) for a function ¢(w). That is why, the term
“reduction” is used: a number of dependent and independent variables is decreased.

On the other hand, there are examples of ansatzes reducing one nonlinear partial
differential equation (PDE) to two or even to three equations [4]. Such procedure
leads to an increase of the number of dependent variables and is called an “anti-
reduction” [4].

In the present paper we suggest a regular approach to the anti-reduction of the
nonlinear differential equation (1).

Consider the ansatz

u(r) = f(o, p1(w1), p2(w2),. .., on(wN)) (3)

and the following ordinary differential equations:
Pi :Ri(wivgoivgbi)» i=1,N, (4)

where f, R; are smooth enough functions, w; = w;(z) € C*(R",R'), i = 1,N. I
substitution of (3) into Eq. (1) with subsequent exclusion of the second derivatives ¢,
i =1, N according to (4) yields an identity with respect to variables ¢¢, o;, i = 1, N
then we say that the anti-reduction of nonlinear PDE (1) to N ODE takes place.

In fact, the above delinition contains an algorithm of the anti-reduction. We are
going to realize it, provided N = 2.

Theorem. The equation (1) with a logarithmic nonlinearity

Ou= M lnu, \eR! (5)

JHomnosini AH Ykpaiuu, 1993, Ne 11, C. 37-41.
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is the only nonlinear wave equation belonging to the class of PDE (1) that admits
anti-reduction to two second-order ODE and that is more the ansatz (2) has the
form

u(z) = a(x)pr(wi)p2(ws), (6)
where a(x), wy(x), wa(x) are smooth functions satisfying the system of PDE

1 Wiz, Wz, = 0,

)

2) aDw; +2az,wiz, =0, i=1,2, )
)
)

w

Wiz, Wiz, = Ql(wz)v 1= 17 27
4) Oa= Alna.

3
Here Q; are arbitrary smooth [unctions, he, 9z, = PayGey — > he, G,
a=1

Omitting intermidiate computations, we adduce main steps of the proof.
Substituting (3) with N = 2 into Eq. (1), we get

2
farfuacM + Z{f% (@iwixuwix“ + Qbiljwi) + fgaigai()b?wixuwixu + 2f¢ixuwixﬂ<ﬂi} +
=1

+ 2f o100 P1P2W12, w2z, = F(f(2,01,02)).

Replacing ¢; by R;(w;, s, i) and splitting the obtained equality with respect to
1, P2, we have

Ri = Ai(wiy @Z)@? + Bl(wu sz)@z + Ci(wia 901)7 1= 17 27
u)lx“u)zx“ﬁpﬂp2 =0.
Since the equality f,,,, = 0 leads to the case F,, = 0, we can put f,,,, # 0
whence wi,,w2,, = 0.
By force of the above facts we get
1) foip: +Aig,, =0, i=12,
2) f«pi (Biwiwuwix“ + Dwi) + 2f&piw“wizu =0,

2 (8)
3) fopun+ Y CifpWin,wia, = F (),
=1
4)  wig,woe, = 0.

From the first two equations of the system (8) it follows that
[ = Hi(w1,p1)Ha (w2, p2)a(x) + b(z),

where H;, a(x), b(x) are arbitrary smooth functions.
By redefining functions ¢; : v; — @i H;(w;, ¢i), i = 1,2, we may choose

[ = a(@)p1(w1)pa(ws) + b(w), %)
whence 4; = 45 = 0.
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From the Eq. 2 of the system (8) by force of (9) it follows that B; = B;(w;),
i = 1,2. Consequently, by redefining functions w;

- Wi(wi)a

W; —>(,:Jl

i=T1,2,

Wiz, Wz, = 07
2)

we may choose By = By = 0. As a result, the system (8) is read
1)

abw; + 2a,,wiz, =0,
3)

T3
(Oa)p1p2 + Ob + a[C1 (w1, 91)pawis, Wiz, +

+ Ca(we, p2)p1w2y,waz, ]

(10)
Flapips +b).
The only thing left is to split Eq. 3 from (10) with respect to variables o1, ¢o.

Dividing Eq. 3 into 192 and differentiating it with respect to variables o1 we get
{(p102) " [F(ap1p2 +b) — Ob]}y,, = 0, whence

T2 xd——l—F—Db, T =p1p2, w=ax+Db. (11)
Differentiation of (11) with respect to = yields
ade_F + dQ_F =0
dwd = dw?

follows that

Since we are interested in a nonlinear case, the inequality F' # 0 holds. Hence, it
F(F)~!
or

PR =

—w +b.

Differentiating the above equality with respect to w we obtain nonlinear ODE for
F(w): F F—2(F)* = 0, which general solution reads F(w) = a7 %(ayw+az) In(aw +
2) + azw + oy and what is more b = —apa; (without loss of generality we may put
b= Qg = O)

In the above formulae a1, as, g, a4 are arbitrary real constants, a; # 0.
Substitution of the expression for F’

F=MNwlhw+ \w+ A3 (12)
into Eq. 3 from the system (10) yields
Wiz, Wiz, = Qi(wi)a 1= 17 2a
Ci = MQ;  (wi)piIn g,
Oa = Malna + Aaa,

i=1,2,
A3 =0.

Since in Eq. (12) A; # 0, we can rescale the function w — kw in such a way that
F(w) takes the form F' = A\jwInw. The theorem is proved.

Note. A classical example of the anti-reduction of mathematical physics equations is
the procedure of separation of variables. But the method of separation of variables can
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be effectively applied to linear second-order PDEs only, whereas the anti-reduction
procedure is evidently applicable to nonlinear differential equations.

Thus each solution of the system (7) after being substituted into ansatz (6) reduces
the nonlinear PDE (5) to two second-order QDEs

Let us write down some particular solutions of Egs. (7) under a = 1.
wi =In(z3 — 23), we =In(z? + 23);

w; = In(z? — 22), wy = wy;

w; =0, wo = In(x?+ 23);

wy = In(z] 4+ 23), wp = x3;

w1 = Zo, W2 = T1;

) 2 2\—1/2 .
wr = (z5 — 21 — 23) 12 w=uxs;

NS ot W

2, .2, 2y—1/2.
wi =z0, wy=(2}+a3+a3)" %

8. wp=x1c08wy +xoSinwy +ws, wo = T1sinw; — Ty COSWy + w3.

In the above formulae wy, wo, w3 are arbitrary smooth functions on xg + x3.

Let us emphasize that the above ansatzes can not be obtained within the frame-
work of the classical Lie approach (see, e.g. [5, 6]), because the maximal symmetry
group admitted by Eq. (5) is the Poincaré group P(1,3) [2] and the general form of
Poincaré-invariant ansatz is given by the formula (2).
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