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New conditionally invariant solutions
for non-linear d’Alembert equation

W.I. FUSHCHYCH, I.A. YEGORCHENKO

We describe all ansatzes of a specific form that reduce the non-linear d’Alembert equa-
tion. In this way we obtain some new solutions of the equation with a polynomial
non-linearity.

1. Introduction. Let us consider a non-linear d’Alembert equation of the form
Ou = Mk, (1)
where u = u(xg, z1, z2,23) is a real function; k # 1, A are parameters,

oy= Fu_Ou Pu Pu
T 0x3 0z Ox3 023
Equation (1) is invariant under the Poincaré algebra AP(1,3)® D with the follo-
wing basis operators:

o, aav Joa = 2004 + .00, Jab = TaOp — xbaaa
2 @)
D = 2000 + 2404 + ——u0,,
1-k

when k is arbitrary, k # 1. Here a,b = 1,2,3, and we imply summation over the
repeated indices from 1 to 3. We shall not consider here the special case k¥ = 3 when
equation (1) is invariant under the conformal algebra.

All similarity solutions for equation (1) are adduced in [I, 2]. The similarity
ansatzes corresponding to three-dimensional subalgebras of the algebra (2) have the
form

u= f(z)pw), )

where f(x) is some function, w = w(z) is a new invariant variable.

In this paper we try to search for a wider class of solutions than similar ones
by means of the ansatz (3). Some ansatzes of this form were described in [3]. An
example of such ansatz is

u= (a%)"2p(az), (4)

where 2% = 22 — 2,24, 08 — aga, = 0.
The substitution (3) reduces equation (1) to an ordinary differential equation of the
functions f and w satisfy the following set of equations:

D.f = fks(w)a
Qf;LW,u + f‘:‘(w) = fkT((.u), Wy, = R(W)fkil-
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)
fuwy = fowo — fawe, ¢ = 1,2,3; S, T, R are some [unctions; T" and R do not
vanish simultaneously.
Further we shall consider the system (5) for the case w,w, = 0.
2. New ansatzes for the d’Alembert equation (1). We succeeded to find all
solutions of the system (5) for w = ax, a? = 0. In this case the system (5) reduces
to the equations

of = fkS(ax), 2f,a, = f*T(ax).
[ts solutions have the following form:
[= [h(wv p, ’yl’) + 6$)]ﬁ ) (6)

where the parameters ay, 8, v,, 6, satisly the relations af = ay = 02 =py=0,
al=—f%2=—-2=1.

Here f, = BTJ;, the summation over the repeated Greek indices is as follows:

y_ LB+ By) +2B3(8) (3x) + (y2)*(w + Bo) "
2 (w+Bl)(w+Bg)—B§ ’
_ (Bz)?
=% B (8)
h=Bfj L

Here By, Bs, Bs are some constants. If By = By, Bs = 0 we get an ansatz that is
equivalent to (4).

3. Operators of conditional symmetry for equation (1). The notion of conditi-
onal symmetry had been defined in [2, 4-6]. This approach enabled to construct wide
classes of exact solutions for nonlinear partial differential equations of mathematical
physics (see [2, 4-6, 8]). In this paper we do not search specially for operators of
conditional symmetry but for ansatzes of the form (3) explicitly.

The following statement describes the operators of conditional invariance corres-
ponding to ansatzes of the form (3) with w = ax, o = 0, f being of the form (6), (7).

Theorem 1. Equation (1) with the additional conditions

L, = fﬁ,uuu - /Bufuu =0,
Ly = f’Yuuu - ’Yufuu =0, (10)
Ly =26,u,(1—k)— fFlu=0

is invariant under operators:

Q1 = r(x)(fﬁuaxu - ﬁuf,uuau) =0,
Q2 = r(x)(f%tamu - 'Yufuuau =0, (11)
Q3 = r(z)(20,0z, — ﬁfk_luﬁu =0,
where r(x) is an arbitrary non-zero function, f satisfies the equations
1
Jubu = mfk, Of = f*S(w), (12)

where S is some function.
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The above theorem can be proved by means of the Lie algorithm (see e.g. [7]).
Note 1. The same ansatzes may also be obtained from the Lie symmetry operators.

4. Exact solutions of equation (1). The ansatz (3) with w = ax, a® =0, f of the
form (6), (7) reduces equation (1) to the following ordinary differential equation:

2
@Im +S(w)p = Ap, (13)

S(w) being of the form

1 W+B1+B2

S(w):_l—k(w+B1)(w+Bz)—B§’

Equation (13) for arbitrary constants By, B, Bs, k # 1 can be solved in quadratures:
1— 2 1 ﬁ

where 0 = (w+ By)(w + Ba) — B3.
Substituting (14) into (3) with f of the form (6), (7), we can obtain a class of
solutions for the non-linear d’Alembert equation (1).

5. Compatibility and solutions of the system (5) with w,w, = 0. In this case

R(w) =0, so T(w) must not vanish. We can take T'(w) = 12 and obtain the system

fuon + 5f0w = 1o 5 Of = f5() (15)

If Ow = 0, then from the first equation of (15)
£ = [hw,60",6%) + 6%)] 7%, (16)
where 01, 62, 63 are functions on z,

6101 = 0262 = —1

T J
inﬂ = sz# = 9292 = 9;%2 =0, (17)
0,05 =1.

With the substitution (16) the second equation (15) reduces to the form
Dgrgr + Dy2ge = S(w), 20, — ®2, — 2, = 0. (18)

The compatibility and solutions of the system of Laplace and Hamilton—Jacobi
equations were considered in detail in [8]. The system (18) is compatible iff

S(w) = P where P =0.
p
If we take for the solutions of the system (17)

o' =Bz, 0*=~x, 6 =0z,

where 3, v, 0, are parameters satisfying (6), we shall get the solutions (6), (7)-(9)
of the system (15).
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Note 2. A system similar to (15) arose in [§] while searching for ansatzes of the form
u = exp(if(x))p(w) for a nonlinear Schrodinger equation 2ius + ugq — uF(|ul) = 0.
It is known [9] that complex n-dimensional non-linear d’Alembert equation can be
reduced by similarity methods to (n — 1)-dimensional Schrédinger equation.

Note 3. The ansatz (3), (6), (7) can be used to get solutions also for complex non-
linear d’Alembert equation, the function ¢ being complex-valued.

For the equation

Ou = Au(uu®) %,

we get the reduced equation

/

2¢’ — %w =A1—k)(pp*) 7,

where p = (w+ By)(w + Bs) — B2.
From the reduced equation we can find ¢:

A1 — k)2 o~ 1=k
©o=1/p {% /p%dw] expio,

where o is an arbitrary constant.
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