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New conditionally invariant solutions
for non-linear d’Alembert equation
W.I. FUSHCHYCH, I.A. YEGORCHENKO

We describe all ansatzes of a specific form that reduce the non-linear d’Alembert equa-
tion. In this way we obtain some new solutions of the equation with a polynomial
non-linearity.

1. Introduction. Let us consider a non-linear d’Alembert equation of the form

�u = λuk, (1)

where u = u(x0, x1, x2, x3) is a real function; k �= 1, λ are parameters,

�u ≡ ∂2u

∂x2
0

− ∂2u

∂x2
1

− ∂2u

∂x2
2

− ∂2u

∂x2
3

.

Equation (1) is invariant under the Poincaré algebra AP (1, 3)+⊃ D with the follo-
wing basis operators:

∂0, ∂a, J0a = x0∂a + xa∂0, Jab = xa∂b − xb∂a,

D = x0∂0 + xa∂a +
2

1 − k
u∂u,

(2)

when k is arbitrary, k �= 1. Here a, b = 1, 2, 3, and we imply summation over the
repeated indices from 1 to 3. We shall not consider here the special case k = 3 when
equation (1) is invariant under the conformal algebra.

All similarity solutions for equation (1) are adduced in [1, 2]. The similarity
ansatzes corresponding to three-dimensional subalgebras of the algebra (2) have the
form

u = f(x)ϕ(ω), (3)

where f(x) is some function, ω = ω(x) is a new invariant variable.
In this paper we try to search for a wider class of solutions than similar ones

by means of the ansatz (3). Some ansatzes of this form were described in [3]. An
example of such ansatz is

u = (x2)−1/2ϕ(αx), (4)

where x2 = x2
0 − xaxa, α2

0 − αaαa = 0.
The substitution (3) reduces equation (1) to an ordinary differential equation of the

functions f and ω satisfy the following set of equations:

�f = fkS(ω),
2fµωµ + f�(ω) = fkT (ω), ωµωµ = R(ω)fk−1.

(5)
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Here fµ ≡ ∂f
∂xµ

, the summation over the repeated Greek indices is as follows:
fµωµ ≡ f0ω0 − faωa, a = 1, 2, 3; S, T , R are some functions; T and R do not
vanish simultaneously.

Further we shall consider the system (5) for the case ωµωµ = 0.
2. New ansatzes for the d’Alembert equation (1). We succeeded to find all

solutions of the system (5) for ω = αx, α2 = 0. In this case the system (5) reduces
to the equations

�f = fkS(αx), 2fµαµ = fkT (αx).

Its solutions have the following form:

f = [h(ω, βx, γx) + δx)]
1

1−k , (6)

where the parameters αµ, βµ, γµ, δµ satisfy the relations αβ = αγ = δ2 = βγ = 0,
αδ = −β2 = −γ2 = 1.

h =
1
2

(βx)2(ω + B1) + 2B2
3(βx)(γx) + (γx)2(ω + B2)

(ω + B1)(ω + B2) − B2
3

, (7)

h =
(βx)2

2ω + B1
, (8)

h = B1βx + B2 +
B2

1

2
ω. (9)

Here B1, B2, B3 are some constants. If B1 = B2, B3 = 0 we get an ansatz that is
equivalent to (4).

3. Operators of conditional symmetry for equation (1). The notion of conditi-
onal symmetry had been defined in [2, 4–6]. This approach enabled to construct wide
classes of exact solutions for nonlinear partial differential equations of mathematical
physics (see [2, 4–6, 8]). In this paper we do not search specially for operators of
conditional symmetry but for ansatzes of the form (3) explicitly.

The following statement describes the operators of conditional invariance corres-
ponding to ansatzes of the form (3) with ω = αx, α2 = 0, f being of the form (6), (7).

Theorem 1. Equation (1) with the additional conditions

L1 = fβµuµ − βµfµu = 0,

L2 = fγµuµ − γµfµu = 0,

L3 = 2δµuµ(1 − k) − fk−1u = 0
(10)

is invariant under operators:

Q1 = r(x)(fβµ∂xµ − βµfµu∂u) = 0,
Q2 = r(x)(fγµ∂xµ − γµfµu∂u = 0,

Q3 = r(x)(2δµ∂xµ − 1
1−kfk−1u∂u = 0,

(11)

where r(x) is an arbitrary non-zero function, f satisfies the equations

fµδµ =
1

1 − k
fk, �f = fkS(ω), (12)

where S is some function.
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The above theorem can be proved by means of the Lie algorithm (see e.g. [7]).

Note 1. The same ansatzes may also be obtained from the Lie symmetry operators.

4. Exact solutions of equation (1). The ansatz (3) with ω = αx, α2 = 0, f of the
form (6), (7) reduces equation (1) to the following ordinary differential equation:

ϕ′ 2
1 − k

+ S(ω)ϕ = λϕk, (13)

S(ω) being of the form

S(ω) = − 1
1 − k

ω + B1 + B2

(ω + B1)(ω + B2) − B2
3

,

Equation (13) for arbitrary constants B1, B2, B3, k �= 1 can be solved in quadratures:

ϕ =
√

θ

[
λ(1 − k)2

2

∫
θ(ω)

k−1
2 dω

] 1
1−k

, (14)

where θ = (ω + B1)(ω + B2) − B2
3 .

Substituting (14) into (3) with f of the form (6), (7), we can obtain a class of
solutions for the non-linear d’Alembert equation (1).

5. Compatibility and solutions of the system (5) with ωµωµ = 0. In this case
R(ω) = 0, so T (ω) must not vanish. We can take T (ω) = 2

1−k and obtain the system

fµωµ +
1
2
f�ω =

1
1 − k

fk, �f = fkS(ω). (15)

If �ω = 0, then from the first equation of (15)

f =
[
h(ω, θ1, θ2) + θ3)

] 1
1−k , (16)

where θ1, θ2, θ3 are functions on x,

θ1
µθ1

µ = θ2
µθ2

µ = −1,

θ1
µωµ = θ2

µωµ = θ3
µθ3

µ = θ1
µθ2

µ = 0,

θ1
µθ3

µ = 1.

(17)

With the substitution (16) the second equation (15) reduces to the form

Φθ1θ1 + Φθ2θ2 = Ŝ(ω), 2Φω − Φ2
θ1 − Φ2

θ2 = 0. (18)

The compatibility and solutions of the system of Laplace and Hamilton–Jacobi
equations were considered in detail in [8]. The system (18) is compatible iff

Ŝ(ω) =
ρ′

ρ
, where ρ′′′ = 0.

If we take for the solutions of the system (17)

θ1 = βx, θ2 = γx, θ3 = δx,

where βµ, γµ, δµ are parameters satisfying (6), we shall get the solutions (6), (7)–(9)
of the system (15).
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Note 2. A system similar to (15) arose in [8] while searching for ansatzes of the form
u = exp(if(x))ϕ(ω) for a nonlinear Schrödinger equation 2iut + uaa − uF (|u|) = 0.
It is known [9] that complex n-dimensional non-linear d’Alembert equation can be
reduced by similarity methods to (n − 1)-dimensional Schrödinger equation.

Note 3. The ansatz (3), (6), (7) can be used to get solutions also for complex non-
linear d’Alembert equation, the function ϕ being complex-valued.

For the equation

�u = λu(uu∗)
k−1
2 ,

we get the reduced equation

2ϕ′ − ρ′

ρ
ϕ = λ(1 − k)(ϕϕ∗)

k−1
2 ,

where ρ = (ω + B1)(ω + B2) − B2
3 .

From the reduced equation we can find ϕ:

ϕ =
√

ρ

[
λ(1 − k)2

2

∫
ρ

k−1
2 dω

] 1
1−k

exp iσ,

where σ is an arbitrary constant.
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