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Hodograph transformations and generating of
solutions for nonlinear differential equations

W.I. FUSHCHYCH, V.A. TYCHYNIN

ITeperBopenHst rogorpada onHiel ckansiprol pyHkuil B R(1,1) ta R(1,3), a Takoxk ABOX
ckansipuux ¢yHkuid B R(1,1) BHKOpHCTaHi OJisi PO3MHOXKEHHsSI PO3B’SI3KiB HeJiHIHHHX
piBHSIHB; N0OynoBaHi KJacH roporpag-iHBapiaHTHUX PiBHSHb APYroro mopsaky.

The results of using the hodograph transformations for solution of applied problems
are well-known. One can find them for example in [1, 2, 3]. We note also the paper [4],
in which a number of invariants for hodograph transformation as well as hodograph-
invariant equations were constructed.

1. Hodograph-invariant and -linearizable equations in R(1,1). Let us consi-
der the hodograph transformation for one scalar function (M = 1) of two independent
variables x = (z, 1), n = 2:

u(x) =%, Yo=Y, IT1= v(y),

v (1)
6_1;1—811)—8—%7507 y—(y07y1)-

Differential prolongations of the transformation (1) generate such expressions for the
first and second order derivatives:

-1 _
Uy =0 , Up = —VoUy 1a (2)

-3 -3
u = —v; “vi1,  Uio = —v; ~(V1v10 — VoU11),

ugo = —vp

)

2 2
vgU11 — 2091010 + VTV00]-

[t is clear that (1) is an involutory transformation. This allows to write a set of
differential expressions of order < 2, which are absolutely invariant under the trans-
formation (1):

fo(xo)a fl(xlau)a fQ(ulaul_l)7 f3(U0,—U0U1_1), f4(ulla_u1_3ull);

F2(uro, —uy }(ururo — wourn)),  fO(uoo, —uy *[uduir — 2upuiurg + udugo)).

(4)

Here fO is an arbitrary smooth function, f, i = 1,6 are arbitrary functions symmetric
on arguments, i.e. fi(z,2) = fi(z,x). So, the second order PDE invariant under the
transformation (1) has the form

F({fg}):07 {fg}:{f07fl7"'7f6}7 0-:0)67 (5)
F' is an arbitrary smooth function.
Such well-known equations are contained in the class (5):

1. uj —u} —1=0 — the eikonal equation; (6)
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2. upy — ugo[uguin — 2uguiuig + uiue] = 0 — the Born-Infeld equation; (7)
3. wgoury —u3y =0 — the Monge—Amperé equation; (8)
4. ug = f(up)ury, flur) = f(uy )uy? — the nonlinear heat equation [5]. (9)
Particularly, such equation as
up —uy 'ugg =0 (10)
is contained in the last class (9).
Let (111;)(‘%0,531) be a known solution of Eq. (5). To construct a new solution

2
(u)(:co,xl) let us write the first solution replacing in it an argument x; for parameter

T (‘LIL)(I(),T) and substitute it to the hodograph transformation formula (1). So, we
obtain the solutions generating formula for Eq. (5).

(5)(330@1) =71, T = (111,)(1‘0,7'). (11)

Let us now describe some class of (1)-linearizable equations. Making use of for-
mulae (1) to transform general linear second order PDE

O (Y)vpw + 0" (Y)vp +b(y)v +c(y) =0, y = (yo,y1), mv=0,1, (12)
we obtain
b9 (2, u)ufS(uguu — 2uguiuio + uugy) —
— 26" (z0, w)uy ® (uruig — ugurr) + b (zo, w)uy Pury + (13)
+ 00 (0, u)uy ug + b (20, w)uyt — b(zo, u)r — c(20,u) = 0.
b*¥, b, ¢ are arbitrary smooth functions, b'® = b%1. Summation over repeated indices
is understood in the space R(1,1) with the metric g,, = diag(1,—1). The repeated
use of this transformation to Eq. (12) turn us again to the Eq. (11).

For any equation of the class (12) the principle of nonlinear superposition is sati-
sfied
(3) (1) (1) (2)
U(Z‘O,Jfl): U(J}Q,T)7 U($07$1): u(an-rl_T)a (14)

k 3
Here (u)(xo, x1), k = 1,2 are known solutions of Eq. (12), (u)(xmxl) is a new solution
of this equation. Parameter 7 must be eliminated due to second equality of the sys-
tem (13). For example, such equations important for applications are contained in this
class (12):

Uy — u1_2u11 =0, wuir —uruip =0,

uduiy — 2upuiuip + udugo = 0, ug — (o, u)u; = 0.
Let us consider now an example of constructing new solutions from two known ones
by means of solutions superposition formula (13).
Example 1. A nonlinear heat equation

-2
Up — Uy U1l =0
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is reduced to the linear equation
Vg — V11 = 0 (15)

Therefore, the formula (13) is true for (14). The functions
(1) (2)
u =x1, U =+x1— 2T (16)

are both partial solutions of Eq. (14). We construct a new solution (LBL) of this Eq. (14)

CY) (2)
via « and w. It has the form

3 1 1
(u)(anxl) =3 ==y TR 2z, (17)

2. Hodograph-invariant and -linearizable equations in R(1,3). The hodo-
graph transformation of a scalar function w(z) of four independent variables x =
(zo, 21,22, x3) has the form

v(x) =y, x=v(y), zo=vyp, 6=0,23. (18)

Prolongation formulae for (18) are obtained via calculations [6, 7]:

ur =v7", ug=—vi'vg, up = —v v,

_3 -3
urg = —v; > (V1v1p — Vev11), Veg = —v; ~(ViVge — 209V1V19 + VHVIL), (19)
Ugy = —vf?’[vl(vlvg.y — UyV19) — Vg (V1V1y — V4 U11)].

Here 6,7 = 0,2,3, 6 # ~. Making use of involutivity of the transformation (18) we
list for it a such set of absolute differential invariant expressions of order < 2:

f0($0,$2,$3) fl(xlvu)a f2(u17u1—1)7 fs(uev_ul_lua)v
fHur, —uy U11)7 f? (w0, —uf3(ulu1e — ugu11)),

f9(ugo, —u1 3 (udugy — 2uruguig + udurr)).
(

f7 UGy — [U1(U1U»y9 - u*y“l@) - uf)(ululfy - U»yun)})-

(20)

There is no summation over @ here, as before, f° is an arbitrary smooth function, f7,
j = 1,7 are arbitrary symmetric.
An equation invariant under transformation (18) has the form

F{f*) =0 (A=0,7). 1)
The solutions generating formula has the same form as (10)

2 1
(u)($0,$1,$27l'3) =T, Ty = ('U/)(Z‘O,T, 332,333)- (22)

2
Here %)(ac) is a known solution of Eq. (21), (u)(x) is its new solution. The following
well-known equations are contained in this class (21):
1. ud —wuqus—1=0, a=1,3, the eikonal equation;
2. (1—-wu”)Du—u'u’uy, =0, p,v=0,3, the Born-Infeld equation [8];
3. det(uu,) =0 the Monge—Amperé equation.



108 W.I. Fushchych, V.A. Tychynin

Here summation over repeated indices is understood in the space R(1,3) with the
metric g, = diag (1,-1,—-1,—1).

Ou = aﬂa“u = Upp — U11 — U22 — U33
is the d’Alembert operator,
Uty = U3 + us + us +ui = (Vu)?.

The class of hodograph-linearizable equations in R(1, 3) is constructed analogously
as above. Making use of transformation (18) for linear equation (11), written in
R(1,3), we get

bt (xs, u)ul_?’uu + %9 (x5, u)uf3(u%u99 — 2uyuguig + uiuir) +
+ b7 (x5, u)uf3[u1(u1uvg — uyU10) — Ug(UrU1y — Uyu11)] + (23)

+ bl(xg,u)uflue —b(xs,u)z1 — c(zs,u) =0, x5 = (z0,T2,x3).

Here 6,0 = 0,2,3 and summation over 6 is understood in the space R(1,2) with
metric gg, = diag (1, -1, —1).
Note, that multidimensional nonlinear heat equation

Uy — uf2(1 + ug + ug)uu — U9y — U3z + 2uf1(u2u12 + usuiz) =0 (24)

reduces due to transformation (18) to linear equation vy = Av, where Az =
0? + 03 + 03 is the Laplace operator.
So, the solutions superposition formula for the equations (23) and (24) is

(3) (1)
U($0,$17$27$3) = U($0777$27$3), (25)

1 2
(U)(T/O,T, To,13) = (“)(550,531 — T, %2, x3). (26)

Example 2. Let partial solutions of Eq. (24)

(1) rr—c 2 9 >
W =xyg—Tg—r3—Iln—=  u = ch(x1—04)2—z§—z§
C1

3
be initial for generating a new solution (u). Then this new solution of Eq. (24) is
determined via (25), (26) by the equality
2 2 (3) 2
(z) + 23 + 23 = c3[w1 — c2 — crexp{zo — w2 — w3 — u (2)}], @
9
c3 = ch, Co = C4 + Co.

3
@),

Thus, the formula (27) gives us a new solution of Eq. (24) in the implicite form.

3. Hodograph-invariant and -linearizable systems of PDE in R(1,1). Let
us consider two functions w*(xg,x1), p = 0,1 of independent variables xg, x1. The
hodograph transformation in this case, as is known [2], has the form

uo(anxl):y()a ul(anxl) = Y1, xozvo(yanl)v T :Ul(y()vyl))
§=utud —uful £0, 0 =vjv] —vir) # 0.

(28)
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The first and second order derevatives are changing as
up = 6", —0* g, wl ==, W) =6, (29)
ugy = =073 [(v9)?(voly — vgviy) + (v1)? (v gy — vgvde) —
— 20{vg (ugviy — vgvlp)],
upy = =07 - [(vg)? (vhvly — vgvis + (v1)*(vhvde — VOVGo) —
— 2u5v1 (v5vy — vdvio)]s
ujg = 0" - [udvg (vo vy — vviy) + vivi (vhugy — vgugy) —
— (vgviy — vvig) (vivg + vgoy)], (30)
ufy = —0*3[(v)*(vYviy — vivdy) + (v])?(Vvge — vivho) —
— 20{vg (v{vy — vivdy)]s
ugy = —6*3[(vh)? (vviy — vivdy) + (v1)?(V]vgy — vivgy) —
— 2vjvg (vivly — vivdy)],
“(1)0 =—0" 3[Uovo (U?U%l U%U%) + U?U% (U?U(%o - Uivgo) -

— (WQvy — v109) (V1] + vyul)].

Let us now construct the absolute differential invariants with respect to (28)—(30) of

order < 2. Making use of involutivity of this transformation we get

fHapu), p=0,1, fuli,6u), p#v, pv=01,

there is no summation over repeated indices here,

Plut, =5k, p#v, pv=01;

fHuty, =072 [(w))* (ugvdy — uguiy) + (u)*(ugugy — ugug,) —
— 2ufuf(uguly — uguiy)l),

F2(ug, =072 - [(ug)? (ugudy — uguiy) + (ug)?(ugugy — ugugy) —
= 2ugui (ugviy — uguip))),

fouto, =072 - [uup(upu?y — uguiy) + uui(ujugy — ugugy —
— (uguly — uguio)(ujug + ugu?)]),

STy, =673 [(ud)? (uuiy — uiuly) + (uf)?(ufugy — uiugy) —

— 2ufug (ufuiy — ul“?O)D
SE(udo, =07 3[(ug)? (ufuj; — uiuly) + (ui)?(ufugy — uiugy) —
- 2“1“0(“?“ U%U?O)D

f9(u107 = [ugutl)(u(l)u% - Ulun) + U1U1(U?U00 U%Ugo) -

— (uQuig — ujuly) (uiug + ujul)]).

All functions f*, k =1,9 are arbitrary smooth and symmetric.

(31)

So, we now are able to construct the hodograph-invariant system of second order

PDEs

F{f*) =0, k=19, o=12,...,N.

(32)
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2 2), (2
We construct a new solution (u) = ((u)o,(u)l) of system (32) via known solution

1 1, (1
W — ((u)o, (u)l) according to the formula

@) =7 2= (33)

(2)
U
Here x = (z0,21), 7 = (7°,71), 7# are parameters to be eliminated out of system (33).

Example 3. Let us consider the simplest hodograph-invariant system of first order
PDE

ué—u(f:O, u%—ugzO. (34)
It is easily to verify, that pair of functions

1 1
Qo = 2xowy + C, W 3+ a3

is the solution of system (34). Making use of formula (33) one obtain the new solution
of this system

1
2

2 1
G — iT [xl + /2% + (2o — 0)2] ,
’ . (35)
), T — ¢ 5 ] 2
u’ =4+ 1 £ /2% + (29 — )2
7 { 1 i+ (xo—c)
Let us consider the linear system of first order PDEs
by (y)v, + b7 (y)v” + ¢ (y) = 0. (36)
Here boY, b7, ¢ are arbitrary smooth functions of y = (yo,y1), summation over
repeated indices is understood in the space with metric g;, = diag(1,1). This
system (36) under transformation (28) reduces into system of nonlinear PDEs
b7 () tug — b0 (w)d ) — b3 (u)dtud + 37)
+ b9 (w)d " uf + 670 (w)xo + b7t (u)x1 + 7 (u) = 0.
The solutions superposition formula for the system (37) has the form
3 1 1 2
(u)o(xOvl'l) — (U)O(Toﬂ_l)’ (UO(T0,7_1) _ (u)o($0 — 0y — 1), 38

(2)

3
(u)l (0, = ul(zg — 7% 21 — 7).

1 1
(g, 71) = (’U,)l(T07T1)7 G
Making use of designations u = (u°,u'), z = (wg,21), 7 = (7°,71), one can rewrite
the formula (38) in another way:

W () = W (),

Example 4. It is obviously, that two pairs of functions

Yy =Qw—n), (382)

(1)
=u

n 1 (1)

u = 5o, P o= (2A)"1/ ix% — 21,
(39)

2 (2)
(u) = xgl |:—C1 + xl] . P = (2\z0) e
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give two partial solutions of the system

up + uuy + 4X2pp; = 0,

40
po +u1p +upy = 0. (40)

3) (3)
Let us apply the formula (38) to construct a new solution (u), p via (39). Finally we
get

(3) (3) _ (3) 1
u2(x07m1) — cg(mo —2 U (xg, 1)) 2_zou (xo,21) + 21 + 501 =0,
(3) B 3) 3) 1 2

P (zo,x1) = (2A) LS u (zg, 1) — uz(xo,wl)—x1—§cl
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