Hodograph transformations and generating of solutions for nonlinear differential equations

W.I. FUSHCHYCH, V.A. TYCHYNIN

Перетворення годографа однієї скалярної функції в $\mathbb{R}(1,1)$ та $\mathbb{R}(1,3)$, а також двох скалярних функцій в $\mathbb{R}(1,1)$ використані для розмноження розв'язків нелінійних рівнянь; побудовані класи годограф-інваріантних рівнянь другого порядку.

The results of using the hodograph transformations for solution of applied problems are well-known. One can find them for example in [1, 2, 3]. We note also the paper [4], in which a number of invariants for hodograph transformation as well as hodograph-invariant equations were constructed.

1. Hodograph-invariant and -linearizable equations in $\mathbb{R}(1,1)$. Let us consider the hodograph transformation for one scalar function (M=1) of two independent variables $x=(x_0,x_1),\ n=2$:

$$u(x) = y_1, \quad x_0 = y_0, \quad x_1 = v(y),$$

 $\delta = v_1 = \partial_1 v = \frac{\partial v}{\partial y_1} \neq 0, \quad y = (y_0, y_1).$ (1)

Differential prolongations of the transformation (1) generate such expressions for the first and second order derivatives:

$$u_1 = v_1^{-1}, \quad u_0 = -v_0 v_1^{-1},$$
 (2)

$$u_{11} = -v_1^{-3}v_{11}, \quad u_{10} = -v_1^{-3}(v_1v_{10} - v_0v_{11}), u_{00} = -v_1^{-3}[v_0^2v_{11} - 2v_0v_1v_{10} + v_1^2v_{00}].$$
(3)

It is clear that (1) is an involutory transformation. This allows to write a set of differential expressions of order ≤ 2 , which are absolutely invariant under the transformation (1):

$$f^{0}(x_{0}), \quad f^{1}(x_{1}, u), \quad f^{2}(u_{1}, u_{1}^{-1}), \quad f^{3}(u_{0}, -u_{0}u_{1}^{-1}), \quad f^{4}(u_{11}, -u_{1}^{-3}u_{11}),$$

$$f^{5}(u_{10}, -u_{1}^{-3}(u_{1}u_{10} - u_{0}u_{11})), \quad f^{6}(u_{00}, -u_{1}^{-3}[u_{0}^{2}u_{11} - 2u_{0}u_{1}u_{10} + u_{1}^{2}u_{00}]).$$

$$(4)$$

Here f^0 is an arbitrary smooth function, f^i , $i=\overline{1,6}$ are arbitrary functions symmetric on arguments, i.e. $f^i(x,z)=f^i(z,x)$. So, the second order PDE invariant under the transformation (1) has the form

$$F(\{f^{\sigma}\}) = 0, \quad \{f^{\sigma}\} = \{f^{0}, f^{1}, \dots, f^{6}\}, \quad \sigma = \overline{0, 6},$$
 (5)

F is an arbitrary smooth function.

Such well-known equations are contained in the class (5):

1.
$$u_0^2 - u_1^2 - 1 = 0$$
 — the eikonal equation; (6)

Доповіді АН України, 1993, № 10, С. 52–58.

2.
$$u_{11} - u_{00}[u_0^2 u_{11} - 2u_0 u_1 u_{10} + u_1^2 u_{00}] = 0$$
 — the Born-Infeld equation; (7)

3.
$$u_{00}u_{11} - u_{10}^2 = 0$$
 — the Monge–Amperé equation; (8)

4.
$$u_0 = f(u_1)u_{11}$$
, $f(u_1) = f(u_1^{-1})u_1^{-2}$ — the nonlinear heat equation [5]. (9)

Particularly, such equation as

$$u_0 - u_1^{-1} u_{11} = 0 (10)$$

is contained in the last class (9).

Let $\overset{(1)}{u}(x_0,x_1)$ be a known solution of Eq. (5). To construct a new solution $\overset{(2)}{u}(x_0,x_1)$ let us write the first solution replacing in it an argument x_1 for parameter τ : $\overset{(1)}{u}(x_0,\tau)$ and substitute it to the hodograph transformation formula (1). So, we obtain the solutions generating formula for Eq. (5).

Let us now describe some class of (1)-linearizable equations. Making use of formulae (1) to transform general linear second order PDE

$$b^{\mu\nu}(y)v_{\mu\nu} + b^{\mu}(y)v_{\mu} + b(y)v + c(y) = 0, \quad y = (y_0, y_1), \quad \mu, \nu = 0, 1,$$
 (12)

we obtain

$$b^{00}(x_0, u)u_1^{-3}(u_0^2u_{11} - 2u_0u_1u_{10} + u_1^2u_{00}) - - 2b^{10}(x_0, u)u_1^{-3}(u_1u_{10} - u_0u_{11}) + b^{11}(x_0, u)u_1^{-3}u_{11} + + b^0(x_0, u)u_1^{-1}u_0 + b^1(x_0, u)u_1^{-1} - b(x_0, u)x_1 - c(x_0, u) = 0.$$
(13)

 $b^{\mu\nu}$, b^{μ} , c are arbitrary smooth functions, $b^{10}=b^{01}$. Summation over repeated indices is understood in the space $\mathbb{R}(1,1)$ with the metric $g_{\mu\nu}=\mathrm{diag}\,(1,-1)$. The repeated use of this transformation to Eq. (12) turn us again to the Eq. (11).

For any equation of the class (12) the principle of nonlinear superposition is satisfied

$$\overset{(3)}{u}(x_0, x_1) = \overset{(1)}{u}(x_0, \tau), \quad \overset{(1)}{u}(x_0, x_1) = \overset{(2)}{u}(x_0, x_1 - \tau), \tag{14}$$

Here $\overset{(k)}{u}(x_0,x_1)$, k=1,2 are known solutions of Eq. (12), $\overset{(3)}{u}(x_0,x_1)$ is a new solution of this equation. Parameter τ must be eliminated due to second equality of the system (13). For example, such equations important for applications are contained in this class (12):

$$u_0 - u_1^{-2}u_{11} = 0$$
, $u_0u_{11} - u_1u_{10} = 0$,
 $u_0^2u_{11} - 2u_0u_1u_{10} + u_1^2u_{00} = 0$, $u_0 - c(x_0, u)u_1 = 0$.

Let us consider now an example of constructing new solutions from two known ones by means of solutions superposition formula (13).

Example 1. A nonlinear heat equation

$$u_0 - u_1^{-2} u_{11} = 0$$

is reduced to the linear equation

$$v_0 - v_{11} = 0 (15)$$

Therefore, the formula (13) is true for (14). The functions

are both partial solutions of Eq. (14). We construct a new solution $\overset{(3)}{u}$ of this Eq. (14) via $\overset{(1)}{u}$ and $\overset{(2)}{u}$. It has the form

$$u^{(3)}(x_0, x_1) = -\frac{1}{2} \pm \sqrt{\frac{1}{4} + x_1 - 2x_0},$$
(17)

2. Hodograph-invariant and -linearizable equations in $\mathbb{R}(1,3)$. The hodograph transformation of a scalar function u(x) of four independent variables $x=(x_0,x_1,x_2,x_3)$ has the form

$$v(x) = y_1, \quad x_1 = v(y), \quad x_\theta = y_\theta, \quad \theta = 0, 2, 3.$$
 (18)

Prolongation formulae for (18) are obtained via calculations [6, 7]:

$$u_{1} = v_{1}^{-1}, \quad u_{\theta} = -v_{1}^{-1}v_{\theta}, \quad u_{11} = -v_{1}^{-3}v_{11},$$

$$u_{1\theta} = -v_{1}^{-3}(v_{1}v_{1\theta} - v_{\theta}v_{11}), \quad v_{\theta\theta} = -v_{1}^{-3}(v_{1}^{2}v_{\theta\theta} - 2v_{\theta}v_{1}v_{1\theta} + v_{\theta}^{2}v_{11}),$$

$$u_{\theta\gamma} = -v_{1}^{-3}[v_{1}(v_{1}v_{\theta\gamma} - v_{\gamma}v_{1\theta}) - v_{\theta}(v_{1}v_{1\gamma} - v_{\gamma}v_{11})].$$
(19)

Here $\theta, \gamma = 0, 2, 3, \ \theta \neq \gamma$. Making use of involutivity of the transformation (18) we list for it a such set of absolute differential invariant expressions of order ≤ 2 :

$$f^{0}(x_{0}, x_{2}, x_{3}), \quad f^{1}(x_{1}, u), \quad f^{2}(u_{1}, u_{1}^{-1}), \quad f^{3}(u_{\theta}, -u_{1}^{-1}u_{\theta}),$$

$$f^{4}(u_{11}, -u_{1}^{-3}u_{11}), \quad f^{5}(u_{1\theta}, -u_{1}^{-3}(u_{1}u_{1\theta} - u_{\theta}u_{11})),$$

$$f^{6}(u_{\theta\theta}, -u_{1}^{-3}(u_{1}^{2}u_{\theta\theta} - 2u_{1}u_{\theta}u_{1\theta} + u_{\theta}^{2}u_{11})).$$

$$f^{7}(u_{\theta\gamma}, -u_{1}^{-3}[u_{1}(u_{1}u_{\gamma\theta} - u_{\gamma}u_{1\theta}) - u_{\theta}(u_{1}u_{1\gamma} - u_{\gamma}u_{11})]).$$

$$(20)$$

There is no summation over θ here, as before, f^0 is an arbitrary smooth function, f^j , $j = \overline{1,7}$ are arbitrary symmetric.

An equation invariant under transformation (18) has the form

$$F(\lbrace f^{\lambda} \rbrace) = 0 \quad (\lambda = \overline{0,7}). \tag{21}$$

The solutions generating formula has the same form as (10)

$$u(x_0, x_1, x_2, x_3) = \tau, \quad x_1 = u(x_0, \tau, x_2, x_3).$$
(22)

Here $\overset{(1)}{u}(x)$ is a known solution of Eq. (21), $\overset{(2)}{u}(x)$ is its new solution. The following well-known equations are contained in this class (21):

- 1. $u_0^2 u_a u_a 1 = 0$, $a = \overline{1,3}$, the eikonal equation;
- 2. $(1-u_{\nu}u^{\nu})\Box u-u^{\mu}u^{\nu}u_{\mu\nu}=0, \quad \mu,\nu=\overline{0,3}, \text{ the Born-Infeld equation [8]};$
- 3. $det(u_{\mu\nu}) = 0$ the Monge-Amperé equation.

Here summation over repeated indices is understood in the space $\mathbb{R}(1,3)$ with the metric $g_{\mu\nu} = \operatorname{diag}(1,-1,-1,-1)$.

$$\Box u = \partial_{\mu} \partial^{\mu} u = u_{00} - u_{11} - u_{22} - u_{33}$$

is the d'Alembert operator,

$$u_a u_a = u_1^2 + u_2^2 + u_2^2 + u_3^2 = (\nabla u)^2.$$

The class of hodograph-linearizable equations in $\mathbb{R}(1,3)$ is constructed analogously as above. Making use of transformation (18) for linear equation (11), written in $\mathbb{R}(1,3)$, we get

$$b^{11}(x_{\delta}, u)u_{1}^{-3}u_{11} + b^{\theta\theta}(x_{\delta}, u)u_{1}^{-3}(u_{1}^{2}u_{\theta\theta} - 2u_{1}u_{\theta}u_{10} + u_{\theta}^{2}u_{11}) + + b^{\gamma\theta}(x_{\delta}, u)u_{1}^{-3}[u_{1}(u_{1}u_{\gamma\theta} - u_{\gamma}u_{10}) - u_{\theta}(u_{1}u_{1\gamma} - u_{\gamma}u_{11})] + + b^{1}(x_{\delta}, u)u_{1}^{-1}u_{\theta} - b(x_{\delta}, u)x_{1} - c(x_{\delta}, u) = 0, \quad x_{\delta} = (x_{0}, x_{2}, x_{3}).$$

$$(23)$$

Here $\delta, \theta = 0, 2, 3$ and summation over θ is understood in the space $\mathbb{R}(1,2)$ with metric $\tilde{g}_{\theta\gamma} = \mathrm{diag}\,(1,-1,-1)$.

Note, that multidimensional nonlinear heat equation

$$u_0 - u_1^{-2}(1 + u_2^2 + u_3^2)u_{11} - u_{22} - u_{33} + 2u_1^{-1}(u_2u_{12} + u_3u_{13}) = 0$$
 (24)

reduces due to transformation (18) to linear equation $v_0 = \Delta_{(3)}v$, where $\Delta_{(3)} \equiv \partial_1^2 + \partial_2^2 + \partial_3^2$ is the Laplace operator.

So, the solutions superposition formula for the equations (23) and (24) is

$$\overset{(3)}{u}(x_0, x_1, x_2, x_3) = \overset{(1)}{u}(x_0, \tau, x_2, x_3), \tag{25}$$

$$\overset{(1)}{u}(x_0, \tau, x_2, x_3) = \overset{(2)}{u}(x_0, x_1 - \tau, x_2, x_3). \tag{26}$$

Example 2. Let partial solutions of Eq. (24)

$$\overset{(1)}{u} = x_0 - x_2 - x_3 - \ln \frac{x_1 - c_2}{c_1}, \quad \overset{(2)}{u} = \left[\frac{9}{4} c_3^2 (x_1 - c_4)^2 - x_2^2 - x_3^2 \right]^{\frac{1}{2}}$$

be initial for generating a new solution u. Then this new solution of Eq. (24) is determined via (25), (26) by the equality

$$u^{(3)}(x) + x_2^2 + x_3^2 = c_3 \left[x_1 - c_2 - c_1 \exp\{x_0 - x_2 - x_3 - u^{(3)}(x)\} \right]^2,$$

$$c_3 = \frac{9}{4} c_3^2, \quad c_2 = c_4 + c_2.$$
(27)

Thus, the formula (27) gives us a new solution of Eq. (24) in the implicite form.

3. Hodograph-invariant and -linearizable systems of PDE in $\mathbb{R}(1,1)$. Let us consider two functions $u^{\mu}(x_0,x_1)$, $\mu=0,1$ of independent variables x_0, x_1 . The hodograph transformation in this case, as is known [2], has the form

$$u^{0}(x_{0}, x_{1}) = y_{0}, \quad u^{1}(x_{0}, x_{1}) = y_{1}, \quad x_{0} = v^{0}(y_{0}, y_{1}), \quad x_{1} = v^{1}(y_{0}, y_{1}),$$

$$\delta = u_{1}^{1} u_{0}^{0} - u_{0}^{1} u_{1}^{0} \neq 0, \quad \delta^{*} = v_{1}^{1} v_{0}^{0} - v_{0}^{1} v_{1}^{0} \neq 0.$$
(28)

The first and second order derevatives are changing as

$$u_{1}^{1} = \delta^{*-1}v_{0}^{0}, \quad u_{0}^{1} = -\delta^{*-1}v_{0}^{1}, \quad u_{1}^{0} = -\delta^{*-1}v_{1}^{0}, \quad u_{0}^{0} = \delta^{*-1}v_{1}^{1},$$

$$(29)$$

$$u_{11}^{1} = -\delta^{*-3} \cdot [(v_{0}^{0})^{2}(v_{0}^{1}v_{11}^{0} - v_{0}^{0}v_{11}^{1}) + (v_{1}^{0})^{2}(v_{0}^{1}v_{00}^{0} - v_{0}^{0}v_{00}^{1}) - 2v_{0}^{1}v_{0}^{0}(u_{0}^{1}v_{10}^{0} - v_{0}^{0}v_{10}^{1})],$$

$$u_{00}^{1} = -\delta^{*-3} \cdot [(v_{0}^{1})^{2}(v_{0}^{1}v_{11}^{0} - v_{0}^{0}v_{11}^{1} + (v_{1}^{1})^{2}(v_{0}^{1}v_{00}^{0} - v_{0}^{0}v_{00}^{1}) - 2v_{0}^{1}v_{1}^{1}(v_{0}^{1}v_{00}^{0} - v_{0}^{0}v_{10}^{1})],$$

$$u_{10}^{1} = \delta^{*-3} \cdot [v_{0}^{0}v_{0}^{1}(v_{0}^{1}v_{11}^{0} - v_{0}^{0}v_{11}^{1}) + v_{1}^{0}v_{1}^{1}(v_{0}^{1}v_{00}^{0} - v_{0}^{0}v_{00}^{1}) - (v_{0}^{1}v_{10}^{0} - v_{1}^{0}v_{10}^{1})(v_{1}^{1}v_{0}^{0} + v_{0}^{1}v_{1}^{1})],$$

$$u_{11}^{0} = -\delta^{*-3}[(v_{0}^{0})^{2}(v_{1}^{0}v_{11}^{1} - v_{1}^{1}v_{11}^{0}) + (v_{1}^{0})^{2}(v_{1}^{0}v_{10}^{1} - v_{1}^{1}v_{00}^{0}) - 2v_{1}^{1}v_{00}^{0}(v_{1}^{0}v_{10}^{1} - v_{1}^{1}v_{10}^{0})],$$

$$u_{01}^{0} = -\delta^{*-3}[(v_{0}^{0})^{2}(v_{1}^{0}v_{11}^{1} - v_{1}^{1}v_{11}^{0}) + (v_{1}^{1})^{2}(v_{1}^{1}v_{10}^{0} - v_{1}^{1}v_{00}^{0}) - 2v_{1}^{1}v_{0}^{1}(v_{1}^{0}v_{10}^{1} - v_{1}^{1}v_{10}^{0})],$$

$$u_{00}^{0} = -\delta^{*-3}[(v_{0}^{1})^{2}(v_{1}^{1}v_{11}^{1} - v_{1}^{1}v_{11}^{0}) + v_{1}^{1}v_{1}^{1}(v_{1}^{0}v_{10}^{0} - v_{1}^{1}v_{00}^{0}) - (v_{1}^{1}v_{10}^{0}) - v_{1}^{1}v_{10}^{0})],$$

$$u_{10}^{0} = -\delta^{*-3}[v_{0}^{0}v_{0}^{1}(v_{1}^{1}v_{11}^{1} - v_{1}^{1}v_{10}^{0})],$$

$$u_{10}^{0} = -\delta^{*-3}[v_{0}^{0}v_{0}^{1}(v_{1}^{1}v_{11}^{1} - v_{1}^{1}v_{10}^{0})],$$

$$v_{10}^{0} = -\delta^{*-3}[v_{0}^{0}v_{0}^{1}(v_{1}^{1}v_{11}^{0} - v_{1}^{1}v_{10}^{0})],$$

$$v_{11}^{0} = -\delta^{*-3}[v_{0}^{0}v_{0}^{1}(v_{1}^{1}v_{11}^{1} - v_{1}^{1}v_{10}^{0})],$$

$$v_{11}^{0} = -\delta^{*-3}[v_{0}^{0}v_{0}^{1}(v_{1}^{1}v_{11}^{1} - v_{1}^{1}v_{10}^{0})],$$

$$v_{11}^{0} = -\delta^{*-3}[v_{0}^{0}v_{0}^{1}(v_{1}^{1}v_{11}^{0} - v_{1}^{1}v_{10}^{0})],$$

$$v_{12}^{0} = -\delta^{*-3}[v_{0}^{0}v_{0}^{1}(v_{1}^{1}v_{11}^{0} - v_{1}^{1}v_{10}^{0})],$$

$$v_{$$

Let us now construct the absolute differential invariants with respect to (28)–(30) of order < 2. Making use of involutivity of this transformation we get

$$f^{1}(x_{\mu}, u^{\mu}), \quad \mu = 0, 1, \quad f^{2}(u^{\mu}_{\mu}, \delta u^{\nu}_{\nu}), \quad \mu \neq \nu, \quad \mu, \nu = 0, 1,$$

there is no summation over repeated indices here,

$$\begin{split} f^3(u_{\nu}^{\mu}, -\delta^{-1}u_{\nu}^{\mu}), \quad \mu \neq \nu, \quad \mu, \nu = 0, 1; \\ f^4(u_{11}^1, -\delta^{-3}[(u_0^0)^2(u_0^1v_{11}^0 - u_0^0u_{11}^1) + (u_1^0)^2(u_0^1u_{00}^0 - u_0^0u_{00}^1) - \\ &\quad - 2u_1^0u_0^0(u_0^1u_{10}^0 - u_0^0u_{10}^1)]), \\ f^5(u_{00}^1, -\delta^{-3} \cdot [(u_0^1)^2(u_0^1u_{11}^0 - u_0^0u_{11}^1) + (u_1^1)^2(u_0^1u_{00}^0 - u_0^0u_{00}^1) - \\ &\quad - 2u_0^1u_1^1(u_0^1v_{10}^0 - u_0^0u_{10}^1)]), \\ f^6(u_{10}^1, -\delta^{-3} \cdot [u_0^0u_0^1(u_0^1u_{10}^0 - u_0^0u_{11}^1) + u_1^0u_1^1(u_0^1u_{00}^0 - u_0^0u_{00}^1 - \\ &\quad - (u_0^1u_{10}^0 - u_0^0u_{10}^1)(u_1^1u_0^0 + u_0^1u_{11}^1)], \\ f^7(u_{11}^0, -\delta^{-3} \cdot [(u_0^0)^2(u_1^0u_{11}^1 - u_1^1u_{11}^0) + (u_1^0)^2(u_1^0u_{10}^1 - u_1^1u_{00}^0) - \\ &\quad - 2u_1^0u_0^0(u_1^0u_{10}^1 - u_1^1u_{10}^0)]), \\ f^8(u_{00}^0, -\delta^{-3}[(u_0^1)^2(u_1^0u_{11}^1 - u_1^1u_{11}^0) + (u_1^1)^2(u_1^0u_{10}^1 - u_1^1u_{00}^0) - \\ &\quad - 2u_1^1u_0^1(u_1^0u_{10}^1 - u_1^1u_{10}^0)]), \\ f^9(u_{10}^0, -\delta^{-3}[u_0^0u_0^1(u_1^0u_{11}^1 - u_1^1u_{11}^0) + u_1^0u_1^1(u_1^0u_{10}^1 - u_1^1u_{00}^0) - \\ &\quad - (u_1^0u_{10}^1 - u_1^1u_{10}^0)(u_1^1u_0^0 + u_0^1u_0^1)]). \end{split}$$

All functions f^k , $k = \overline{1,9}$ are arbitrary smooth and symmetric.

So, we now are able to construct the hodograph-invariant system of second order PDEs

$$F^{\sigma}(\{f^k\}) = 0, \quad k = \overline{1,9}, \quad \sigma = 1, 2, \dots, N.$$
 (32)

We construct a new solution $\overset{(2)}{u}=(\overset{(2)}{u}{}^0,\overset{(2)}{u}{}^1)$ of system (32) via known solution $\overset{(1)}{u}=(\overset{(1)}{u}{}^0,\overset{(1)}{u}{}^1)$ according to the formula

$$u(x) = \tau, \quad x = u(\tau).$$
 (33)

Here $x=(x_0,x_1),\,\tau=(\tau^0,\tau^1),\,\tau^\mu$ are parameters to be eliminated out of system (33).

Example 3. Let us consider the simplest hodograph-invariant system of first order PDE

$$u_0^1 - u_1^0 = 0, \quad u_1^1 - u_0^0 = 0.$$
 (34)

It is easily to verify, that pair of functions

$$u^{(1)}_0 = 2x_0x_1 + c, \quad u^{(1)}_1 - x_0^2 + x_1^2$$

is the solution of system (34). Making use of formula (33) one obtain the new solution of this system

$$u^{(2)} = \pm \frac{1}{\sqrt{2}} \left[x_1 \pm \sqrt{x_1^2 + (x_0 - c)^2} \right]^{\frac{1}{2}},$$

$$u^{(2)} = \pm \frac{x_0 - c}{\sqrt{2}} \left[x_1 \pm \sqrt{x_1^2 + (x_0 - c)^2} \right]^{-\frac{1}{2}}.$$
(35)

Let us consider the linear system of first order PDEs

$$b_{\mu}^{\sigma\nu}(y)v_{\mu}^{\nu} + b^{\sigma\nu}(y)v^{\nu} + c^{\sigma}(y) = 0.$$
 (36)

Here $b_{\mu}^{\sigma\nu}$, $b^{\sigma\nu}$, c^{σ} are arbitrary smooth functions of $y=(y_0,y_1)$, summation over repeated indices is understood in the space with metric $g_{\mu\nu}^*=\mathrm{diag}\,(1,1)$. This system (36) under transformation (28) reduces into system of nonlinear PDEs

$$b^{\sigma 0}(u)\delta^{-1}u_1^1 - b_1^{\sigma 0}(u)\delta^{-1}u_1^0 - b_0^{\sigma 1}(u)\delta^{-1}u_0^1 + b_1^{\sigma 1}(u)\delta^{-1}u_0^0 + b^{\sigma 0}(u)x_0 + b^{\sigma 1}(u)x_1 + c^{\sigma}(u) = 0.$$

$$(37)$$

The solutions superposition formula for the system (37) has the form

Making use of designations $u=(u^0,u^1), x=(x_0,x_1), \tau=(\tau^0,\tau^1)$, one can rewrite the formula (38) in another way:

$$\overset{(3)}{u}(x) = \overset{(1)}{u}(\tau), \quad \overset{(1)}{u}(\tau) = \overset{(2)}{u}(x - \tau). \tag{38a}$$

Example 4. It is obviously, that two pairs of functions

give two partial solutions of the system

$$u_0 + uu_1 + 4\lambda^2 \rho \rho_1 = 0,$$

$$\rho_0 + u_1 \rho + u \rho_1 = 0.$$
(40)

Let us apply the formula (38) to construct a new solution $\overset{(3)}{u}$, $\overset{(3)}{\rho}$ via (39). Finally we get

$$\overset{(3)}{u^2}(x_0, x_1) - c_2^2(x_0 - 2\overset{(3)}{u}(x_0, x_1))^{-2} - x_0\overset{(3)}{u}(x_0, x_1) + x_1 + \frac{1}{2}c_1 = 0,$$

$$\overset{(3)}{\rho}(x_0, x_1) = (2\lambda)^{-1} \left[x_0\overset{(3)}{u}(x_0, x_1) - \overset{(3)}{u^2}(x_0, x_1) - x_1 - \frac{1}{2}c_1 \right]^{\frac{1}{2}}.$$

- Forsyth A.R., Theory of differential equations, New York, Dover Publication, 1959, Vol. 5, 478 p.; Vol. 6, 596 p.
- 2. Ames W.F., Nonlinear partial differential equations in engineering, New York, Academic Press, 1965, Vol. 1, 511 p.; 1972, Vol. 2, 301 p.
- 3. Курант Р., Уравнения в частных производных, М., Мир, 1964, 830 с.
- 4. Фущич В.И., Серов Н.И., Негрупповая симметрия некоторых нелинейных волновых уравнений, Докл. АН УССР, 1991, № 9, 45–49.
- 5. Fushchych W.I., Serov N.I., Tychynin V.A., Amerov T.K., On nonlocal symmetries of nonlinear heat equation, Докл. АН Украины, Сер. А, 1992, № 11, 27–33.
- 6. Фущич В.И., Тычинин В.А., О линеаризации некоторых нелинейных уравнений с помощью нелокальных преобразований, Препринт № 82.33, Киев, Ин-т математики АН УССР, 1982, 53 с.
- 7. Фущич В.И., Тычинин В.А., Жданов Р.З., Нелокальная линеаризация и точные решения некоторых уравнений Монжа-Ампера, Дирака, Препринт № 85.88, Киев, Ин-т математики АН УССР, 1985, 28 с.
- Тычинин В.А., Нелокальная линеаризация и точные решения уравнения Борна-Инфельда и некоторых его обобщений, в сб. Теоретико-групповые исследования уравнений математической физики, Киев, Ин-т математики АН УССР, 1986, 54–60.