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A new conformal-invariant non-linear spinor
equation

W. FUSHCHYCH, W. SHTELEN, P. BASARAB-HORWATH

We propose a new model for a spinor particle, based on a non-linear Dirac equation.
We invoke group invariance and use symmetry reduction in order to obtain a multi-
parameter family of exact solutions of the proposed equation.

1. Introduction
Since the discovery of the electron, many people have proposed and discussed the

hypothesis that the mass of the electron is generated by an electromagnetic field,
which the electron produces itself, so that the electron can be thought of as localized
electromagnetic energy. In other words, this means that the electron is described by
a non-linear dynamical system (see, for instance [1, 2] for these ideas). We propose
a realization of this old and interesting physical idea in the framework of the classical
theory of spinor fields. For the electron, we propose the following Lorentz-invariant
spinor equation

(iγ∂ −m(u, v, Ψ̄Ψ, jµjµ))Ψ = 0, (1.1)

where

γ∂ = γµ∂µ, µ = 0, 1, 2, 3

and the γµ are the Dirac matrices

γ0 =
(

1 0
0 −1

)
, γa =

(
0 σa

−σa 0

)
, a = 1, 2, 3,

where the σa are the 2 × 2 Pauli matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
,

u = −1
2
FµνF

µν , v = −1
4
FµνF̃

µν ,

where Fµν is an antisymmetric tensor and

∂µF
µν = jν , ∂µF̃

µν = 0

with

F̃µν =
1
2
εµναβF

αβ

and εµναβ is the antisymmetric Kronecker symbol.
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The electromagnetic field which the electron itself produces satisfies Maxwell’s
equations:

∂νF
µν = jν, with jν=eΨ̄γνΨ, (1.2)

where e is the charge of the electron.
We can interpret (1.1) as follows: the mass, m, of an electron is generated by the

electromagnetic field Fµν , and its own spinor field Ψ. In the usual Dirac equation,
m is a parameter which does not depend on the electromagnetic and spinor fields.
Equation (1.1), in contrast to the standard Dirac equation, is a complicated non-linear
equation, and as a result one has the following problem: how does one find at least
some non-trivial solutions of such an equation?

For the case of m depending only on the spinor field, some classes of exact
solutions of (1.1) have been found [5, 6, 10, 11]. In order to construct solutions of
(1.1), (1.2), we first examine the symmetries of this system, and then we give some
families of exact solutions. The system (1.1), (1.2) is non-linear even for m = const,
and can be thought of as a first modification of the Dirac equation in our approach.

2. Symmetries
In the spinor equation (1.1), (1.2), we shall consider the fields Fµν , Ψ̄, Ψ as

independent, and we shall look for symmetry operators of that system in the form

X = ξµ
∂

∂xµ
+ η(1)

µ

∂

∂Ψµ
+ η(2)

µ

∂

Ψ̄µ
+ η(3)

µν

∂

∂Fµν
,

where the coefficients are functions of x, Ψ, Ψ̄, Fµν . In finding these symmetry
operators, we use the method of Lie [4, 8, 9]. Indeed, after a painstaking calculation,
we obtain the following:

Theorem 1. The maximal point symmetry algebra of the system of (1.1), (1.2), with
m = const, has as basis the following vector fields:

∂µ = ∂/∂xµ, Jµν = xµ∂ν −xν∂µ +(σµνΨ)ρ ∂

∂Ψρ
+Fµρ ∂

∂F νρ
−F νρ ∂

∂Fµρ
,(2.1)

D = Ψµ ∂

∂Ψµ
+ Fµν ∂

∂Fµν
, (2.2)

P = Pµν ∂

∂Fµν
, (2.3)

where ∂µP
µν = 0, ∂µP̃

µν = 0 and

σµν = − i

4
[γµ, γν ].

Remark 1. The operator D generates scale transformations in the space of the fi-
eld variables Ψm, Fµν , not in Minkowski space R(1, 3). The operators 〈∂µ, Jµν ,D〉,
generate the extended Poincaré algebra [4].

If we assume dependence of the mass on the Lorentz-invariant quantities u, v,
defined in (1.1), (1.2), we retain invariance under the Poincaré group, but not always
under the extended Poincaré group. In fact, we have the following result:
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Theorem 2. The system (1.1), (1.2), where m is a function of the invariants u, v
defined in (2.1), (2.2), is invariant under the algebra generated by (1.3), (1.4) if and
only if

m =

{
m

( v
u

)
, u �= 0,

m = const, u = 0

Remark 2. Theorem 2 implies that there exists a wide class of non-linear systems
of the form (1.1), (1.2), which are invariant with respect to the extended Poincaré
algebra. This is so when we assume that the mass depends only on the electromagnetic
field.

3. Conformally invariant equations
In this paragraph, we shall describe equations of the form (1.1), (1.2), which are

invariant under the conformal group, under the assumption that the mass has the
following dependence on the fields:

m = λ1F1(u, v) + λ2(Ψ̄Ψ)k. (3.1)

The conformal group, C(1, 3) is well-known (see for instance [4], [5]). It consists
of the Poincaré group together with the following non-linear transformations:

x′µ =
xµ − cµx

2

σ
, (3.2)

Ψ′(x′) = σ(1 − (γc)(γx))Ψ(x), (3.3)

F ′
µν(x′) = σ2Fµν + 2σ{xβ [(2(cx) − 1)(cµFβν − cνFβµ) −

− c2(xµFβν − xνFβµ)] + cα[xαFαν − xνFαµ −
− x2(cµFαν − cνFαµ)] + 2(cµxν − cνxµ)Fαβc

αxβ},
(3.4)

x′µ = eθxµ, (3.5)

Ψ′(x′) = e−
3
2 θΨ(x), (3.6)

F ′
µν(x′) = e−2θFµν , (3.7)

where the primes denote transformed quantities, θ and cµ are arbitrary real constants,
cx = cµx

µ, c2 = cµc
µ, x2 = xµx

µ.
Applying Lie’s method for calculating symmetry operators, one can prove the

following result:

Theorem 3. The system of equations (1.1), (1.2), with mass given by (3.1), is invari-
ant under the conformal group if and only if k = 1

3 and

F1(u, v) =


u

1
4F

( v
u

)
, u �= 0,

v
1
4 , u = 0,

(3.8)

where F is an arbitrary, smooth function.
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One can easily verify that (1.1), (1.2), with mass defined by (3.1), is indeed invari-
ant under the scale transformations (2.4)–(2.6). Substituting these into the equations
yields

[iγ∂ − λ1F1(e−4θu, e−4θv) − λ2e
θ(1−3k)(Ψ̄Ψ)k]Ψ = 0,

∂νF
µν = eΨ̄γµΨ, ∂νF̃

µν = 0.

The condition of invariance then gives

eθF1(e−4θu, e−4θv) = F1(u, v), θ(1 − 3k) = 0

which immediately implies k = 1
3 , and, differentiating with respect to θ, that F1

satisfies the equation

4u
∂F1

∂u
+ 4v

∂F1

∂v
= F1.

The general solution of this equation is easily shown to be that given by (3.8).
Conformal invariance follows by using the transformations

Ψ̄Ψ �→ σ3Ψ̄Ψ, u �→ σ4u, v �→ σ4v.

Remark 3. Requiring conformal invariance narrows quite considerably the class
of admissible systems (1.1), (1.2). Fixing the function F

(
u
v

)
, we obtain different

conformally-invariant equations for a spinor particle.

4. Exact solutions
We shall construct a class of exact solutions for the simplest conformally-invariant

system (1.1), (1.2), namely for the case F = 1, so that our system becomes(
iγ∂ − λ1u

1
4 − λ2(Ψ̄Ψ)

1
3
)
Ψ = 0,

∂νF
µν = eΨ̄γµΨ, ∂νF̃

µν = 0.
(4.1)

We shall look for solutions of this system by the method of reduction [4], that is we
reduce the system of partial differential equations to systems of ordinary differential
equations. For these, we use the following ansatzes [4, 5, 6, 7, 10, 11]:

Ψ(x) = ϕ(ω), Fµν(x) = fµν(ω), (4.2)

where ϕ(ω) is a four-component vector, fµν(ω) an antisymmetric tensor, ω = βx,
with β a constant vector satisfying β2 = 1. Substituting (4.2) into (4.1), we obtain
the reduced system of ordinary differential equations

i(γβ)ϕ̇− (
λ1z

1
4 + λ2(ϕ̄ϕ)

1
3
)

= 0,

βν ḟ
µν = eϕ̄γµϕ, βνf

µν = 0
(4.3)

with z = − 1
2fµνf

µν and the dot denotes differentiation with respect to the argu-
ment ω. Since fµν is anisymmetric, it follows that βµβν ḟ

µν = 0, so that the second
equation in (4.3) yields ϕ̄(γβ)ϕ = 0. Using the relation

γµγν + γνγµ = 2gµν
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and the fact that β is chosen so that β2 = 1, it is easy to show that (γβ)(γβ) = 1.
Multiplying the first equation of (4.3) on the left by ϕ̄(γβ) we then obtain

ϕ̄ϕ̇ = 0.

We therefore find that ϕ satisfies

ϕ̄ϕ = const, ϕ̄(γβ)ϕ = 0. (4.4)

These equations imply that we should look for solutions ϕ in the form

ϕ = exp(i(γβ)g(ω))χ, (4.5)

where g(ω) is a function we must find and χ is a constant vector which satisfies
χ̄(γβ)χ = 0. Since (γβ)2 = 1, it follows that

ϕ = [cos(g(ω)) − i(γβ) sin(g(ω))]χ, (4.6)

ϕ̄γµϕ = αµ cos(2g(ω)) + cµ sin(2g(ω)), (4.7)

αµ = χ̄γµχ, cµ =
i

2
χ̄[(γβ), γµ]χ. (4.8)

Clearly, αβ = 0. Equation (4.3) together with (4.6), (4.7), (4.8), can be written as

ġ = λ1z
1
4 + λ2(χ̄χ)

1
3 ,

βν ḟ
µν = e(αµ cos(2g) + cµ sin(2g)),

βν
˙̃
f

µν

= 0.

(4.9)

We now seek solutions of (4.9) of the form

g(ω) = κω,

fµν = ε[(αµβν − ανβµ) sin(2κω) − (cµβν − cνβµ) cos(2κω)],
(4.10)

where κ, ε are constants. Without loss of generality, we assume α2 = c2 = −1, since
we have β2 = 1, αβ = βc = αc = 0. With these conventions, (4.9) and (4.10) give

κ = λ1

√
ε+ λ2(χ̄χ)

1
3 , e = 2εκ. (4.11)

Let us now consider solutions of (4.11). The first case is when λ1 �= 0, λ2 = 0. Then

ε =
(

e

2λ1

) 2
3

, κ =
(
eλ2

1

2

) 1
3

. (4.12)

The second case is λ1 = 0, λ2 �= 0, which gives

κ = λ2(χ̄χ)
1
3 , ε =

e

2λ2(χ̄χ)
1
3
. (4.13)

Finally, when λ1 �= 0, λ2 �= 0 equation (4.12) becomes the cubic equation

y3 + py + q = 0, ε =
e

2κ
, (4.14)
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where

y =
√
κ = 3

√
−q

2
+

√
Q+ 3

√
−q

2
−

√
Q, Q =

eλ2
1

8
− λ2

2(χ̄χ)
27

.

In this way we obtain exact solutions of the system (4.1), (4.2) in the following form

ψ(x) = exp(−iκ(γβ)ω)χ, ω = βx, (4.15)

Fµν =
e

2κ
[(αµβν − ανβµ) sin(2κω) − (cµβν − cνβµ) cos(2κω)], (4.16)

αµ = χ̄γµχ, cµ =
i

2
χ̄[(γβ), γµ]χ,

β2 = 1, α2 = c2 = −1, αβ = αc = βc = 0.

For conformally invariant solutions of (4.1) we exploit the ansatzes [6, 7]

ψ(x) =
γx

(x2)2
ϕ(ω), ω =

βx

x2
, β2 = 1,

Fµν =
fµν(ω)
x2

− 2xρ[xµfρν(ω) − xνfρν(ω)]
(x2)3

.

(4.17)

Combining (4.1) and (4.17) yields the system of ordinary differential equations

−i(γβ)ϕ̇ = λ1z
1
4 + λ2(ϕ̄ϕ)

1
3 ,

βν ḟ
µν = −eϕ̄γµϕ,

βν
˙̃
f

µν

= 0

(4.18)

with z = − 1
2fµνf

µν , which is formally similar to (4.3). Using this fact, we can write
down the following solutions of (4.1), (4.17):

Ψ(x) =
γx

(x2)2
exp(iκ(γβ)ω)χ, ω =

βx

x2
, (4.19)

Fµν =
e

2κ(x2)2
{[
βµαν − βµαν) + 2(αµxν − ανxµ)ω +

+ 2
αx

x2
(xµβν − xνβµ)

]
sin(2κω) +

[
(cµβν − cνβµ) +

+ 2ω(xµcν − xνcµ) − 2
cx

x2
(xµβν − xνβµ)

]
cos(2κω)

}
,

(4.20)

where

αµ = χ̄γµχ, cµ =
i

2
χ̄[(γβ), γµ]χ,

β2 = 1, α2 = c2 = −1, αβ = αc = βc = 0.

The solutions found show that the system (1.1), (1.2) is consistent, at least in
certain cases of the mass function. Furthermore, we can calculate the mass corres-
ponding to these solutions:

m = λ1u
1
4 + λ2(ψ̄ψ)

1
3 =

κ

x2
.
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5. Conclusion
We have shown that there exists a consistent non-linear dynamical model for

a classical spinor particle, in which the mass is generated by an electromagnetic
field and a spinor field, which the particle itself creates. The proposed model (3.1)
is conformally-invariant, as is the class of solutions we obtain, For these solutions,
we have also found an explicit form for the Lorentz-invariant mass. The question of
quantizing the model (3.1) will be taken up in future papers.
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