
W.I. Fushchych, Scientific Works 2002, Vol. 4, 457–463.

On non-local symmetries
of nonlinear heat equation
W.I. FUSHCHYCH, N.I. SEROV, V.A. TYCHININ, T.K. AMEROV

Для нелинейного уравнения теплопроводности приведены нелокальные формулы ра-
змножения и суперпозиции его решений.

1. Introduction. L.V. Ovsiannikov [1] gave the group classification of nonlinear
one-dimensional heat equation

u0 = ∂1(F (u)u1), (1)

where u = u(x), x = (x0, x1), uµ = ∂µu, ∂µ = ∂
∂xµ

, µ = 0, 1; F (u) is arbitrary
differentiable function. These results can be formulated as follows:

Theorem 1. The widest algebra of invariance of equation (1) with F (u) �= const in
class of S. Lie operators is given by the following basis elements

a) ∂0 =
∂

∂x0
, ∂1 =

∂

∂x1
, D1 = 2x0∂0 + x1∂1, (2)

if F (u) is arbitrary differentiable function;

b) ∂0, ∂1, D1, D2 = x1∂1 +
2
k

u∂u, (3)

if F (u) = λuk, λ, k are arbitrary constants, not equal to zero;

c) ∂0, ∂1, D1, D3 = x1∂1 + 2∂u, (4)

if F (u) = λ exp u;

d) ∂0, ∂1, D1, D4 = x1∂1 − 3
2
u∂u, Π = x2

1∂1 − 3x1u∂u, (5)

if F (u) = λu− 4
3 .

It is well known (see for example [3]) that the sequence of transformations

u(x0, x1) =
∂v(x0, x1)

∂x1
, (6)

x0 = t, x1 = w(t, x), v = x, (7)

∂w(t, x)
∂x

= z(t, x) (8)

do not take out of the equations class (1), i.e. if the sequence of transformations (6),
(7), (8) is carried out then equation (1) goes to the form

zt = ∂x(F ∗(z)zx), (9)
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where

F ∗(z) = z−2F (z−1). (10)

In this paper transformations (6)–(8) are used to construct nonlocal ansätzes,
which reduce equation (1) to ordinary differential equations (ODE). The generating
and superposition formulas for solutions of equation (1) are given for corresponding
nonlinearities F (u).

2. The equation u0 = ∂1(u−2u1). In the case when F (u) = u−2 the equation
(1) takes the form

u0 = ∂1(u−2u1). (11)

It follows from (10) that equation (11) can be reduced to the linear heat equation by
means of transformations (6)–(8):

zt = zxx. (12)

As it was established by S. Lie, the widest algebra of invariance of equation (12)
consists of the operators:

∂t =
∂

∂t
, ∂x =

∂

∂x
, G = t∂x − 1

2
xz∂z, I = z∂z,

D = 2t∂t + x∂x, P = t

(
t∂t + x∂x − 1

2
z∂z

)
− x2

4
z∂z.

(13)

The symmetry of equation (11) is given by only four operators (3), whereas the
symmetry of equation (12) is given by six operators (13). It means that nonlinear
equation (11) has some non-Lie symmetry which cannot be obtained by Lie’s method.
Let us use this fact to construct nonlocal ansätzes for nonlinear equation (11), i.e.
having used operators G, P (13) we will construct non-local ansätzes for equation
(11) by means of transformations (6)–(8). Below we will show only those ansätzes,
which cannot be obtained from Lie symmetry of equation (11)

u(x0, x1) =
1

x0x1 + x1h(ω)
, ω = τ + x2

0,

exp
(

x0τ +
2
3
x3

0

)
ϕ(ω) = x1;

(14)

u(x0, x1) =
2(x2

0 + 1)
x1

[
2(x2

0 + 1)1/2h(ω) − x0τ
] , ω = τ(x2

0 + 1)−
1
2 ,

exp
{

λ arctg x0 − x0τ
2

4(x2
0 + 1)

}
ϕ(ω) = x1(x2

0 + 1)1/4.

(15)

In formulas (14), (15) τ = τ(x0, x1) is functional parameter, functions ϕ(ω) and h(ω)
are connected by the relation

h(ω) =
ϕ̇(ω)
ϕ(ω)

.
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Ansätzes (14), (15) reduce equation (11) to Riccati equations for unknown function h:

ḣ + h2 = ω, (16)

ḣ + h2 = −ω2

4
+ λ, (17)

respectively. Equations (16), (17) being written down for function ϕ(ω), have the form

ϕ̈ − ωϕ = 0, ϕ̈ +
(

ω2

4
− λ

)
ϕ = 0.

The solutions of these equations can be expressed only in terms of special functions.
As it follows from transformations (6)–(7) the relation between the solutions of equa-
tions (11) and (12) is given by following formula

u(x0, x1) =
[
∂z(x0, τ)

∂τ

]−1

, (18)

where τ = τ(x0, x1) is functional parameter, which can be obtained from the relation

z(x0, τ) = x1. (19)

3. Non-Lie generating of equation solutions. Let us illustrate the process of
finding new solutions by means of formulas (18), (19). The function

z(t, x) = t +
x2

2
,

is a solution of heat equation (12). For this solution, in accordance with (19), we have
τ =

√
2(x1 − x0). Having substituted this value of parameter τ into (18), we obtain

the solution of equation (11):

u(x0, x1) = [2(x1 − x0)]−
1
2 .

Linear equation (12) has a remarkable property: any operator of invariance algebra
of this equation maps it’s solution into another solution, i.e. the following generating
formula takes place

2
z(t, x) = Q

1
z(t, x), (20)

where
1
z,

2
z are solutions of equation (12), Q is an operator that belongs to algebra (13).

Let us use formula (20) and the relation between the solutions of equations (11)
and (12) to construct generating solutions formula for equation (11). If we, for examp-
le, choose operator ∂x instead of Q in (20), then we get one of the formulas which
describe the generating solutions of nonlinear equation (11)

2
u(x0, x1) = −[

1
u(x0, τ)]3

[
∂

1
u(x0, τ)

∂τ

]−1

, (21)

where
1
u(x0, x1) and

2
u(x0, x1) are solutions of equations (11) while function τ =

τ(x0, x1) is determined by the equation

1
u(x0, τ) = x−1

1 . (22)
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So equation (11) solutions of the form

1
u(x0, x1) = x

1
2
0 x−1

1

(
− ln x

1
2
0 x1

)− 1
2

are multiplied into parametrical solutions:

2
u(x0, x1) = x

3
2
0 τ

(
ln τ − 1

2

)−1

, ln τ = x2
0x

2
1τ

2

by means of formulas (21), (22).
In the case Q = ∂t, it follows from (18)–(20) that

2
u(x0, x1) =

[
1
u(x0, τ)]5

2[
1

uτ (x0, τ)]2 − [
1
u(x0, τ)]2

1
u0(x0, τ)

, (23)

where τ = τ(x0, x1) is defined by the condition

1
uτ (x0, τ) + x1[

1
u(x0, τ)]3 = 0. (24)

Note. If we choose anyone of operators (13) in the capacity of Q in formula (20)
then the generating solutions formula for equation (11) is constructed analogously.
The synthesis of Galilei local transformations:

t′ = t, x′ = x + 2at, z′ = z exp{−ax − a2t} (25)

and non-local relation (18), (19) leads to the new generating solutions formula of
equation (11)

2
u(x0, x1) =

1
u(x0, τ)

−ax1
1
u(x0, τ) + x1τ−1

, (26)

where a is arbitrary real parameter and τ = τ(x0, x1) is functional parameter which
is a solution of the following equations

τ1 =
1

−ax1
1
u(x0, τ) + x1τ−1

, [
1
u(x0, τ)]2τ0 = τ−2

1 τ11 + 2a
1
u2(x0, τ). (27)

It should be noted that x0 is a parameter of first equation (27) and that is why this
equation can be considered as first-order ODE with separable variables. Because of
this the second of the equation (27) is only the correlating condition of obtained τ
with respect for x0. The following example show the effectivity of formulas (26)–
(27). The constant solution u1(x0, x1) = 1 being generated by these formulas takes
the form of following implicit solution:

ln
1

(x1u)−1 − a
+

a

(x1u)−1 − a
= ln x1 + a2x0.

4. Nonlinear superposition principle. Solutions of equation (12) have linear
superposition principle. Using formulas (18), (19) we get nonlinear superposition

principle for the solutions of equation (11). Let
1
u(x0, x1),

2
u(x0, x1) are the pair of
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solutions of equation (11) then third solution of this equation can be obtained by the
formula

1
3
u(x0, x1)

=
1

1
u(x0,

1
τ)

+
1

2
u(x0,

2
τ)

, (28)

where
k
τ =

k
τ(x0, x1) are functional parameters which can be obtained from the condi-

tions

1
u(x0,

1
τ)d

1
τ =

2
u(x0,

2
τ)

2

d τ,

1
τ +

2
τ = x1,

k
τ0 =

k
τ11
k
τ21

k
u−2(x0,

k
τ), k = 1, 2.

(29)

The substitution u(x0, x1) = 1
U(x0,x1)

leads equation (11) and formulas (28), (29)
to the following form

U0 = U2U11, (30)

3

U(x0, x1) =
1

U(x0,
1
τ) +

2

U(x0,
2
τ), (31)

d
1
τ

1

U(x0,
1
τ)

=
d

2
τ

2

U(x0,
2
τ)

,

1
τ +

2
τ = x1,

k
τ0 =

k
τ11
k
τ2

1

k

U
2(x0,

k
τ), k = 1, 2.

(32)

Example. Having two simplest stationary solutions

1

U(x0, x1) = x1,
2

U(x0, x1) = 2x1

of equation (30) and using formulas (31)–(32) we can obtain nonstationary solution
of that equation

3

U(x0, x1) = ±e−2x0

(
1 − 2x1e

2x0 ±
√

1 − 2x1e2x0

)
.

5. Non-Lie ansätzes for equation u0 = ∂1(u− 2
3 u1). It follows from (10), that

transformations (6)–(8) map equation

u0 = ∂1(u− 2
3 u1) (33)

into the equation

zt = ∂x(z−
4
3 zx). (34)

Symmetry of equation (34) in class of Lie transformations is wider then that of
equation (33) (see Theorem 1). By analogy with section 1 let us use Lie symmetry of
equation (34) for a construction of non-local ansätzes which reduce equation (33).
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Let us concisely adduce the results of our analysis. Ansätzes for function z:

1) z = x−3ϕ(ω), ω = t,

2) z = x−3ϕ(ω), ω = at +
1
x

,

3) z = t
3
4 x−3ϕ(ω), ω = a ln t +

1
x

,

4) z = (x2 + 1)−
3
2 ϕ(ω), ω = t + λ arctg x,

5) z = (x2 − 1)−
3
2 ϕ(ω), ω = t + λ arctg x,

6) z = t
3
4 (x2 + 1)−

3
2 ϕ(ω), ω = ln t + λ arctg x,

7) z = t
3
4 (x2 − 1)−

3
2 ϕ(ω), ω = ln t + λ arctg x.

(35)

Ansätzes for function u:

1) u = [ϕ1(x0)x2
1 + ϕ2(x0)]−

2
3 ;

2) [x1 + ϕ1(x0)][ϕ̇2(x0)]
3
4 = −τϕ̇3(ω) + ϕ3(ω),

ω = ϕ2(x0) + τ, −τ1

τ
= u;

3) [x1 + ϕ1(x0)][ϕ̇1(x0)]
3
4 =

∫
[ϕ̇3(τ)]

3
2 ϕ4(ω)dτ,

ω = ϕ2(x0) + ϕ3(τ), τ1 = u.

(36)

Reduced equations which where obtained by the substitution of ansätzes (36) into the
equation (33):

1) ϕ̇1 + 4(ϕ1)2 = 0,

ϕ̇2 − 2ϕ1ϕ2 = 0;
(37)

2) ϕ̇1 = λ1(ϕ̇2)
1
4 , ϕ̈2 = λ2(ϕ̇2)2,

3(ϕ̈3)−
1
3 + λ3ϕ̇

3 +
3
4
λ2ϕ

3 − λ1 = 0;
(38)

3) ϕ̇1 = 0, ϕ̈2 = λ2(ϕ̇2)2,

2
...
ϕ 3ϕ̇3 − 3(ϕ̈3)2 = 2λ1(ϕ̇3)4,

(ϕ4)−
4
3 ϕ̈4 − 4

3
(ϕ4)−

7
3 (ϕ̇4)2 + 3λ1(ϕ4)−

1
3 +

3
4
λ2ϕ

4 − ϕ̇4 = 0,

(39)

where λ1, λ2, λ3 are arbitrary constants. In particular, having integrated the system
of equations (38) with λ2 = 0, we obtain the parametrical solutions of equation (33)
of the form:

u
1
3 =

−c1

(
5
4c3

1x1 + c2x0

)
τ(τ − 4c3x0)

,

(τ + c3x0)(τ − 4c3x0)4 =
(

5
4
c3
1x1 + c2x0

)4

,

(40)

where c1, c2, c3 are arbitrary constants of integration.
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6. The invariance of equation (1) under the transformations (6)–(8). For
the invariance of equation (1) under non-local transformations (6)–(8) the following
condition must be satisfied

z−2F (z−1) = F (z). (41)

The solution of equation (41) can be written down in the form

F (z) = z−1f(ln z), (42)

where f is arbitrary differentiable even function. So transformations (6)–(8) are non-
local invariance transformations of equation

u0 = ∂1

[
f(ln u)

u
u1

]
, (f(−α) = f(α)). (43)

Using this fact, we construct generating formula for solutions of equation (43):

2
u(x0, x1) =

1
1
u(x0, τ)

, (44)

where τ = τ(x0, x1) is the functional parameter which is a solution of the equations

τ1 =
1

1
u(x0, τ)

, τ0 = f(ln τ1)
τ11

τ1
. (45)

Example. Let us consider the solution

1
u(x0, x1) =

x0

1 + cos x1
(46)

of the equation

u0 = ∂1

(u1

u

)
. (47)

By means of formulas (44), (45) we construct new solution

2
u(x0, x1) =

2x0

x2
0 + x2

1

(48)

of the equation (47). It should be noted that the solutions (46) and (48) have essen-
tially different properties (boundaryness, periodicity, the behavior at zero and at the
infinity and so on). If we will apply Lie transformations to manifold of the solutions of
equation (47), then the majority of those properties of the solutions will be conserved.
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