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Conditional invariance and exact solutions

of gas dynamics equations
W.I. FUSHCHYCH, N.I. SEROV, T.K. AMEROV

I/I3yqua YCJIOBHass WHBAPUAHTHOCTH CHUCTEMBI ypaBHeHHﬁ ra3oBou JWUHaMHUKH, a TaKxKe
MOJIY4YEHbl HEKOTOpPbIEe €€ TOYHbIe pELIeHUS.

Let us consider the system of gas dynamics equations

a—xo (u V)’LL = ——Vp,
g—x’; + div (pil) = 0, (1)
p=F(p),
where @ = ii(z) = {u'(z),u?(x),...,u"(x)} is speed of gas diffusion, p = p(z) is
density of a gas, p = p(z) is pressure of a gas, * = (z0, %) = (zo,21,...,7,) € RIT™

L.V. Ovsyannikov in [1] investigated Lie symmetry of gas dynamics equations. We
have to take notice of Lie symmetry of one-dimensional case. In this case, system (1)
takes the form

S1 =wug +uur + f(p)pr =0, Sz =po+upr + pu; =0, (2)
— Ou B </ Al
where u,, = Bay P = Ba B = 0,1, F = pf.

In [2] it is proved that if
2N+ 1
TTOaN -1
then equations (2) are invariant under infinite-dimensional Lie algebra, which cannot

be obtained from the results of [1].

In this paper we study conditional invariance (see [2]) of the system of gas dynami-
cs equations.

f=X""2 N=0,1,2,..., \=const

Theorem. The system of equations (2), with corresponding f(p), is Q-conditionally
invariant under operators @Q;, i = 1,...,8, which are listed in Table.

Proof. We give the proof of the theorem by considering one of the operators from
Table, the other cases are analogous.

In accordance with definition (see [2]), system (2) is @-conditionally invariant
under the operator

Q = 0o + A(xo, x1,u, )01 + B(xo, x1,u, p)0y + C(x0,x1,u, p)0p;
if

Q[S1] = 0151 + 025 + 05(Qu) + 04(Qp),

Q[Sa] = 0551 + 0652 + 07(Qu) + 05(Qp),

Joxaanet AH Ykpaunsi, 1992, Ne 5, C. 35-40.
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where Q is the prolongation of Q; 0; are some functions, i = 1,8; Qu = up+ Au; — B;
Qp=po+Ap1 —C.
Let us consider operator
Q4 = 9o +udy + M\Ou + A2p®d,, \; = const, 1=1,2.

We will show that system (2) with f(p) = Ap~3, A = const is Q-conditionally invariant
under operator (4. For this particular case we have

S1 = ug +uug + )\pigpl, (3)
Sy = po +upy + puy, (4)
Qau = ug +uu; — A1, Qip = po+ up1 — A2p”.

Acting by the prolongation of Q4 on (3), (4) and then getting together terms in
a proper manner we obtain the following

Qa[S1] = —Ap4p152 + Ap1p~*(Qup) — ur(Qau),
Qa[S2] = (2X2p — u1) S — p1(Quu) + u1(Qup).

It follows from (5) that the system (2) with f = A\p~3 is @Q-conditionally invariant
under the operator Q4. The theorem is proved.

All obtained operators of conditional invariance of the system (2) are used for
constructing of ansédtze which reduce equations (2) to the systems of ordinary differen-
tial equations (ODE). The final results are listed in the Table. Having integrated the
reduced equations and substituting obtained values of ¢!, ¢?, into the corresponding
ansatz we get the following solutions of system (2) with a proper value of f(p):

(®)

AAd
p=exp3 As + Ashazo — Agz1 + 5 Lo

A A2
u = —1/ A1 exp {—)\5 — A3\ + Asxy — 22 35(7(2)} + A3z + Ag;

p= —)\1 [)\2 — )\3)\%(&) + )\4).’170]_1,

A S|
u:xal 22(1n(w+)\4)+)\5) —|——)\3x0+x1x51, W =u— A3%p;
)\3>\1 2

p = exp{)\g — )\1.’E1 + )\1)\21'0},
u= Xy — VXexp{—Az + Az1 — M Aao};
p=(=MA A w4 Ag — Aamg) L,

A A 1 x
_ -1 1 2 3 1 _ A
u =z, <2/\)\§w +—/\2w+)\4> +§)\1x0+—x0, w=1u— A1Zo;

—)\1\/ —)\5171 tg)\l\/ —)\.’to, A< O,
u =
AV A1z th )\1\/XJ)0, A< 0;
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/fdp = %X;’xg — Ay,

u = A\Zo;

p=(Azo+ ),
u=(Ax1+ A2)(A\1 + Azo) ™Y
%uQ + /fdp = A1 + Ao,

u = A\ + Axg,

where \;, i = 1,5 are arbitrary constants.
The results of the theorem can be generalized for n-dimensional case. After that

the counterparts of @, have the form
Q1 =000+ AV + Mp~t + X)@ + VM0,

A1p + Aop?
A1Zo

Q3 = o+ AV + Ap~t@dz + VA9,,
Q4 =000 + AV + @y + Xapd,,
Q5 = p0y — (PzﬂQ - A)ﬁaﬁ,

Qs = f(p)V +dd,,

Q7 = —8y + A\piidy + \p*0,,

Qs = 0o + @05 + @i f 1 (p)d,,
where @ is arbitrary constant unit vector. By analogy with one-dimensional case,
using operators ;, i+ = 1,8 we can construct ansidtze which reduce system (1) to

systems with lesser number of variables.
Let us show some examples. The ansdtze for system (1) that were constructed by

means of operators Q7, Qs, Qs, respectively, are of the form
a) p= (&) — Azo)™,
u = @a(f)((po(‘f) - )\.’170)_1, a = 17”7

Qs =080+ 0V + @0y — d,,

c
VA
Y=Y ap! 4+ bp? + th VAzo® + %), d=1,
ot + bp? + Ftg VA(—zoe® + %), 6= —1,
where & = (1,29, 23); 0 = ()% + ()2 — (¢°)~2; @, b, € are arbitrary orthonormal
vectors.

@t +bp® + —=(z0p’ + %)L, §=0,
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These ansdtze reduce (1) to the following systems
a) ¢° = const,
(FV+ g =0,

divg + A = 0;
b) d@+ Ve + (V)F =0,
divg =0,

e+t =0, ab=Ln, a#b
¢) for 6 =0;1;—1 respectively:

Pi=p§=p3=0, s=12,

v = —¢",

P79l =0, s,0=12,

i -3 =0, ¢i+p3=0.
Having defined the potential v = v(wi,ws), ¢* = 2%, s = 1,2, we can rewrite the
system c) in the following form

W =p3i=p5=0 s=1,2

vp® = —¢",
0,
_(‘Po)_2 + UsUs = 1,
—1,
Av =0,

VsVeVs0 = 0.
Having got a solution of the system
Av =0, wvsv,vs0 =0, (6)

we can write down the solution of system (6) and, using corresponding ansatz, to
construct a solution for system (1). For example we can consider the particular
solution of system (7)

v = ¢1~
It leads to the solution of system (6) v = wy, ©3 = wy + ®(2), ¥°* =1, ¢! =1,
2
p*=0.
Using the corresponding ansatz we obtain a solution of system (1) which depends
on arbitrary function ®

(o + w1+ <I>(w2))_1,

where w; = d@, wo = b7, d, b, ¢ are arbitrary orthonormal vectors.
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