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Symmetry reduction of the Navier—Stokes
equations to linear two-dimensional systems
of equations

W.I. FUSHCHYCH, R.O. POPOVYCH

[ToGynoBaHo noBHUH Habip HeekBiaJeHTHMX ABOBUMIPHMX Mifajre6p MakCHMajbHO! B
cenci JIi (HeckinueHoBUMipHOT) anre6pu inBapianTHOOTI piBHsAHL HaBbe—CroKCa A5 B's13-
Kol HeCTHCKHOI pianHu. OTpuMaHO aH3alH, LU0 penykylTb piBHsiHHS HaBbe—Crokca no
ainifinux cucrem JIPUIT Bin nBox HesanexxkHux 3MiHHMX. [IpoBeneHo nocnigKeHHSI cHMe-
TPilHUX BJIACTHBOCTEH pelyKOBaHHUX CHCTeM Ta MoOynoBaHi AesKi iX TOUHi po3B’sI3KH.

In this article, being continuation of our works [1, 2], we construct ansédtze for the
Navier-Stokes (NS) field which reduce the NS equations (NSEs) for an incompressi-
ble viscous fluid to linear systems of partial differential equations (PDEs) in two
independent variables. To solve this problem we use the method described in [3] and
the infinite-dimensional symmetry algebra of the NSEs.

[t is known that NSEs

88—1:+(u~V)quu+Vp:O, divu =0, (1)
where u = u(x) = {u!,u?,u3} is the velocity field of a fluid, p = p(z) is the pressure,
r = {t,z} € R, V = {0/0z,}, a = 1,2,3, A = V - V, are invariant under the
infinite dimensional algebra A°° with basis elements

2

Oy = %, D = 2t0; + 240, — u*0u” — 2p0p,
Jab = a0y — 250, + uOub — ubou?, (2)

R(m) = m®0, + m*ou® — x,m*0), Z(a) = a(t)0p,

where m = {m®(¢)} and «(t) are arbitrary differentiable function of ¢; dot means
differentiation with respect to ¢. The set of operators (2) determine the maximal in
the sense of Lie invariance algebra of the NSEs [4, 6, 7].

Constructing a complete set of inequivalent two-dimensional subalgebras of A,
we choose from it those subalgebras which lie in a linear span of operators J,;, R(m)
and Z(«). It is these subalgebras that allow us to construct ansitze which reduce the
nonlinear NSEs to linear systems of PDEs in two independent variables.

Theorem 1. A complete set of A -inequivalent two-dimensional subalgebras of A>
is exhausted by such algebras:

1. A'(m,n) = (R(m),R(n)), m-n—n-m = 0, and Veij,co € R eym +
can # 0, where algebras A1 (m',n') and A'(m? n?) are equivalent if 3 {aki}r1=12,
det{ar;} #0, B € O(3), J¢,0 € R:

(m27n2)(t) = (B(a11m1 + aunl), B(a21m1 + aggnl))(t€2€ —+0); (3)
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2. A% (o, B) = (J12 + Z(a(t)), R(0,0,5(t))), B # 0, where algebras A*(at, 3') and
A?(a?,3%) are equivalent if

Je£03e,6eR: (a2, 52)(t) = (e%al cBh)(te* +6); (4)

3. A(a, B) = (J12 + R(0,0,8(t) [ 55572 t))2 + Z(a(t)), R(0,0,8(t))), B # 0, where
algebras A3(at, BY) and A3(a?, %) are equivalent if

Je, 6 e R: (a2, B2)(t) = (e¥at,e ") (te* + 0); )

4. A* = (D + 25¢J19, R(u|t|” cos(seIn [t]), u|t|” sin(s<In [t]), v|t|7) + Z(|t|7—3/?)),
x>0, u>0,v>0 2 +1v2=1,e=0ifc#1/2ande>0if o =1/2;

5. A5 = (D, R(0,0, |t|7) + 2(e|t|=%/2)), e =0 if o #1/2 and € > 0 if 0 = 1/2;

6. AS = (Oy+J12, R(ue’ cost, pe’tsint, ve®t + Z(ee®)), u >0, v > 0, p>+v% =1,
e=0ifo#0ande>0ifoc=0;

7. AT = (9;, R(0,0,e%) + Z(ee?)), 0 € {—1;0;1}, e =0 if 0 # 0 and ¢ € {0;1}
if o =0;

8. A5 = (8, J1o + 005 +£0,), 0 € {0:1}, e >0/ 9 =1 and e € {0;1} if 6 = 0;

9 Ag <8f,D+*yJ12> ’y>0

10. A0 = (D, Jis + R(0,0,0[t|'/?) + Z(et™1)), >0, € > 0;

11. AY = <D+’)/J127 (t7)), v >0, x €R;

12. A2 = (8, Z(e°Y)), o € {—1;0;1};

13, A — (5, +J12, Z(e"), o € R;

14. A%, B) = (J12 + R(0,0,8(t)), Z(a(t))), a # 0, where algebras A%(at,pY)
and A14(a2,62) are equivalent if 3,6 € R, 3¢ # 0: (a2, 32)(t) = (cal, 6*561)(t625+

9);
15. A15( B) = (Jrz + Z(B(2 )) Z(a(t))), a # 0, where algebras A (!, 3') and
A15( .B82) are equivalent if 3¢ # 0, Je,0,c2 € R: (a2, 82)(t) = (ctat,e B +
)(te25 +0);

16. A (m,a) = (R(m(t)), Z(a(t))), m # 0, a # 0, where algebras A5(m!,al)
and A% (m? a?) are equivalent if ¢t #0, 3¢ #0, e, €R, AB € O(3):

(m?,a?)(t) = (¢! Bm!, 2at)(te* +9);

17. A7(a,8) = (R(0,0,8(t)), R (0,0,8(t) [ 5i5) + Z(a(®)), B #0, a #0,
where algebras A'7(al,BY) and A'7(a?,3?) are equivalent if 3¢ # 0, e, € R:
(02, 8)(t) = (£at e cp") (te* +o);

18. A¥(a, 8) = (Z(a(), Z(B(t))), cta+ 2B # 0 Vcl,c? € R, where algebras
A (a2, B%) and A18(a?, 3?) are equivalent if 3{aki}r =12, det{ar} #0, I, € R:
(Ozz,ﬁ2)(t) = (allal + algﬁl, aglal + aggﬁl)(te% + (5)

Theorem 1 is proved with method described in [4, 5].

Lying in a linear span of operators J,p, R(m) and Z(«) are algebras 1, 2 and 3.
Ansidtze constructed with these algebras have the form

m-x . n-x, k-x: b (t
L. u=uv(w,w)+ m+ n— k, p=q(wi,w2)+ ]()$i$j7
1) ) ) 2
where w; =t, wo =k -z, k=mxn, m=nxk, n=kxm,§=|k?
1 k- k-
bij = —— |mim +i'n’ + 2 i 4 nnkj ;

0 0 o ’



Symmetry reduction of the Navier—Stokes equations

441

T
2wl = (wrwn) = 307 wn) (),
2

u? = $2U1(W17W2) + %(U2(w1,w2) —s(t)),
2.
_ B(t)
u® = WUB(WMWZ) + ml‘:;,
.. )
p=qwi,w2) — %% + a(t) arctg i—?

where wy =, wo = /ad + 23, s(t) = [ a(t)dt;
T
3. ul =z0  (wi,we) — W—Z(UQ(%wz) —s(t)),
2
T
u? =zt (Wi, wa) + w—é(UQ(wbwz) — s(1)),
2

u3 = %7}3((4}17(4}2) + %273 + % arctg %’
. )
p=q(wr,w2) — gg;; + af(t) arctg %,

where wy = t, wo = \/zd + 23, s(t) = [ a(t)dt;

Here numeration of ansdtze correspond to that of algebras in theorem 1. Substitu-
ting ansédtze 1-3 into the NSEs, we obtain equations reduced

m-v n-v
1. v1—5v22—|—q2k:+—-m—|——h—|—e-w2:0,

0 0
k"UQZO,

2 .
wheree=e(t) = (m-n—n-m)k x k+

52 2

1 3 1
2. v} + ((vl)2 - — (v2 — 3)2 +valv§ — (v%Q + —v1> + —q =0,
wo wo

Wo

1
2 1,2 2 2
V] + Wl V5 — V3o + w21)2 =0,

1
3 1,3 _ .3 3
V] 4+ wa¥ U5 —v22—|—w—v2 =0,
2

20t + wovl + g =0,

1 3
3.vf + (1) — 5 (v¥ = 5)? +wav'v] — <v%2 + o
2

1
2 1,2 2 2
V] + Wl V5 — V39 + wQUQ =0,

2%k -k —k-k

1
2

k;

2

1
> +_CI2 :Ov
[0%)

(6)
()

8)

(9)

(10)

(11)

(12)

(13)
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1
V3 4 wovvd — v, — w—2v2 + — = 0, (14)

20! + wovd + g =0. (15)

Here subscripts 1 and 2 mean differentiation by variables w; and wy respectively. Let
us show that nonlinear system 1-3 can be transformed to linear PDEs.

Consider system 1 (equations (6)—(7)). After integration of equation (7) by wa:
k- v = h(t). Further we make the transformation from the symmetry group of the
NSEs

a(t,x) =u(t,z —U(t) +1(t), pt,x)=ptx—1t) -1t =

Wherei-m—l-fhzi-n—l-hZO,

This transformation does not change ansatz 1 and besides k - © = 0, that is h(t) = 0.
Therefore, without loss of generality we can assume that h(t) = 0.

Let f = f(w1,w2) =m v, g = g(w1,ws) = n-v. Since m-n —n-m = 0 then
m-n —n-m = C = const. Case C # 0 is reduced by means of change of the basis
of the algebra A'(m,n) to case C' = 1. Let us multiply the scalar equation (6) by m,
n and k. As result we obtain the linear system of PDEs with variable coefficient for
functions f, g and ¢:

f1—5f22+0( - mg>+5%0w2(ﬁ-k)zo,
91_5922+C(T - 5 g)—(52—2Cw2(ﬁ1~k):O,
2= (k) + (- R)g) + 52k — 2k ),

Consider two possible cases.
a) Let C' = 0. Then there are functions ¢* = ¢*(1,w), i = 1,2, where 7 = [ §(¢)dt
w = wy, that f =L, g =32 and p& — ¢!, =0, i=1,2. Therefore

u=(hre)+ T s (e + ) a - B,

p= 532 + (M- k)pt(1,w) + %(ﬁ k)2 (T, w) + % {%uﬂ— (16)
- . k-m, _ k-n _
~(m @) w) — (@) @)~ 2k ) - S a x)(k-.m},

wherem-n—n-m=0,k=mxn, m=nxk,n=kxm,d§=|kP 7= [§(t)dt
w=k- -z, ¢\ —pu,=0,1i=1,2.
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b) Let C = 1. Then we obtain the following solutions of the NSEs:

w— (yi(t)(pi(T,(U) +y (tw + m(;. - - %)

+ (0w + 2w+ T

p= g5 ) (5000 100 % ) + )

(@) z) — (R @) (- ) — - @) (k- ) — M(ﬁ-w)(k-w}

wherem - n—-—n-m=1,k=mxn m=nxk, n
w=k-x, ¢\ — . =0,i=1,2, (y'(t),2()), i =
solutions for equations

kxm,d=|k|? 7= [d(t)dt,
2 is a fundamental system of

m
y+ ;Y 5 7 0, 2+ ;Y 57 0 (18)
and (y°(t),2%(¢)) is a particular solutions of the system
.. o n-m m-m 2 . n-n m-n 2 _
y+ 5 Yy — 5 z—&-ﬁn-k—o, z+Ty—Tz—6—2m-k—O.

Remark 1. System (18) can be reduced to one ordinary differential equation of second
order. For this aim we introduce new designations:

h(t) :exp{/%dt}, (B = y-h, 3(t) = z/h,
Fl(t) = TR R = ’ghf

For functions ¢ and Z we obtain the system

m-m

y=F'-z, z=-F%

and hence

v\ _
(F) + F%j = 0. (19)
Functions F'* and F? (and vectors m and m respectively) we choose in such manner
that fundamental system of solutions of equation (19) should be known. Then solution
(17) can be written in closed form.

Remark 2. New solutions can be obtained from solutions (16) and (17) by force of (3)
only after transformations generated by operators of type R(m(t)) and Z(«(t)).
Consider system 2 (equations (8)-(11)). Equations (11) immediately gives
B hlw) -1

1—__ _—
v=—o5 7 g (20)
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where h is an arbitrary differentiable function of wy. Substituting (20) into the remai-
ning equations (8)—(10), we get

. . . 2 .

(1B 18 s b (=12 (v® —s(t)?
qz—(a(z)w(&))“‘w—ﬁ d T “
@—vé+<£1g%@>é=o, (22)
v — 3y + (hw—j — %L@) vs = 0. (23)

After change of independent variables

T:/www,w:¢wmm (24)

in equations (22) and (23) we obtain the decomposed system of linear equations

v — 2, + ?U& =0, (25)
g3, + M =20 g, (26)
w

Remark 3. An arbitrary solution of equation (26) can be written down in the form

v3 = 9, /w, where ¥ is a solution of (25).

From equation (21)

S ((8) 40 e

Formulas (20), (24)-(27) and anzats 2 give a solution of the NSEs.

Remark 4. New solutions can be obtained from this solution by force of (4) only
alter transformations generated by operators of type Jup, R(m(t)) and Z(a(t)).

Let us to investigate the symmetry properties of the equation

ft+@fr_ =0 (28)

r
and to construct some its exact solutions.

Theorem 2. The maximal, in the sense of Lie, invariance algebra of equation (28)
is the algebra

1. Ay = (f0r,g(t,r)0f) if h(t) # const;

2. Ay = (0, D11, fOr, g(t,7)0f) if h = const, h & {0;—2};

3. A3 = (01, D,IL fOy,0r + 4= fO5, G = 2t0, — (r — 1) fOy, g(t,7)0y)
if h e {0;—2).
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Here D = 2t0; + r0,, Il = 4120, + 4tr0, — (r? +2(1 — h)t) f0y, g(t,r) is an arbitrary
solution of (28).

Theorem 2 is proved by the standard Lie algorithm [4].
Consider case h = const in detail.

Theorem 3. /f h = —2n, n € N, then any solution of (28) have the form f =

(% ) f, where f is a solution of the one-dimensional linear heat equation: fy = f..

To prove the theorem 3 one should use the remark 3.
Reducing equation (28) by inequivalent one-dimensional subalgebras of A; we
construct the following solutions:
by subalgebra (9; + aud,), where a € {—1;0;1}:
f=e"(C1J,(r) + CoY, (7)) ifa=—1,
f=er"(CiL,(r) + CoK,(r)) ifa=1,
f=Cir"t 4+ Cy ifh#—1anda=0,
f=CiInr+Csy it h=-1 and a = 0;
here J,, Y, is the Bessel functions of real variable, I, K, is the Bessel functions of

complex variable, v = (h +1)/2;
by subalgebra (D + 2aud,,), where a € R:
— h—1 h+1
f —_ tae—w/sw%w (T —a, %7 %) ,
where w = 2/t and W (k, m,x) is the general solution of the Whittaker equation
4oy’ = (2% — dkx + 4m? — 1)y;

by the subalgebra (0; + II + aud,), where a € R:

=4+ 1) s exp {—tw + g arctg Qt} o(w),

where w = 4t2+1 and ¢ is a solution of the equation
dwp" +2(1 = h)¢' + (w — a)p = 0;
if @ =0 then

0= (e (3) - e (2)) n=EE

Consider equation (28) when h(t) is an arbitrary function of time.
Theorem 4. Equation (28) is Q-conditionally invariant under the operators

1. Q=0+ A(t,r)d, + (B*(t,r)u + B(t,r))0,, where
/
Ay — ﬁAML%A—A,«ML2ATA— h—+2B,1 =0,
T T

"
B+ —B. - B}, +2A,B =0, i=12
r
2. Q=0+ B(t,r,u)d,, where
h ., h
By — =B+ —B, — By + 2BBy, — B*By,, = 0.
r r

Equation (28) does not have other operators of Q-conditional symmetry.
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This theorem is proved by method described in [3].

Therefore, unlike Lie symmetry, @-conditional symmetry, theorem 4 (28) for arbit-
rary h(t) is rather wide. Thus, in particular, theorem 4 give rise to that equation (28)
is @-conditional invariant under the operators 0, and G = (2t + C)0, — rfd;. By
means of reduction of equation (28) using the operator G we obtain the following
solution

f—cilex — r —|—2/ h(t) dt
T Vair20 P\ att20 st+20 [

and generalizing this we can construct solutions of the form

N 2
f= ZTk(t)r%eXp{_éltiQC}'

k=0

Other class of solutions of (28) is given with formula

N
f= Z Tk (t)TQk.

For example, if N =1 then f = Cy (r? + 2t — 2 [ h(t)dt) +C5. We here do not present
results for arbitrary N as they arc very cumbersome.
Consider system 3 (equations (12)—(15)). In this case we get

B -1
Vo= 23 w% , (29)
U JIG N S (30)
w
_ 2 _
v -3, + ht) 203 + 2 st) =0, (31)

N N2
w? 3 1{83 . (h—1)? v (r,w) — s(1))*
=7 (<B> 2 <5> )_hlwr e R

where 7 = [|B(t)|dt, w = /|B(t)|w2, s(t) = [a(t)dt. Formulas (29)-(32) and

ansatz 3 give a solution of the NSEs.

Remark 5. New solutions can be obtained from this solution by force of (5) only
after transformations generated by operators of type Jup, R(m(t)) and Z(a(t)).

Let us to write down system (30)—(31) in the form
h(r)

fT_fww+wa:07 (33)

o)-2 L f-sm 60
w
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If (f,g) is a solution of (33)-(34) then (f,g + ¢°), where function ¢" satisfies the
equation

h(r) =2
g?—ggwr%gg =0 (35)

is also a solution of (33)-(34).
System (33)—-(34) has for some 3(7) particular solutions of the form

N N-—1
F=S e, g= Y $E(rwt,
k=0 k=0

where T°(r) = &(r). For example, if 5(7) = —2C; [(h(r) — 1)dr 4+ Cy, N =1 then
f=C1(w? =2 [(h(r) = 1)dr) + Ca, g = —Ch7.

Let 5(r) =0.
Theorem 5. The maximal, in the sense of Lie, invariance algebra of system (33)-
(34) when 5(7) =0 is the algebra

1. (f0f + g0, f(ﬂw)@f + g(r,w)0y) if h # const;
2. (270 +wd,, Oy, fOr 4 9By, f(T,w)d; + §(1,w)dy) if h # const and h # 0;

3. <27—a'r +wl,, O, £8g7 faf + gagv f(Tv w)af + f](’T, w)ag> lf h = 0.
Here (f,§) is an arbitrary solution of (33)-(34) when 3(r) = 0.
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