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The complete sets of conservation laws
for the electromagnetic field
W.I. FUSHCHYCH, A.G. NIKITIN

We present a compact and simple formulation of zero- and first-order conserved currents
for the electromagnetic field and give the number of independent n-order currents.

New conservation laws for the electromagnetic field, discovered by Lipkin [1], had
obtained an adequate mathematical and physical interpretation long ago, see e.g. [2–
6]. It happens that these conservation laws are nothing but a small part of the
infinite series of conserved quantities which exist for any self-adjoint linear system
of differential equations; among their number are Maxwell’s equations [7]. As to the
physical interpretation of Lipkin’s zilch tensor it can be connected with conservation
of polarization of the electromagnetic field [5, 6].

The aim of the present letter is to establish certain rules in the bewildering
complexity of the conservation laws and to describe complete sets of them for the
electromagnetic field.

We say that an arbitrary bilinear function j
(m)
µ = f

(m)
µ (DnF,DkF ) is a conserved

current if it satisfies the continuity equation

∂µj(m)
µ = 0, µ = 0, 1, 2, 3. (1)

Here F = Fµν is the tensor of the electromagnetic field,

Dn =
n∏

λ=0

∂µλ , µλ = 0, 1, 2, 3, m = max(n + k).

It follows from (1) according to the Ostrgradskii–Gauss theorem that the following
quantity is conserved in time:

〈j(m)
0 〉 =

∫
d3xj

(m)
0 .

We say conserved currents j
(m)
µ and j

′(m)
µ are equivalent if

〈j(m)
0 〉 = 〈j′(m)

0 〉.
Proposition 1. There exist exactly 15 non-equivalent conserved currents of zero
order for Maxwell’s equation. All these currents can be represented in the form

j(0)
µ = TµνKν , (2)

where Tµν is the traceless energy-momentum tensor of the electromagnetic field and
Kν is a Killing vector satisfying the equations

∂νKµ + ∂µKν − 1
2
gµν∂λKλ = 0. (3)
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Proof. This reduces to finding the general solution of the equation

∂0〈j(0)
0 〉 = ∂0

∫
d3xj

(0)
0 (F, F ) = 0, (4)

where j
(0)
0 (F, F ) is a bilinear combination of components of the tensor of the electro-

magnetic field. It is not difficult to find such a solution, decomposing j
(0)
0 by the

complete set of symmetric matrices of the dimension 6 × 6

j
(0)
0 = ϕT Qϕ, ϕ = column(F01, F02, F03, F23, F31, F12),

Q = (σ0A
ab
0 + σ1A

ab
1 + σ3A

ab
3 )Zab + δ2SaKa,

Zab = 2δab + SaSb + SbSa, a, b = 1, 2, 3,

Sa =
(

Sa 0̂
0̂ Sa

)
, σ0 =

(
I 0̂
0̂ I

)
, σ1 =

(
0̂ I

I 0̂

)
,

σ2 =
(

0̂ −I

I 0̂

)
, σ3 =

(
I 0̂
0̂ −I

)
,

S1 =


0 0 1

0 0 −1
0 1 0


 , S2 =


 0 0 1

0 0 0
−1 0 0


 , S3 =


0 −1 0

1 0 0
0 0 0


 ,

where 0̂ and I are the zero and unit matrices of dimension 3×3, Aab
λ , Ka are unknown

functions of xµ. In fact substituting (5) into (4) and using the Maxwell equations

∂µFµν = 0, ∂µεµνρσF ρσ = 0

we come to the relations Aab
1 = Aab

3 = 0, Aab
2 = −δabK0 and to the equations (3) for

K0 and Ka.
Thus we have found all non-equivalent j

(0)
0 satisfying (4). The corresponding

expressions for j
(0)
µ with µ �= 0 can be obtained by Lorentz transformations.

Formula (2) gives an elegant formulation of the classical conservation laws of
Bessel–Hagen [8]. We present a direct (and simple) proof that there are not another
conserved bilinear combination of the electromagnetic field strengths.

In an analogous way it is possible to prove the following assertion.

Proposition 2. There exist exactly 84 conserved currents of first order for the elec-
tromagnetic field. All these currents can be represented in the form

j(1)
µ = KσνZσν,µ + 2εµνλσ(∂λKρν)T σρ, (5)

where T σρ is the energy-momentum tensor, Zσν,µ is Lipkin’s zilch tensor, εµνρσ

is the completely antisymmetric unit tensor, Kσν is a conformal Killing tensor of
valence 2, satisfying the equations

∂(µKσν) =
1
3
∂λKλ(µgσν), Kσν = Kνσ, Kµ

µ = 0, (6)

where symmetrization is imposed over the indices in brackets.
Using the relations

∂µZλσ,µ = 0, Zµν,
ν = 0, ∂λTλµ = 0, Tλ

λ = 0,

∂ρ(ερλνσT σµ + ερµνσT σλ) = Zλν,
µ + Zµν,

λ
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and the equations (7) we can ensure that the currents (6) really satisfy the continuity
equation (1).

Thus all non-equivalent conserved currents of first order are given by formula (6).
The general solution of the equation (7) is a fourth-order polynomial of xµ depending
on 84 parameters; for the explicit expression of Kσν see e.g. [9]. Formula (6) descri-
bes well known and also ‘new’ conserved currents; the latter depend on the fourth
degree of xµ.

In conclusion we note that in an analogous way it is possible to describe conserved
currents for the electromagnetic field of an arbitrary order m. For m > 1 such currents
are defined by two fundamental quantities i.e. by the conformal Killing tensor of
valence m + 1 and the Floyd–Penrose tensor of valence R1 + 2R2 where R1 = m− 1,
R2 = 2. The higher order conserved currents will be considered in a separate paper;
here we present only the number of linearly independent currents of order m:

Nm =
1
2
(2m + 5)

[
2m(m + 1)(m + 4)(m + 5) + (m + 2)2(m + 3)2

]
, m > 1.

For the details about generalized Killing and Floyd–Penrose tensors in applica-
tion to higher symmetries of Poincaré- and Galilei-invariant wave equations see the
extended version of our book [10]. Non-Lie symmetries and conservation laws for
Maxwell’s equations are discussed in [11].
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