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New nonlinear equations for electromagnetic

field having velocity different from c
W.I. FUSHCHYCH

IlpensoxkeHbl HOBble HeJIMHEHHble ypaBHEHHS [Js1 3JeKTPOMAarHUTHOTO I0JIsl, CKOPOCTb
KOTOPOTO B BaKyyMe MOXKeT ObITb MeHblle, yeM c. [IpensioykeHbl Tak:Ke HeJHHEHHBIe
YPaBHEHUS AJ11 3JIeKTPOMAarHUTHOTO, CKaJSIPHOIO U CIIMHOPHOTO INoJeH.

1. The Maxwell equations

aD - . OB . . B
EzcrotH—j, Ez—crotE7 divD =p, divH =0. (1)

play a basic role in modern electromagnetic theory. When considered in vacuum,
Egs. (1) take the form

E — _ﬁ — — —
a—:crotH, a—:—crotE, divE =0, divH =0. (2)
ot ot
Provided D = eH, J = oE, B = uﬁ, e, o, i being constants, from (1) it follows
that the wave equations hold

PE . = PE 1 9*H S oH -
— —c°AFE — == — *AH — =0.
gy — € +ou T 8Vp, EH g — € +ou 5 0 3)
When considered in vacuum (e = u =1, ¢ = 0) Egs. (3) read
PE . = =~ 0H -
— —AAE = —ZAH =0. 4
or ¢ T 0 ®

[t is a generally accepted axiom of the modern theory of elementary interactions
(classical and quantum) that the quantity in (1)-(4) is identified with the velocity of
light. That is the fundamental constant.

There are few works devoted to study of nonlinear generalizations of equations
(1)-(3) (see, e.g., lists of references in [1-3]).

In the present paper we suggest new nonlinear generalization of Egs. (1)-(4) based
on the following idea: the velocity of light may not coincide with the constant c.

2. Let us admit following Poyting (1884) the standard definition of the energy
density and of the electromagnetic flow

1 = .
p= §(E2 +H?), pog=cepnEiHy, kln=1]3, (5)

U = (v1,v9,v3) is the velocity of the electromagnetic flow.
It is easy to see of that the formula

—
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holds.
Joxaaner AH Ykpaunsi, 1992, Ne 4, C. 24-27.
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_ From (6) it follows that 72 < ¢ and what is more 72 = 2 & E2 - {2 =0,
EH =0.
Let us make in Egs. (1)-(4) the change

This change yields nonlinear equations for electromagnetic field. For example, Egs. (2)
take the form

E . H . . .
6—zvrotH, 8—:—vrotH, divE =0, divH =0. (7)
ot ot
The above equations can be generalized in the following way:
OE - oH L=
E—I’Ot(HXU), W—I‘Ot('l)xE). (8)

Egs. (7), (8) can be interpreted as equations of motion for an electromagnetic field
which spreads with velocity ¢. Provided ¢ is determined by (5), (6), the velocity of
electromagnetic field is smaller than c.

One can impose on ¢ = ¥(t, Z) equations of hydrodynamics type

. 0 0
AAT = = — + dp=— 9
v 07 ot + Avg 8’Uk ( )

or

ANA%G =0, (10)
whence

OE - . oH R

En rot (H x 9), e =rot (U x E), (1)

AAG=0, divE=0, divH =0.

Thus system (11) describes woth the electromagnetic field and its velocity.

Note 1. Eq. (9) possesses unique symmetry properties. Is is invariant under the
Poincaré and Galilei groups [3]. That is Eq. (9) satisfies. both the Lorentz—Poincaré-
Einstein and Galilei relativity principles.

In addition, we adduce another nonlinear equation

E Ly oy o E Ly _
oF + A\ (E? - HQ,EH)Hka— + Xo(E? — H? EH)rot H = 0,

6t (9:L'k

E oy mo H Ly o -
9F + X\3(E* — H?, EH)Eka— + M(E? — H?, EH)rot E = 0,

ot oxy,
where A1, A2, A3, A4 are some smooth functions.

Egs. (1), (3), (4) are generalized in an analogous way. For example, Eq. (4) is

generalized in a way
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22 —v*AH =0. (12)

—v?AE = 0,
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or
PE 9 o OF - *H 0 5 OF -
W_a_xl{cl"(v )8—%} =0, or2 —a—xl{cln(’v )@ =0, (13)
or
0 0
£ {c,w(vz)ax} Fog=0, pv,a,0=0,3, (14)
n v

where ¢, (v?), ¢, (v?) are smooth functions on v?. One can impose on the scalar
function v the eikonal equation

ov\? ov \ 2
(5> _<8—:ck> =\ A=0,%1. (15)

Note 2. In Egs. (12)—(14) the vector ¥ can be defined according to the formula (6).
3. Let us turn to the generalization of the linear d’Alembert-Klein—-Gordon-Fock
equation

2
—hz% = (=h*c*A + m2ct)u. (16)

After the change ¢ — v(t, %) it takes the form

—h2@ = (—h*0®A + m*c)u (17)
ot? ’
where v is determined by (6), functions E, H satisfying Egs. (1)-(4) or Egs. (7)-(8).

Note 3. The vector of velocity of spread of the scalar field u can be defined in the
following way:

du  Bu
ve = A(Jul) (“a_z + ua—zk) (18)
or
. Ou ou*
o= Allu) (w2 + g ). (19)

where A(Ju|) is an arbitrary smooth function.

4. The Dirac equation for the spinor field
(—ihy, O + me)y =0 (20)
is rewritten in the form of nonlinear system

(—ihy, O + mu)p =0, v = (vf + 02+ v§)1/2 , (21)

AAvg =0 or v, 2% . (22)
0x,




New nonlinear equations for electromagnetic field 435

Note 4. The vector of velocity of spread of the spinor field can be defined by the
formula (6). In this case, E, H are vectors characterizing elecromagnetic field which
is generated by the spinor field

Fu = MUV — %), (23)

A1 is some small parameter.
Note 5. The vector of velocity of the spinor field can be defined as follows

vk = Ayt

or

Uy = /\37757;/(&-

One can demand that the above vectors have to satisfy conditions (22).
Detailed symmetry analysis and construction of exact solutions of the above sug-
gested equations will be carried out in future paper.

Note 6. The classical wave equation

2
aa?—cQAUZO

in our approach is generalised in the following way

0?2 0 0
“ {akz(@)a—gl} =0, ap=M\0")vrv + A2 (v,

ot? oz,
AAUZ' =0 or AAz’Ui =0.

In one dimensional space the wave equation has the form

8%u 0 < 5 Ou 8%v

gu _ 9 (22" = AA gv
02 oy ) 0. Advt g

Oz =0

A1, A2, A3 are smooth functions of v2.
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