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Conditional symmetry of equations
of nonlinear mathematical physics
W.I. FUSHCHYCH

1. Introduction. In this paper we present some results on conditional symmetry
of nonlinear equations of mathematical and theoretical physics which were obtained
in the Institute of Mathematics of Ukrainian Academy of Science. The term and the
concept of “conditional symmetry of equation” or “conditional invariance” had been
introduced in [1–10].

Speaking about the conditional symmetry of an equation, we mean of the symmet-
ry of some subset of its solutions. To be a constructive one, such general definition
needs, some more details. To study conditional symmetry means to give analytical
description of conditions (constraints) for the set of solutions of an equation under
study picking out subsets having wider (or another) symmetry properties than the
whole set of solutions. Having carried out such description one can obtain solutions
which cannot be obtained within the framework of the classical Vie approach (as it
is known, in the Lie approach reduction, of the multi-dimensional partial differential
equation (PDE) to equations with less number of independent variables is carried out
by means of symmetry of the set of its solutions in a whole).

Euler, Bateman, Lie, Smirnov and Sobolev (1932) and many other classics used
implicitly symmetry of subsets of solutions for linear d’Alembert and Laplace equa-
tions to construct their exact solutions. Not long ago Bluman and Cole [11] suggested
the “non-classical method of solutions invariant under group” for the linear heat
equation. Olver and Rosenau (1986) [12] constructed solutions of the one-dimensional
nonlinear acoustics equation

u00 = uu11, u00 = ∂2u/∂t2, u11 = ∂2u/∂x2 (1)

which cannot be obtained by means of Lie method. Clarkson and Kruskal suggested
“new method of invariant reduction of the Boussinesq equation”

u00 +
1
2
u11 + u1111 = 0. (2)

Conclusion 1. Using the concept of “conditional symmetry of PDE” we can obtain
the above results within the framework of the unified symmetry approach.
Conclusion 2. The majority of linear and nonlinear equations of mathematical
physics: d’Alembert, Maxwell, Schrödinger, Dirac, heat, acoustics, KdV equations
possess some conditional symmetry.
Note 1. All solutions of the Boussinesq equation (2) constructed by Clarkson and
Kruskal had been obtained independently by Levi and Winternitz [14], and by Fu-
shchych and Serov [10], using the concept of conditional symmetry.

in Symmetry Analysis of Equations of Mathematical Physics, Kyiv, Institute Mathematics, 1992, P. 7–
27.



416 W.I. Fushchych

Let us consider some PDE

L(x, u, u
1
, u
2
, . . . , u

s
) = 0, (3)

where u = u(x), x ∈ R(n+ 1), u(x) ∈ R, u
s
is the set of s-th order partial derivatives

of u(x).
According to Lie, the equation (3) is invariant under the first-order differential

operator

X = ξµ(x, u)
∂

∂xµ
+ η(x, u)

∂

∂u
(4)

if the following condition is satisfied:

X
s
L = λL ⇔ X

s
L

∣∣∣
L=0

= 0, (5)

where X
s

is the s-th prolongation of the operator X, λ = λ(x, u, u
1
, u
2
, . . . , u

s
) is some

differential expression.
Let us designate by the symbol Q = {Q

1
, . . . , Q

k
} a collection of operators not

belonging to the invariance algebra (IA) of the equation (3), i.e. Q �∈ IA.

Definition 1 [2, 5]. We say that the equation (3) is conditionally-invariant under
the operators Q if there exists some additional condition

L1(x, u, u
1
, u
2
, . . . , u

s
) = 0 (6)

to be compatible.
The additional condition (6) picks out some subset from the whole set of solutions

of the equation (3). It appears that for many important equations of mathematical
physics such subsets admit the wider symmetry than the whole set of solutions. Such
subsets are to be constructed.

Let the operator Q act on the equation (3) as follows:

Q
s
L = λ0L+ λ1L1 (7)

or

Q
s
L

∣∣∣Lu = 0
L1u = 0

= 0,

where λ0, λ1 are some differential expressions depending on x, u, u
1
, u
2
, . . . , u

s
, Q

s
is the

s-th prolongation of the operator Q. Then the invariance condition reads

Q
s
L1 = λ2L+ λ3L1, (8)

where λ2, λ3 are some differential expressions.
The principal problem of our approach is to describe in explicit form equations of

the form (6) which extend symmetry of the equation (6).
The principal and difficult problem can be essentially simplified if one chooses the

following nonlinear first-order PDE as an additional condition (6):

Qu = 0, (9)
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where

Q = jµ(xµ, u)∂µ + z(xµ, u)∂u, ∂µ ≡ ∂/∂xµ, ∂u ≡ ∂/∂u. (10)

In this case, the invariance condition for the system of equations (3), (9) takes the
form

Q
s
L = λ0L+ λ1(Qu). (11)

Definition 2. We say that the equation (3) is Q-conditionally invariant if the system
(3), (9) is invariant under the operator (10).

Let us turn now to the simplest one-dimensional acoustics equation.

2. Conditional symmetry of the equation (1).

Theorem 1 [18]. The equation (1) is Q-conditionally invariant under the operator
(10) if its coefficient functions

j0 ≡ A(x), j1 ≡ B(x), z ≡ h(x)u+ q(x), x = (x0, x1)

satisfy the following differential equations:
Case 1. A �= 0, B �= 0:

h = 2
(
B1 −A0 +

B

A
A1

)
, q = 2

B

A
B0,

h00 +
2
A
hh0 −

[
h

A
A00 +

2
A
hA00 + 2

[
h

A

]
1

B0

]
= q11 − q

A
A11 + 2

[ q
A

]
1
A1,

h11 =
h

A
A11 + 2

[
h

A

]
1

A1,

q00 + 2
q

A
q0 −

[ q
A
A00 + 2

[ q
A

]
1
B0

]
= 0,

B11 − 2h1 −
[
B

A
A11 + 2

[
B

A

]
1

A1 + 2
h

A
A1

]
= 0,

B00 + 2
B

A
h0 −

[
B

A
A00 + 2

[
B

A

]
1

B0

]
= 0.

(12)

The subscripts denote the corresponding derivatives.
Case 2. A = 0, B �= 0 (without loosing generality one may choose B = 1):

h0 = 0, h11 + 3hh1 + h3 = 0,
q11 + hq1 +

(
3h1 + 2h2

)
q = 0,

q00 − qq1 − hq2 = 0.
(13)

Case 3. A = 1, B = 0:

h1 = 0, h00 + hh0 − h3 = q11, q(q0 + hq) = 0,
q00 + h0q − h2q − 0.

(14)

Thus a problem of study of Q- conditional symmetry of the equation (1) is reduced
to search of the general solution for the equations (12)–(14). Let us emphasize that
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coefficient functions j, z of the operator Q unlike coefficient functions ξ, η (4) satisfy
a system of nonlinear equations. This fact makes difficult to describe conditional
symmetry of given equations. Nevertheless it is possible to construct their partial
solutions.

We had found 12 inequivalent operators of conditional symmetry for the equa-
tion (1) [8]. Two of them have the form

Q1 = x2
0x1∂1 +

(
ux2

0 + 3x2
1 + b5x

5
0 + b6

)
∂u, (15)

Q2 = ∂1 + [W (x0)x1 + f(x0)]∂u, W ′′ = W 2, f ′′ = Wf, (16)

W is the Weierstrass function.
The operator (15) generates the ansatz

U = x1ϕ(x0) + 3x−2
0 x1 − b5x

3
0 + b6x

−2
0 . (17)

The ansatz (17) reduces the nonlinear equation (2) to linear differential equation
(ODE)

x2
0ϕ

′′(x0) = 6ϕ(x0) (18)

operator (16) gives rise to the ansatz

u =
1
2
W (x0)x2

1 + f(x0)x1 + ϕ(x0) (19)

reducing the equation (1) to linear ODE with the Weierstrass potential

ϕ′′(x0) = Wϕ(x0). (20)

Note 2. In an analogous way we had constructed families of exact solutions for the
multi-dimensional equation [8]

u00 = u∆u. (21)

Conclusion 3. Ansätzes generated by operators of conditional invariance often
reduce the initial nonlinear equation to a linear one. The reduction by Lie operators,
as a rule, does not change the nonlinear structure of the equation under study.

3. Conditional invariance of the d’Alembert equation. Let us consider the
nonlinear equation

�u = F1(u), u = u(x0, x1, x2, x3), (22)

where F1(u) is an arbitrary smooth function. The equation (22) is invariant under the
conformal group (that is the maximal invariance group admitted by (22)) iff F1 = 0
or F1 = λu3. Let us impose on the solutions of (22) the Poincaré-invariant eikonal
constraint

∂u

∂xµ

∂u

∂xµ
= F2(u), (23)

where F2 is a smooth function.



Conditional symmetry of equations of nonlinear mathematical physics 419

Theorem 2 [15]. Provided F1 = F2 = 0 the equation (22) with the condition (23) is
invariant under the infinite-dimensional Lie algebra with coefficients of the opera-
tor (4) having the form

ξµ(x, u) = c00(u)xµ + cµν(u)xν + dµ(u), η(x, u) = η(u),

where c00(u), cµν(u), dµ(u), η(u) are arbitrary smooth functions.

Consequently, the additional condition (23) (F2 = 0) picks out from the whole
set of solutions of the linear d’Alembert equation (F1 = 0) the subset having the
unique symmetry properties. Besides, an arbitrary smooth function of a solution of
the system (22), (23) (F1 = F2 = 0) is its solution too.

Theorem 3. The system (22), (23) is invariant under the conformal group C(1, 3)
iff

F1 = 3λ(u+ C)−1, F2 = λ, (24)

where λ, C are constants.

Thus, the additional eikonal constraint (23) extends the class of nonlinear wave
equations admitting conformal group. It means that we can construct wide classes of
exact solutions of the equation (22) using the subgroup structure of the group C(1, 3).

Note 3. The system (22), (23) had been completely integrated in [16].

Let us consider the Lorentz non-invariant wave equation

Lu ≡ �u+ F (x, u, u
1
), (25)

F = −
(
λ0

x0

)2 (
∂u

∂x0

)2

+
3∑

a=1

(
λa

xa

)2 (
∂u

∂xa

)2

. (26)

The maximal invariance group admitted by the equations (25), (26) is the following
two-parameter group

xµ → x′µ = eaxµ, u→ u′ = u+ b,

where a, b are group parameters.
An additional condition of the type (6) is chosen in the form

Jµνu = 0, Jµν = xµ∂ν − xν∂µ, µ, ν = 0, 1, 2, 3. (27)

By direct check one can assure that the equations (25), (27) are invariant under the
Lorentz group O(1, 3). It means that the Lorentz-invariant ansatz

u = ϕ(ω), ω = xµx
µ = x2

0 − x2
1 − x2

2 − x2
3 (28)

reduces the nonlinear wave equation (25) to the following ODE

ω
d2ϕ

dω2
+ 2

dϕ

dω
+ λ2

(
dϕ

dω

)2

= 0, λ2 = λµλ
µ.
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The solution of the above equation is given by the formulae

ϕ(ω) = 2(−λ2)−1/2 tan−1
[
ω(−λ2)−1/2

]
, λ2 < 0,

ϕ(ω) = −(λ2)−1/2 ln
(

(λ2)−1/2 + ω

(λ2)−1/2 − ω

)
, λ2 > 0,

ϕ(ω) = C1ω
−1 + C2, λ2 = 0,

where C1, C2 are constants.
Thus, the condition (27) selects from the set of solutions of the Lorentz non-

invariant equation (25) a subset invariant under the six-parameter Lorentz group.
This essential extension of the symmetry makes it possible to construct wide classes
of exact solutions of the nonlinear wave equation (25).

4. Conditional invariance of the nonlinear Schrödinger equation. Let us consi-
der the nonlinear equation of the form

Su+ F (|u|)u = 0, S ≡ i
∂

∂x0
+ λ1∆. (29)

The equation (29) is invariant under the Galilei algebra AG(1, 3) having the basis
elements

P0 = ∂0, Pa = ∂a, Jab = xaPb − xbPa, a, b = 1, n,

Ga = x0Pa +
1

2λ1
xaR1,

(30)

where

R1 = i

(
u
∂

∂u
− u∗

∂

∂u∗

)
.

In the class of nonlinear equations (29) there are two well-known ones having
wider symmetry algebra than the equation (29) has [17, 18]:

Su+ λ2|u|ru = 0, (31)

Su+ λ3|u|4/nu = 0, (32)

where λ2, λ3, r are arbitrary parameters, n is the number or space variables in the
equation (29).

The equation (31) is invariant, under the extended Galilei algebra AG1(1, n) =
〈AG(1, n),D〉 having the basis elements (30) and

D = 2x0P0 + xaPa +
2
r
R2, (33)

where

R2 = u
∂

∂u
+ u∗

∂

∂u∗
.

The equation (32) is invariant under the generalized Galilei algebra AG2(1, n) =
〈AG1(1, n), A〉 having the basis elements (30), (33) and

A = x2
0P0 + x0xaPa +

x2

4λ1
R1 − nx0

2
R2, x2 = x2

1 + · · · + x2
n.
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Theorem 4 [18]. The Schrödinger equation (29) is conditionally-invariant under
the operator

Q1 = ln(uu∗−1)R1 + xaPa − cR2, c = const, (34)

provided

F (|u|) = λ4|u|−4/r + λ5|u|4/r,

where λ4, λ5, r are arbitrary real parameters, and the condition

λ1∆|u|r+4 + λ6|u|r = 0 (35)

holds.
Thus imposing on solutions of the nonlinear equation (29) an additional constraint

(35) we extend its symmetry.

Theorem 5 [18]. The equation (32) being taken together with the the equation (35)
is invariant under the algebra AG2(1, n) and the operator Q1 (34).

5. Conditional symmetry of nonlinear heat equations. To describe nonlinear
processes of heat and mass transfer the one-dimensional equations of the form are
used

u0 + u11 = F (u), (36)

u0 + uu11 = 0, (37)

where F is a smooth function.
We look for operators of conditional symmetry in the form

Q = A(x, u)∂0 +B(x, u)∂1 + C(x, u)∂u (38)

with some smooth functions A, B, C.

Theorem 6 [19]. The equation (36) is Q-conditionally-invariant under the operator
(38) if functions A, B, C satisfy differential equations:

Case 1: A = 1

Buu = 0, Cuu = 2(B1u +BBu),
3BuF = 2(C1u + CBu) − (B0 +B11 + 2BB1),
CFu − (Cu − 2B1)F = C0 + C11 + 2CB1.

(39)

Hereafter subscript, mean differentiation with respect to the corresponding vari-
ables (x0, x1, u).

Case 2. A = 0, B = 0

CFu − CuF = C0 + C11 + 2CC1u + C2Cuu. (40)

Having constructed the general solutions of nonlinear systems (39), (40), we shall
obtain the general operator of conditional symmetry of equation.

Theorem 7 [19]. The equation (36) is Q-conditionally-invariant under the operator
(38) (A = 1, Bu �= 0) iff it, is locally equivalent to the equation

u0 + u11 = b3u
3 + b1u+ b0, b0, b1, b3 = const, (41)
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the operator (38) having the form

Q = ∂0 +
3
2

√
2b3u∂1 +

3
2

(
b3u

3 + b1u− b0
)
∂u. (42)

The equation (41) is reduced to one of the following canonical equations:

u0 + u11 = λu(u2 − 1), (43)

u0 + u11 = λ(u3 − 3u+ 2), (44)

u0 + u11 = λu3, (45)

u0 + u11 = λu(u2 + 1). (46)

Ansätzes constructed by means of the operator (42) have the from

ϕ(ω) = 2 tan−1 u+
√

2λx1, ω = − ln(1 − u−2) + 2λx0, (47)

ϕ(ω) = −4
9

ln
u+ 2
u− 1

− 2
3
(u− 1)−1 −

√
2λx1,

ω =
2
9

ln
u+ 2
u− 1

− 2
3
(u− 1)−1 − 3λx0,

(48)

ϕ(ω) = −2u−1 +
√

2λx1, ω = −u−2 − 3λx0, (49)

ϕ(ω) = 2 tan−1 u−
√

2λx1, ω = − ln(1 + u−2) − 3λx0. (50)

The anzätzes (47)–(50) reduce the equations (43)–(46) to ODE:

2ϕ̈ = (ϕ̇2 − 1)ϕ̇, 2ϕ̈ = ϕ̇3 − 3ϕ̇+ 2, (51)

2ϕ̈ = ϕ̇3, 2ϕ̈ = ϕ̇(ϕ̇2 + 1). (52)

It is evident from the above equations that ansätzes generated by the operator
of conditional invariance (42) change essentially their nonlinearities in second parts.
This fact allows to integrate the ODE (51), (52) in elementary functions

ϕ(ω) = −2 tan−1
(√

C1 expω + 1
)

+ C2, (53)

ln
[
C1 − 3

2
(ϕ+ 2ω)

]
= lnC2 − 3

2
(ϕ− ω), (54)

ϕ(ω) = 2
√
C1 − ω + C2, (55)

ϕ(ω) = 2 tan−1
(√

C1 expω − 1
)

+ C2, (56)

where C1, C2 are constants.
Thus, substitute (53)–(56) into (47)–(50), we get families of exact solutions of the

equations (43)–(46). These solutions cannot be obtained within the framework of the
Lie method.
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Theorem 8 [20]. The equation (37) is Q-conditionally-invariant under the operator
(38) with A = 1 if functions B, C satisfy the following system of equations:

uCuu = 2(BBu + uBu1), Buu = 0, (57)

B0 + uB11 − CBu−1 − 2uCu1 + 2BB1 − 2CBu = 0, (58)

C0 + uC11 − C2u−1 + 2CB1 = 0. (59)

Solving equations (57)–(59), we get an explicit form of the operator (38)

Q = b1Q1 + b2Q2 + b3D1 + b4D2 + b5∂0 + b6∂1, (60)

Q1 = x1∂0 + u∂1, Q2 = x2
0∂0 + 2x1u∂1 + 2u2∂u,

D1 = 2x0∂0 + x1∂1, D2 = x1∂1 + 2u∂u, bi = const, i = 1, 6.
(61)

Theorem 9 [20]. The equation (37) is Q-conditionally-invariant under the operator

Q = ∂1 + C(x, u)∂u, (62)

if C(x, u) satisfies the condition

C0 + u(C11 + 2CC1u + C2Cuu) + CC1 + C2Cu = 0. (63)

Partial solutions or the equation (63) give rise to explicit form of operators of
conditional symmetry. Below we adduce some of them

Q3 =
√
x0∂1 +

√
2u∂u, (64)

Q4 =
√

2x0∂1 +R(u)∂u, (65)

Q5 = ∂1 + lnu∂u, (66)

Q6 = x0∂1 + x1∂u, (67)

where R(u) a solution of ODE uR̈+ Ṙ = R−1.
Let us adduce some ansätzes generated by operators Q1, Q2, Q3

x0u− 1
2
x2

1 = ϕ(u), (68)

2ux0

x1
− x1 = ϕ

(
u

x1

)
, (69)

u =
1
2

(
x1√
x0

+ ϕ(x0)
)2

. (70)

Reduced equations have the form

ϕ̈(u) = 0 for the ansatz (68),

ϕ̈

(
u

x1

)
= 0 for the ansatz (69),

2x0ϕ̇(x0) + ϕ(x0) = 0 for the ansatz (70).
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Thus the ansätzes (68)–(70) reduce nonlinear heat equations to linear ODE.

6. An equation of the Korteweg-de Vries type. Let us consider a non-linear
equation [23]

u0 + F (u)uk
1 + u111 = 0, (71)

u111 = ∂3u
∂x3 , k is an arbitrary real parameter. With F (u) = u, k = 1 (71) coincides

with the classical KdV equation.

Theorem 10 [23]. The equation (71) is Q-conditionally invariant under the following
Galilei-type operator:

Q = xr
0∂1 +H(x, u)∂u, (72)

r is an arbitrary real parameter, if

1) F (u) = λ1u
2−k

u + λ2u
1−k
2 ,

H(x, u) =
(
kλ1

2

)−1/k

u1/2,
(73)

2) F (u) = (λ1 lnu)1−k,

H(x, u) = (kλ1)−1/ku,
(74)

3) F (u) = (λ1 arcsinu+ λ2)(1 − u2)
1−k
2 ,

H(x, u) = (kλ1)−1/k(1 − u2)1/2,
(75)

4) F (u) = (λ1Arshu+ λ2)(1 − u2)
1−k
2 ,

H(x, u) = (kλ1)−1/k(1 + u2)1/2,
(76)

5) F (u) = λ1u,

H(x, u) = (kλ1)−1/k,
(77)

where r �= k−1, k �= 0, λ1, λ2 are arbitrary constants.
By means of operators of conditional invariance (72) we reduce the equation (71)

to ODE and construct the following exact solutions:

u =

{
x1

2

(
kλ1x0

2

)−1/k

+ λx
−1/k
0 − λ2

λ

}2

,

when F (u) is of the form (73);

u = exp
{
−k(kλ1)−3/k

k − 2
x
− 3

k +1
0 + λx

−1/k
0 + (kλ1x0)−1/kx1 − λ2

λ

}
,

when k �= 2, F (u) is of the form (74); when k = 2

u = exp
{
−(2λ1)−3/2x

−1/2
0 lnx0 + λx

−1/2
0 + (2λ1x0)−1/2x1 − λ2

λ

}
;

u = sin
{
k(kλ1)−3/k

k − 2
x
− 3

k +1
0 + λx

−1/k
0 + (kλ1x0)−1/kx1 − λ2

λ

}
, k �= 2,

u = sin
{

(2λ1)−3/2 lnx0√
x0

+ λx
−1/2
0 + (2λ1x0)−1/2x1 − λ2

λ

}
, k = 2,
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when F (u) is of the form (75);

u = sh
{
−k(kλ1)−3/k

k − 2
x
− 3

k +1
0 + λx

−1/k
0 + (kλ1x0)−1/2x1

}
, k �= 2,

u = sh
{
−(2λ1)−3/2x

−1/2
0 lnx0 + λx

−1/2
0 + (2λ1x0)−1/2x1

}
, k = 2,

when F (u) is of the form (76). In all formulae λ is an arbitrary parameter.
Thus, having investigated the conditional symmetry of the equation (71), we

construct nontrivial classes of exact solutions.
7. Nonlinear wave equation. An equation of the form

u00 − (F (u)u1)1 = 0 (78)

is widely used for description of nonlinear wave processes. The group properties of the
equation (78) were investigated in detail by means of Lie method in [24]. Depending
on explicit form of the function F (u) the equation (78) has wide conditional symmetry.
Theorem 11 [25]. The equation (78) is Q-conditionally invariant under the operator

Q = A(x, u)∂0 +B(x, u)∂1 +H(x, u)∂u,

if functions A(x, u), B(x, u), H(x, u), F (u) satisfy the following systems of equati-
ons:

Case 1: A = 1, D = F −B2

(BuD
−1)u = 0, F (H1D

−1)1 − (H0D
−1)0 −H2 = 0,

(HuD
−1)u −H(H0D

−1)u −H(HuD
−1)0 +

+D2{2F (B0D1 −B1H0 +H[BuH1 −B1Hu]) −BHH1F} = 0,

D2Huu +D{(HḞ )u + 2B(BuHu −BuuH) − 2FB1u − 2B0u} −
−HD2 + 2BB0Du + 2ḂB1(BF − 2BuF ) = 0,

D{B00 + 2(B0H)u − 2(BH0u −BuH0) + 2(H1F )u −B11F +BuuH
2 +

+ 2BHHuu} −Du{B0H +BuH
2 + 2BHHu} +

+B{B1HḞ + 2B2
0 + 2B0BuH + 4BB0Hu + 4B1HuF − 2B2

1F} = 0.

Case 2: A = 1, B = F 1/2

1) ḂH + 2BHu = 0, H0 +HHu −BH1 = 0;

2) ḂH + 2BHu �= 0, H0 +HHu −BH1 = 0;

[B̈H2 + 2Ḃ(BH1 +HHu) + 2B(H0u +HHuu +BH1u)] = (H0 +HHu −
−HH1) − [H00 +H2Huu −B2H11 + 2HH0u − 2ḂHH1](ḂH + 2BHu) = 0.

Case 3: A = 0, B = 1

H00 −H3Ḟ − (3HH1 + 2H2Hu)Ḟ − (H11 + 2HH1u)F = 0.

Having solved these systems we constructed explicit forms of operators Q for
special forms of the function F (u). Let us adduce some of obtained operators and
ansätzes:

F (u) = expu,
Q1 = x1∂1 + ∂u, u = lnx1 + ϕ(x0),

Q2 = ∂0 + 2 tg x0∂u, expu =
ϕ(x0)
cos2 x0

;
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F (u) = uk,

Q1 = ∂0 + exp
(u

2

)
∂1 − 4x−1

0 ∂u, x0 exp
(u

2

)
+ x1 + ϕ

(
x2

0 exp
u

2

)
= 0,

Q2 = (k + 1)x1∂1 + u∂u, uk+1 = x1ϕ
k+1(x0);

F (u) = u−1/2,

Q1 = ∂0 + x1u
1/2∂u, 2u1/2 = x0x1 + ϕ(x1),

Q2 = x2
1∂0 + (4x0 + a1x

5
1)u

1/2∂u, u1/2 = x2
0x

−2
1 +

a2
1

2
x0x

3
1 + ϕ(x1),

where a1, a2, a3 are constants.
The most simple solutions of the equation (78), constructed by means of the above

ansätzes are or the form

expu = (x2
1 + a1) cos−2 x0, expu = x1 expx0,

if F (u) = expu;

uk+1 = xk+1
0 x1,

if F (u) = uk;

u = x0x1 +
x4

0

12
+ a1, u = W (x0)x2

1,

if F (u) = u;

u1/2 = W (x1)x2
0, 2u1/2 = x0x1 +

x4
1

24
+ a1,

u1/2 = x2
0x

−2
1 + 3a1x0x

3
1 +

a1

6
x3

1 + a2x
−1
1 + a3x

2
1,

if F (u) = u1/2.
So we had classified and reduced the nonlinear wave equations (78) by means of

conditional symmetry.

8. Three-dimensional acoustics equation. Bounded sound beams are described
by a nonlinear equation of the form [26]

u00 − (F (u)u1)1 − u22 − u33 = 0. (79)

In the case when F (u) = u it coincides with the Khokhlov–Zabolotskaya equation

u00 − (uu1)1 − u22 − u33 = 0. (80)

Let us add to (79) an additional condition in the form of a first-order nonlinear
equation

u0u1 − F (u)u2
1 − u2

2 − u2
3 − 0. (81)

Theorem 12 [26]. The equation (80) with the condition (81) is invariant under the
infinite-dimensional algebra with the operator

X = ai(u)Ri, i = 1, 12, (82)
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where ai(u) are arbitrary smooth functions of the dependent variable u,

Rµ+1 = ∂µ, µ = 0, 3, R5 = x3∂2 − x2∂3,

R6 = x2∂1 + 2x0∂2, R7 = x3∂1 + 2x0∂3, R8 = xµ∂µ,

R9 = 4x0∂0 + 2x1∂1 + 3x2∂2 + 3x3∂3 − 2
F (u)
F ′(u)

∂u, R10 = F ′(u)x0∂1 − ∂u,

R11 = x2∂0 + 2(x1 + F (u)x0)∂2, R12 = x3∂0 + 2(x1 + 2F (u)x0)∂3.

Operators R1, . . . , R8 are Lie symmetry operators for the equation (80), R9, . . .,
R12 are operators of the conditional symmetry for the equation (79). Using conditional
symmetry operators of the equation (79) R9, . . . , R12 it is possible to construct wide
classes of exact solutions. For example, the operator X = ∂0 + a(u)∂1 generates the
following ansätzes:

u = ϕ(ω1, ω2, ω3), ω1 = a(u)x0 + x3, ω2 = x2, ω3 = x3. (83)

The ansatz (83) reduces the four-dimensional equation (79), (81) to three-dimansional
ones

(a(ϕ) − ϕ)ϕ11 − ϕ22 − ϕ33 +
(
da(ϕ)
dϕ

− 1
)
ϕ2

1 = 0,

(a(ϕ) − ϕ)ϕ2
1 − ϕ2

2 − ϕ2
3 = 0, ϕi =

∂ϕ

∂ωi
, i = 1, 3.

(84)

Taking a(u) in some concrete form it is possible in some cases to construct the
general solution of (84). Let a(u) = u+ 1, then we get a system

ϕ11 − ϕ22 − ϕ33 = 0, (85)

ϕ2
1 − ϕ2

2 − ϕ2
3 = 0. (86)

The system (85), (86) can be naturally called the Bateman (1914) — Sobolev–Smirnov
(1932–1933) equations, because Bateman, Sobolev and Smirnov investigated this
system in detail. The equations (85), (86) has the general solution which is given
by Sobolev–Smirnov formula

ϕ = c1(ϕ)ω1 + c2(ϕ)ω2 + c3(ϕ)ω3, (87)

where c1, c2, c3 are arbitrary functions satisfying the following conditions:

c21 − c22 − c23 = 0, c22 + c23 �= 0.

Thus the formula (87) gives the class of exact solutions for the three-dimensional
nonlinear equations (85), (86).

9. Conditional symmetry of the Dirac equation. Let us consider the nonlinear
Dirac equation

{γµp
µ − λ(ϕ̄ϕ)}ϕ(x) = 0 (88)

and put on its solutions a condition ϕ̄ϕ = 1. Then (88) becomes a linear equation
with a nonlinear additional condition:

(γµp
µ − λ)ψ = 0, ψ̄ψ = 1. (89)
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The system (89) is conditionally invariant under the operators [9]

Q1 = P0 − λγ0, Q2 = P3 − λγ3. (90)

In the case under consideration the equation of the type (6) has the form

Q1ψ = 0 and Q2ψ = 0. (91)

The operator Q1 generates the ansatz

ψ(x) = exp(−iλγ0x0)ϕ(x1, x2, x3), (92)

where ϕ(x1, x2, x3) is a four-component vector-function depending on three variables
only.

10. Conditional symmetry of Maxwell’s equation. Let us consider a linear
system [5]

∂ 
E

∂t
= rot 
H,

∂ 
H

∂t
= −rot 
E. (93)

It can be verified directly that the system (93) is not invariant under the Lorentz
transformations. However if we add to the system (93) the well-known additional
conditions

div 
E = 0, div 
H = 0, (94)

the system (93), (94) becomes a Lorentz-invariant one. The point of view on Max-
well’s equations which was set forth [1–9, 21] stressesthe naturality of the notion of
conditional invariance and its importance for a wide class of equations of mathematical
physics [22].

Conclusion. Investigation of conditional symmetry of partial differential equation
has been started recently. The adduced results show that we can anticipate on this
way the qualitatively new understanding of symmetry of an equation, of symmetry
classification or partial differential equations, of reduction of multi-dimensional nonli-
near equations to equations with less number of independent variables, of process of
linearization of nonlinear equations.

The principle of relativity, or equivalence of all inertial reference frames, is one of
the most fundamental laws of physics, mechanics, hydromechanics, biophysics. Saying
in the language of mathematics this principle represents the invariance of an equation
of motion whether under the Galilei transformations or under the Lorentz ones. Partial
differential equations which do not, satisfy this principle usually are not considered
in physical theories. Such equations cannot be used for mathematical description of
motion of real physical systems.

The concept of conditional invariance enables to get essentially wider classes of
equations satisfying relativity principle. Equations which are non-compatible in usual
sense with the relativity principle can satisfy it conditionally, that is, non-trivial
conditions on solutions of these equations exist, which pick out subsets of solutions of
the initial equation, invariant or under Galilei transformations, or tinder Lorentz ones.
Description and detailed investigation of classes of equations conditionally invariant,
under Galilei and Poincaré groups and their subgroup seem to the author a rather
significant problem of mathematical physics.
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Conditional symmetry, for example, of a scalar equation, enables to construct
ansätzes which increase the number of dependent variables (antireduction). It allows
not only to carry out reduction by number of independent variables but to increase the
number of dependent variables. We should like to stress that such ansätzes change
essentially the structure of nonlinearity of the initial equation. And, certainly, they
cannot be constructed by means of the classical Lie method. The process of linearizati-
on, for example, of the nonlinear Navier–Stokes system in our approach is considered
as change of a nonlinear equation for a linear system

∂
u

∂t
+ ∆
u+ 
∇p = 0, div 
u = 0, (95)

with a nonlinear additional condition

(
u 
∇)
u = 0 or {(
u 
∇)
u}2 = 0. (96)

The linear Navier–Stokes equation with the nonlinear additional conditions has a
nontrivial conditional symmetry. Evidently it is also possible to choose as an additional
condition for the Stokes–Stokes equation the following equations:

(
u 
∇)
u+ 
∇p = 0.

We are going to devote further papers to detailed investigation of conditional linerisa-
tion of nonlinear partial differential equations.

In conclusion I adduce the list (which is far from being complete) of nonlinear
equations having nontrivial conditional symmetry

u0 + u11 = F (u), u0 + uu11 = 0, (1988, 1990)

Su+ F (|u|)u = 0, S = i
∂

∂x0
− ∆, (1990)

u00 = u∆u, (1988)

�u = F (u), (1989)

u01 − (F (u)u1)1 − u22 − u33 = 0, (1990)

u00 − (F (u)u1)1 = 0, (1991)

u00 = C(x, u, u
1
)∆u, (1987)

u0 − 
∇[F (u)
∇u] = 0, (1988)

u0 + F (u)uk
1 + u111 = 0, (1991)

u0 +
∂2ϕ(u)
∂x2

1

+
N

x1

∂ϕ(u)
∂x1

= F (u), (1992)

u0 + u11 +
3

2x1
u1 = λu3, (1992)
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u0 + uu11 +
N

x1
uu1 = λ1u+ λ2, (1992)


u0 + (
u 
∇)
u = −1
ρ

∇p,

ρ0 + div (ρ
u) = 0,

p = f(ρ), p =
1
2
λρ2,

(1992)

(1 − uαu
α)�u+ uµuνu

µν = 0. (1989)

In the brackets we indicated the years when the conditional symmetry of the
corresponding equation had been investigated.
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