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On the general solution of the d’Alembert
equation with nonlinear eikonal constraint
W.I. FUSHCHYCH, R.Z. ZHDANOV, I.V. REVENKO

We construct general solutions of the system of nonlinear differential equations �u = 0,
uµuµ = 0 in the four- and five-dimensional complex pseudo-Euclidian spaces. The obtai-
ned results are used to reduce multi-dimensional nonlinear wave equation to ordinary
differential equations.

1. Introduction. In the present paper we construct general solution of the multi-
dimensional system of partial differential equations

�nu ≡ 0,

uµuµ ≡ u2
x1
− u2

x2
− · · · − u2

xn−1
= 0

(1)

in the four- and five-dimensional pseudo-Euclidian space. In (1) u = u(x0, x1, . . .,
xn−1) ∈ C2(Cn, C1). Hereafter the summation over the repeated indices in the pseudo-
Euclidian space M(1, n) with the metric tensor gµν = diag (1,−1, . . . ,−1) is under-
stood.

We suggest a new algorithm of construction of exact solutions of the nonlinear
d’Alembert equation

�4u = λuk, λ, k ∈ R
1 (2)

via solutions of the system of PDE (1).
2. Integration of the system (1): The list of principal results. Below we adduce

assertions giving general solutions of the system of PDE (1) with arbitrary n ∈ N

provided u(x) ∈ C2(Rn, R1), and with n = 4, 5, provided u(x) ∈ C2(Cn, C1).
Theorem 1. Let u(x) be sufficiently smooth real function on n real variables x0, . . . ,
xn−1. Then the general solution of the system of nonlinear PDE (1) is given by the
following formula:

Cµ(u)xµ + Cn(u) = 0, (3)

where Cµ(u), Cn(u) are arbitrary real functions that satisfy the condition

Cµ(u)Cµ(u) = 0 (4)

(the condition (4) means that n-vector (C0, C1, . . . , Cn−1) is an isotropic one).
Note 1. As far as we know Jacobi, Smirnov and Sobolev were the first to obtain
the formulae (3), (4) when n = 3 [1, 2]. That is why it is natural to call (3), (4)
the Jacoby–Smirnov–Sobolev formulae (JSSF). Later on, in 1944 Yerugin generalized
JSSF up to the case n = 4 [3]. Recently, Collins [4] proved that JSSF give the
general solution of system (1) under arbitrary n ∈ N. He applied rather complicated
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differential geometry technique. Below we show that to integrate Eqs. (1) it is quite
enough to apply only classical methods of mathematical physics.

Theorem 2. The general solution of the system of nonlinear PDE (1) in the class of
functions u = u(x0, x1, x2, x3) ∈ C2(C4, C1) is given by the following formula:

F (Aµ(u)xµ, Bν(u)xν , u) = 0, (5)

where F ∈ C2(C3, C1) is an arbitrary function, Aµ, Bµ ∈ C2(C1, C1) are arbitrary
smooth functions satisfying the conditions

AµAµ = AµBµ = BµBµ = 0. (6)

Theorem 3. The general solution of the system of nonlinear PDE (1) in the class
of functions u = u(x0, x1, x2, x3, x4) ∈ C2(C5, C1) is given by one of the following
formulae:

1) Aµ(τ, u)xµ + C1(τ, u) = 0, (7)

where τ = τ(u, x) is a complex function determined by the equation

Bµ(τ, u)xµ + C2(τ, u) = 0, (8)

and Aµ, Bµ, C1, C2 ∈ C2(C2, C1) are arbitrary functions satisfying the conditions

AµAµ = AµBµ = BµBµ = 0, Bµ
∂Aµ

∂τ
= Aµ

∂Bµ

∂τ
= 0 (9)

and what is more

∆ = det

∥∥∥∥∥∥∥∥
xµ

∂Aµ

∂τ
+

∂C1

∂τ
xµ

∂Aµ

∂τ
+

∂C1

∂τ

xµ
∂Bµ

∂τ
+

∂C2

∂τ
xµ

∂Bµ

∂τ
+

∂C2

∂τ

∥∥∥∥∥∥∥∥
�= 0. (10)

2) Aµ(x)xµ + C1(u) = 0, (11)

where Aµ(u), C1(u) are arbitrary smooth functions satisfying relations

AµAµ = 0 (12)

(in the formulae (7)–(12) the index µ takes the values 0, 1, 2, 3, 4).
Note 2. In 1915 Bateman [5] investigating particular solutions of the Maxwell equa-
tions came to the problem of integrating the d’Alembert equation �4u = 0 with
additional nonlinear condition (the eikonal equation) uxµ

uxµ
= 0. He obtained the

following class of exact solutions of the above system:

u(x) = Cµ(τ)xµ + C4(τ), (13)

where τ = τ(x) is a smooth function determined from the equation

Ċµ(τ)xµ + Ċ4(τ) = 0, (14)

cµ(τ), C4(τ) are arbitrary smooth functions satisfying the conditions

CµCµ = ĊµĊµ = 0. (15)
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It is not difficult to show that the solutions (13)–(15) are complex (see Lemma 1
below). Another class of complex solutions of the system (1) with n = 4 was construc-
ted by Yerugin [3]. But neither Bateman formulae (13)–(15) not Yerugin’s results give
the general solution of the system (1) with n = 4.

3. Proof of Theorems 1–3. It is well-known that the system of PDE (1) admits
an infinite-dimensional Lie algebra [6]. It is this very fact that enables us to construct
its general solution.

Proof of the Theorem 1. Let us make in (1) the hodograph transformation

z0 = u(x), za = xa, a = 1, n− 1, w(z) = x0. (16)

Evidently, the transformation (16) is defined for all functions u(x), such that ux0 �≡ 0.
But the system (1) with ux0 = takes the form

n−1∑
a=1

uxaxa
= 0,

n−1∑
a=1

u2
xa

= 0,

whence uxa
≡ 0, a = 1, n− 1 or u(x) = const.

Consequently, the change of variables (16) is defined on the whole set of solutions
of the system with the only exception u(x) = const.

Being rewritten in the new variables z, w(z) the system (1) takes the form

n−1∑
a=1

wzaza
= 0,

n−1∑
a=1

w2
za

= 1. (17)

Differentiating the second equation with respect to zb, zc we get

n−1∑
a=1

(wzazbzc
wza

+ wzazb
wzazc

) = 0.

Choosing in the above equality c = b and summing we have

n−1∑
a,b=1

(wzazbzb
wza

+ wzazb
wzazb

) = 0,

whence, by force of (17),

n−1∑
a,b=1

w2
zazb

= 0. (18)

Since w(z) is a real valued function from (18) it follows that wzazb
= 0, a, b =

1, n− 1, whence

w(z) =
n−1∑
a=1

αa(z0)za + α(z0). (19)

In (19) αa, α ∈ C2(R1, R1) are arbitrary functions.
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Substituting (19) into the second equation of system (17), we have

n−1∑
a=1

α2
a(z0) = 1. (20)

Thus, the formulae (19), (20) give the general solution of the system of nonlinear
PDE (17). Rewriting (19), (20) in the initial variables, we get

x0 =
n−1∑
a=1

αa(u)xa + α(u),
n−1∑
a=1

α2
a(u) = 1. (21)

To represent the formula (21) in the manifestly covariant form (3) we redefine the
functions αa(u) in the following way:

αa(u) =
Aa(u)
A0(u)

, α(u) = − B(u)
A0(u)

, a = 1, n− 1.

Substituting the above expressions into (21) we come to the formulae (7).
Further, since u = const is contained in the class of functions u(x) determined by

the formulae (7) under Aµ ≡ 0, µ = 0, n− 1, B(u) = u + const, JSSF (7) give the
general solution of the system of the PDE (1) with an arbitrary n ∈ N. The theorem
is proved.

Let us emphasize that the above used arguments can be applied only to the case of
real-valued function u(x). It a solution of the system (1) is looked for in the class of
complex-valued functions u(x). JSSF (7) do not give its general solution with n > 3.
Each case n = 4, 5, . . . requires a special consideration.

Further we shall adduce the proof of Theorem 3 (Theorem 2 is proved in the same
way).

Case 1. ux0 �= 0. In this case the hodograph transformation (16) reducing the
system (1) with n = 5 to the form

4∑
a=1

wzaza
= 0,

4∑
a=1

w2
za

= 1, wz0 �= 0 (22)

is defined.
The general solution of nonlinear complex Eqs. (22) was constructed by the authors

in [7]. It is given by the following formulae:

1) w(z) =
4∑

a=1

αa(τ, z0)za + γ1(τ, z0), (23)

where τ = τ(z0, . . . , z4) is the function determined from the equation

4∑
a=1

βa(τ, z0)za + γ2(τ, z0) = 0 (24)

and αa, βa, γ1, γ2 ∈ C2(C2, C1) are arbitrary functions satisfying the relations

4∑
a=1

α2
a = 1,

4∑
a=1

αaβa =
4∑

a=1

β2
a = 0,

4∑
a=1

αa
∂βa

∂τ
= 0. (25)
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2) w(z) =
4∑

a=1

αa(z0)za + γ1(z0), (26)

where αa, γ1 ∈ C2(C2, C1) are arbitrary functions satisfying the relation

4∑
a=1

α2
a = 1. (27)

Rewriting the formulae (24), (25) in the initial variables x, u(x), we have

x0 =
4∑

a=1

αa(τ, u)xa + γ1(τ, u), (28)

where τ = τ(u, x) is a function determined from the equation

4∑
a=1

βa(τ, u)xa + γ2(τ, u) = 0 (29)

and the relations (25) hold.
Evidently, the formulae (7) under

A0 = 1, Aa = αa, C1 = −γ1,

B0 = 0, Ba = βa, C2 = −γ1, a = 1, 4.
(30)

Further, by force of inequality wza
�≡ 0 we get from (23)

4∑
a=1

(αaz0 + αaτ τz0)xa + γ1z0 + γ1τ τz0 �= 0. (31)

Differentiation of (24) with respect to z0 yields the following expression for τz0 :

τz0 = −
(

4∑
a=1

βaz0xa + γ2z0

)(
4∑

a=1

βaτxa + γ2τ

)−1

.

Substitution of the above result, into (31) yields relation of the form

(
4∑

a=1

βaτxa + γ2τ

)−1

∣∣∣∣∣∣∣∣∣∣∣

4∑
a=1

αaz0xa + γ1z0

4∑
a=1

αaτxa + γ1τ

4∑
a=1

βaz0xa + γ2z0

4∑
a=1

βaτxa + γ2τ

∣∣∣∣∣∣∣∣∣∣∣
�= 0.

As the direct, check shows the above inequality follows from (10) with the condi-
tions (30).

Now we turn to solutions of the system (22) of the form (26). Rewriting the
formulae (26), (27) in the initial variables x, u(x) we get

x0 =
4∑

a=1

αa(u)xa + γ1(u),
4∑

a=1

α2
a(u) = 1.
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After making in the obtained equalities the chance αa = AaA−1
0 , a = 1, 4, γ1 =

−C1A
−1
0 , we arrive at the formulae (11), (12).

Thus, under ux0 �≡ 0 the general solution of the system (1) is contained in the
class of functions u(x) given by the formulae (7)–(10) or (11), (12).

Case 2. ux0 ≡ 0, u �≡ const. It is well-known that the system of PDE (1) is
invariant under the generalized Poincaré group P (1, n− 1) (see, e.g. [8])

x′
µ = Λµνxν + Λµ, u′(x′) = u(x),

where Λµν , Λµ are arbitrary complex parameters satisfying the relations ΛµαΛαν =
gµν , µ, ν = 0, n− 1. Hence, it follows that, the transformation

u(x) + u(x′) = u(Λµνxν) (32)

leaves the set of solutions of the system (1) invariant. So when u(x) �≡ const we can
obtain ux0 �≡ 0 by using the transformation (32). Consequently, in the case 2 the
general solution is also given by the formulae (7)–(12) up to the transformation (32).

Case 3. u = const. Choosing in (11), (12) Aµ = 0, µ = 0, 4, C1 = u + const we
come to the condition that this solution is described by the formulae (7)–(12).

Thus, we have proved that, up to transformations from the group P (1, 4) (32), the
general solution of the system of PDE (1) with n = 5 is given by the formulae (7)–
(12). But these formulae are not changed with the transformation (32). So to complete
the proof of the theorem it is enough to demonstrate that each function u = u(x),
determined by the equalities (7)–(12), is a solution of the system of equations (1).

Differentiating the relations (7), (8) with respect to xµ, we have

Aµ + τxµ
(Aντxν + C1τ ) + uxµ

(Aνuxν + C1u) = 0,
Bµ + τxµ

(Bντxν + C2τ ) + uxµ
(Bνuxν + C2u) = 0.

Resolving the above system of linear algebraic equations with respect to uxµ
, τxµ

,
we get

uxµ
=

1
∆

(Bµ(Aντxν + C1τ )−Aµ(Bντxν + C2τ )),

τxµ
=

1
∆

(Aµ(Bνuxν + C1u)−Bµ(Aνuxν + C2u)),
(33)

where ∆ �= 0 by force of (10). Consequently,

uxµ
uxµ

= ∆−2
[
BµBµ(Aντxν + C1τ )2 −

− 2AµBµ(Aντxν + C1τ )(Bντxν + C2τ )+ AµAµ(Bντxν + C2τ )2
]
= 0.

Analogously, differentiating (33) with respect to xν and convoluting the obtained
expression with the metric tensor gµν , we get

gµνuxµxν
= �5u = 0.

Further, differentiating (11) with respect to xµ, we have

uxµ
= −Aµ(Ȧνxν + Ċ1)−1, µ = 0, 4,
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whence

uxµxν
= −(ȦµAν + ȦνAµ)(Ȧνxν + Ċ1)−2 + AµAν(Äνxν + C̈1)(Ȧνxν + Ċ1)−2.

Consequently,

uxµ
uxµ

= AµAµ(Ȧνxν + Ċ1)−2 = 0,

�5u ≡ uxµxµ
= −(ȦµȦµ)(Ȧνxν + Ċ1)−2 +

+ AµAµ(Äνxν + C̈1)(Ȧνxν + Ċ1)−2 = 0.

Theorem 3 is proved.
4. Applications: reduction of the nonlinear wave equation (2). Following [7,

8] we look for a solution of the nonlinear wave equation

�4w = F (w), F ∈ C1(R1, R1) (34)

in the form

w = ϕ(w1, w2), (35)

where wi = wi(x) ∈ C2(R4, R1) are functionally-independent. The functions w1(x),
w2(x) are determined by the demand that the substitution of (35) into (34) yields two-
dimensional PDE for a function ϕ(w1, w2). As a result we obtain an over-determined
system of PDE [8]

�4w1 = f1(w1, w2), �4w2 = f2(w1, w2),
w1xµ

w1xµ
= g1(w1, w2), w2xµ

w2xµ
= g2(w1, w2),

w1xµ
w2xµ

= g3(w1, w2), rank ‖∂wi/∂xµ‖2i=1
3
µ=0 = 2

(36)

and besides the function ϕ(w1, w2) satisfies the two-dimensional PDE

g1ϕw1w1 + g2ϕw2w2 + 2g3ϕw1w2 + f1ϕw1 + f2ϕw2 = F (ϕ). (37)

Let us consider the following problem: to describe all smooth real functions w1(x),
w2(x) such that the ansatz (35) reduces Eq. (34) to ordinary differential equation
(ODE) with respect to the variable w1. It means that one has to put coefficients g2,
g3, f2 in (37) equal to zero. In other words, it is necessary to construct the general
solution of the system of nonlinear PDE

�4w1 = f1(w1, w2), w1xµ
w1xµ

= g1(w1, w2),
w1xµ

w2xµ
= 0, w2xµ

w2xµ
= 0, �4w2 = 0.

(38)

The above system contains Eqs. (1) as a subsystem. So, the d’Alembert–eikonal
system (1) arises in a natural way when solving the problem of reduction of Eq. (34)
be PDE having the smaller dimension (see, also [7, 9]).

Under the appropriate choice of the function G(w1, w2) the change of variables

v = G(w1, w2), u = w2

reduces the system (38) to the form

�4v = f(v, u), vxµ
vxµ

= λ, (39a)
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vxµ
uxµ

= 0, uxµ
uxµ

= 0, �4u = 0, (39b)

rank

∥∥∥∥∥ vx0 vx1 vx2 vx3

ux0 ux1 ux2 ux3

∥∥∥∥∥ = 2, (39c)

where λ is a real parameter taking the values −1, 0, 1.
Before formulating the principal assertion, we shall prove an auxiliary lemma.

Lemma. Let a = (a0, a1, a2, a3), b = (b0, b1, b2, b3) be four-vectors defined in the real
Minkowski space M(1, 3). Suppose they satisfy the relations

aµbµ = bµbµ = 0,

3∑
µ=0

b2
µ �= 0. (40)

Then the inequality aµaµ ≤ 0 holds.
Proof. It is known that any isotropic vector b in the space M(1, 3) can be reduced to
the form b = (α, α, 0, 0), α �= 0 by means of transformations from the group P (1, 3).
Substituting b = (α, α, 0, 0) into the first equality from (40), we get

α(a0 − a3) = 0 ←→ a0 = a3.

Consequently, the vector a has the following component: a0, a1, a2, a0. That is
why aµaµ = a2

0 − a2
1 − a2

2 − a− 02 = −(a2
1 + a− 22) ≤ 0.

Let us note that aµaµ = 0 iff a2 = a3, i.e. aµaµ = 0 iff the vectors a and b are
parallel.

Theorem 4. Eqs. (39a-c) are compatible iff

λ = −1, f = −N(v + h(u))−1, (41)

where h ∈ C1(R1, R1) is an arbitrary function, N = 0, 1, 2, 3.
Theorem 5. The general solution of the system of Eqs. (39a-c) being determined up
to the transformation from the group P (1, 3) is given by the following formulae:

a) under f = −3(v + h(u))−1, λ = −1

(v + h(u))2 = −(ȦνȦν)−1(Ȧµxµ + Ḃ)2 +

+ (ȦνȦν)−3(EµναβAµȦνÄαxβ + C)2,
Aµ(u)xµ + B(u) = 0;

(42)

b) under f = −2(v + h(u))−1, λ = −1

(v + h(u))2 = −(ȦνȦν)−1(Ȧµxµ + Ḃ), Aµxµ + B = 0, (43a)

where Aµ(u), B(u), C(u) are arbitrary smooth functions satisfying the relations

AµAµ = 0, ȦµȦµ �= 0; (43b)

c) under under f = −(v + h(u))−1, λ = −1

u = C0(x0 − x3),
(v + h(x0 − x3))2 = (x1 + C1(x0 − x3))2 + (x2 + C2(x0 − x3))2,

(44)

where C0, C1, C2 are arbitrary smooth functions;
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d) under f = 0, λ = −1

1) v = (−ȦνȦν)−3/2EµναβAµȦνÄαxβ + C, Aµxµ + B = 0, (45)

where Aµ(u), B(u), C(u) are arbitrary smooth functions satisfying the relations
(43b);

2) u = C0(x0 − x3), (46)

v = x1 cos C1(x0 − x3) + x2 sinC1(x0 − x3) + C2(x0 − x3), (47)

where C0, C1, C2 are arbitrary smooth functions.
In the above formulae (42), (43a), (45) we denote by the symbol Eµναβ the

components of antisymmetrical fourth-order tensor, i.e.

Eµναβ =




1, (µ, ν, α, β) = cycle (0, 1, 2, 3),
−1, (µ, ν, α, β) = cycle (1, 0, 2, 3),

0, in the remaining cases.
(48)

Proof of Theorems 4, 5. By force of (39c) u �≡ const. Consequently, up to
transformations from the group P (1, 3) ux0 �≡ 0. That is why one can apply to
Eqs. (39) the hodograph transformation

z0 = u(x), za = xa, a = 1, 3,

w(z) = x0, v = v(z0, za).
(49)

As a result the system (39a,b) reads

3∑
a=1

w2
za

= 1,
3∑

a=1

wzaza
= 0, (50a)

3∑
a=1

vza
wza

= 0, (50b)

3∑
a=1

v2
za

= −λ,
3∑

a=1

(vzaza
+ 2w−1

z0
vza

wzaz0) = −f(v, z0). (50c)

Since v(z) is a real-valued function, λ = −1 or λ = 0.
Case 1. λ = −1. As it is shown in the Section 1, the general solution of the system

(50a) in the class of real-valued functions w(z) is given by the formulae (19), (20)
with n = 4. On substituting (19) into (50b), we obtain the linear first-order PDE

3∑
a=1

αa(z0)vza
= 0, (51)

the general solution of which is represented in the form

v = v(z0, ρ1, ρ2). (52)
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In (52)

z0, ρ1 =

(
3∑

a=1

α2
a

)−1/2( 3∑
a=1

α̇aza + α

)
,

ρ2 =

(
3∑

a=1

α̇2
a

)−1/2 3∑
a,b,c=1

Eabczaαbα̇c

are first integrals of Eq. (51) and what is more
3∑

a=1
α2

a �= 0 (the case αa = const,

a = 1, 3 will be considered separately).
Substitution of the expression (52) into (50c) yields the system of two PDE for

a function v = v(z0, ρ1, ρ2)

vρ1ρ2 + vρ2ρ2 + 2ρ−1
1 vρ1 = −f(v, z0), (53a)

v2
ρ1

+ v2
ρ2

= 1. (53b)

Let us exclude function f(v, z0) from (53) by considering of the third-order diffe-
rential consequence of (53)

vρ2(vρ1ρ1 + vρ2ρ2 + 2ρ−1
1 vρ1)ρ1 − vρ1(vρ1ρ1 + vρ2ρ2 + 2ρ−1

1 vρ1)ρ2 = 0, (54a)

v2
ρ1

+ v2
ρ2

= 1. (54b)

Further we shall consider the cases vρ2ρ2 = 0 and vρ2ρ2 �= 0 separately.
A. vρ2ρ2 = 0. Then

v = g1(z0, ρ1)ρ2 + g2(z0, ρ1), (55)

where g1, g2 ∈ C2(R2, R1) are arbitrary functions.
Substituting (55) into (54b) and splitting the obtained quality by the powers of ρ2,

we have

g1ρ1 = 0, g2
1 + (g2ρ2)

2 = 1,

whence

v = αρ1 ±
√

1− α2ρ2 − h(z0). (56)

Here α ∈ R
1 is an arbitrary smooth function.

Substituting (56) into (53a), we get an algebraic equation α
√

1− α2 = 0, whence
α = 0,±1.

Finally, substitution of (56) into (53a) yields an equation for f(v, z0)

2αρ−1
1 = −f

(
αρ1 ±

√
1− α2ρ2 − h(z0), z0

)
. (57)

From Eq. (57) it follows that under α = 0

f = 0, v = ±ρ2 − h(z0) (58)
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and under α = ±1

f = −2(v + h(z0))−1, v = ±ρ1 − h(z0). (59)

B. vρ2ρ2 �= 0. In such a case one can apply the Euler transformation to Eqs. (54)

z0 = y0, ρ1 = y1, ρ2 = Gy2 , v + G = ρ2y2, vρ1 = −Gy1 , vρ2 = y2,

vρ2ρ2 = (Gy2y2)
−1, vρ1ρ2 = −Gy1y2(Gy2y2)

−1,

vρ1ρ1 = (G2
y1y2
−Gy1y1Gy2y2)(Gy2y2)

−1.

(60)

Here y0, y1, y2 are new independent variables, G = G(y0, y1, y2) is a new function.
In the new variables y, G(y) the equation (54b) is linearized

Gy1 = ±
√

1− y2
2 ,

whence

G = ±y1

√
1− y2

2 + H(y0, y2), H ∈ C2(R2, R1). (61)

The equation (54a) after the change of variables (60) and substitution of the
formula (61) takes the form[

y1 − (1− y2
2)3/2Hy2y2

]−2 [
3y2Hy2y2 + (y2

2 − 1)Hy2y2y2

]
+ 2y2

1Hy2y2 = 0. (62)

Splitting (62) by the powers of y1 and integrating the obtained equations, we get

H = h1(y0)y2 + h2(y0).

Substituting the above result into (61) and returning to the initial variables z0, ρ1,
ρ2, v(z0, ρ1, ρ2), we have the general solution of the system of PDE (54)

v + h2(z0) = ± [(ρ2 − h1(z0))2 + ρ2
1

]1/2
. (63)

At last, substituting (63) into the equation (53a), we come to conclusion that the
function f is determined by the formula

f(v, z0) = −3(v + h2(z0))−1.

Let, us consider now the case αa = const, a = 1, 3. Then the equality α2
1+α2

2+α2
3 =

1 holds. That is why, using transformations from the group P (1, 3), one can obtain
α1 = α2 = 0, α3 = 1, i.e. u = C0(x0−x3), C0 ∈ C2(R1, R1). Then, from Eqs. (39b) it
follows that v = v(ξ, x1, x2), ξ = x0 − x3 and what is more Eqs. (39a) take the form

v2
x1

+ v2
x2

= 1, vx1x1 + vx2x2 = −f(v, C0(ξ)). (64)

It, is known [7, 10] that Eqs. (64) are compatible iff f = 0 or f = −(v + h(ξ))−1,
h ∈ C1(R1, R1). And besides the general solution of (64) is given by the formulae
(46) and (44) respectively.

Thus we have completely investigated the case λ = −1.
Case 2. λ = 0. By force of the fact that the function v is a real one, from (50b)

it follows that v = v(z0). Consequently, the equality v = v(u) holds that breaks the
condition (39c). So under λ = 0 the system (39a-c) is incompatible.
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So, we have proved that the system of nonlinear PDE (39a-c) is compatible iff the
relations (41) hold and its general solution is given by one of the formulae (44), (46),
(58), (59), (63). To complete the proof, one has to rewrite the expressions (58), (59),
(63) in the manifestly covariant form (42), (43a), (45).

Let us consider as an example the formula (59)

v = ±ρ1 − h(z0) = ±
(

3∑
a=1

α̇2
a

)−1/2( 3∑
a=1

xaα̇a(u) + α̇(u)

)
− h(u), (65)

the function u(x) being determined by the formula (12)

3∑
a=1

αa(u)xa + α(u) = 0,
3∑

a=1

α2
a(u) = 1. (66)

Let us make in (65), (66) the change αa = AaA−1
0 , α = −BA−1

0 , whence

Aµ(u)xµ + B(u) = 0, AµAµ = 0,

h(u) + v = ±
[

3∑
a=1

ȦaA−1
0 −AaȦ0A

−2
0

]−1/2

×

×
[

3∑
a=1

xa(ȦaA−1
0 −AaȦ0A

−2
0 ) + BȦ0A

−2
0 − ḂA−1

0

]
=

= ±
[

3∑
a=1

(Ȧ2
aA−2

0 + A2
aȦ2

0A
−1
0 − 2ȦaAaȦ0A

−3
0 )−1/2

]
×

×
[

3∑
a=1

xa(ȦaA−1
0 −AaȦ0A

−2
0 ) + BȦ0A

−2
0 − ḂA0

]
=

= ±
[
−ȦµȦµA−2

0 −AµAµȦ2
0A

−4
0 + 2ȦµAµȦ0A

−3
0

]−1/2

×
×
[
−A−1

0 (xµȦµ + Ḃ) + A−2
0 Ȧ0(xµAµ + B)

]
=

= ∓(−ȦµȦµ)−1/2(xµȦµ + Ḃ).

The only thing left is to prove that ȦµȦµ < 0. Since AµAµ = 0, the equality
ȦµAµ = 0 holds. Consequently, by force of the lemma −AµȦµ ≥ 0 and what is
more the equality ȦµȦµ = 0 holds iff Ȧµ = k(u)Aµ. The general solution of the
above system of ordinary differential equations reads Aµ = k̃(u)θµ, where k̃(u) is an
arbitrary function, θµ ∈ R

1, θµθµ = 0. Whence it follows that αa = AaA−1
0 = θaθ−1

0 =

const and the condition
3∑

a=1
α̇2

a �= 0 does not hold. We come to the contradiction

whence it follows that ȦµȦµ < 0.
Thus we have obtained the formula (43a). Derivation of the remaining formulae

from (42), (45) is carried out in the same way. The theorems are proved.



On the general solution of the d’Alembert equation 551

Substitution of the above obtained results into the formula w = ϕ(v, u) yields the
following collection of ansätzes for the nonlinear wave equation (34)

1. w = ϕ
(
− h(u)±

[
(−ȦνȦν)−1(Ȧµxµ + Ḃ)2−

− (ȦνȦν)−3(EµναβAµȦνÄαxβ + C(u))2
]1/2

, u
)
;

2. w = ϕ
(
− h(u)± (−ȦνȦν)1/2(Ȧµxµ + Ḃ), u

)
;

3. w = ϕ
(
h(x0 − x3)± ([x1 + C1(x0 − x3)]2 +

+ [x2 + C2(x0 − x3)]2)1/2, x0 − x3

)
;

4. w = ϕ
(
(−ȦνȦν)−3/2(EµναβAµȦνÄαxβ + C(u)), u

)
;

5. w = ϕ
(
x1 cos C1(x0 − x3) + x2 sin C1(x0 − x3) + C2(x0 − x3), x0 − x3

)
.

(67)

Here u = u(x) is determined by JSSF (8) with n = 4.
Substitution of the expressions (67) into (34) gives the following equations for

ϕ = ϕ(u, v):

1. ϕvv + 3(v + h(u))−1ϕv = −F (ϕ), (68)

2. ϕvv + 2(v + h(u))−1ϕv = −F (ϕ), (69)

3. ϕvv + (v + h(u))−1ϕv = −F (ϕ),

4. ϕvv = −F (ϕ), (70)

5. ϕvv = F (ϕ).

Eqs. 4, 5 from (68)–(70) are known to be integrable in quadratures. Therefore,
any solution of the d’Alembert–eikonal system (1) corresponds to some class of exact
solutions of the nonlinear wave equation (34) that contains arbitrary functions. Saying
it in another way, the formulae (67) make it possible to construct wide families
of exact solutions of the nonlinear PDE (34) using exact solutions of the linear
d’Alembert equation �4u = 0 satisfying the additional constraint uxµ

uxµ
= 0.

It is interesting to compare our approach to the problem of reduction of Eq. (34)
with classical Lie approach. In the framework of the Lie approach the functions w1(x),
w2(x) from (35) are looked for as invariants of the symmetry group of the equation
under study (in the case involved it is the Poincaré group P (1, 3)). Since the group
P (1, 3) is a finite-parameter group, its invariants cannot contain an arbitrary function
(complete description of invariants of the group P (1, 3) had been carried out in [11]).
So the ansätzes (67) cannot be obtained by means of Lie symmetry of the PDE (34).

The ansätzes (67) correspond to conditional invariance of the nonlinear wave
equation (34). It means that there exist two differential operators Qa = ξaµ(x)∂xµ

,
a = 1, 2 such that

Qaw ≡ Qaϕ(w1, w2) = 0, a = 1, 2

and besides the system of PDE

Qaw = 0, a = 1, 2, �4w − F (w) = 0
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is invariant in Lie’s sense under the one-parameter groups having generators Q1, Q2

(on the conditional invariance of mathematical and theoretical physics equations see
[8, 12, 13]).

It is worth noting that the ansätzes 2, 5 from (67) were obtained in [14] without
using the concept of conditional invariance.

5. On the new exact, solutions of the nonlinear wave equation. The general
solution of Eqs. (70) is given by the following quadrature [15]:

v + D(u) =
∫ ϕ(u,v)

0

[
−
∫ τ

0

F (z)dz + C(u)
]−1/2

dτ, (71)

where D(u), C(u) ∈ C2(R1, R1) are arbitrary functions.
Substituting into (71) expressions for u(x), v(x) given by the formulae 4, 5 from

(67), we get two classes of exact solutions of the nonlinear wave equation (34) that
contain several arbitrary functions of one variable.

Eqs. (68), (69) are Emden–Fauler type equations. They were investigated by many
authors see, e.g. [15]). In particular, it is known that the equations

ϕvv + 2v−1ϕv = −λϕ5, (72)

ϕvv + 3v−1ϕv = −λϕ3 (73)

are integrated in quadratures. In the paper [11] it had been established that Eqs. (72),
(73) possess the Painleve property. This fact made it possible to integrate them
by applying rather complicated technique. We shall demonstrate how to integrate
Eqs. (72), (73) by using their symmetry properties.

It occurs that Eq. (72) admits the symmetry operator Q = 2v∂v − ϕ∂ϕ. Follo-
wing [15] we find the change of the variables

ϕ = z(τ)v−1/2, τ = ln v

that reduce the operator Q to the form Q′ = ∂τ . Eq. (72) in the new variables reads

zττ =
1
4
z − λz5,

whence

z2
τ =

1
4
z2 − λ

3
z6 +

1
4
D(u), (74)

where D(u) ∈ C1(R1, R1) is an arbitrary function. Further we consider in detail the
case D(u) = δ ≡ const.

On putting z2 = R(τ) we get the following equation:

R2
τ = −4λ

3
R4 + R2 + δR ≡ S(R). (75)

Integration of (75) yields∫ z2

0

dR√
S(R)

= ±(ln v + lnC(u)). (76)

Here C(u) is an arbitrary smooth function.
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Let us represent the polynomial S(R) in the form

S(R) = −4
3
λR(R− θ1)(R− θ2)(R− θ3),

where θi are the roots of the polynomial S(R) that satisfy equations (the Vieta’s
theorem)

θ1 + θ2 + θ3 = 0, θ1θ2 + θ2θ3 + θ3θ1 = − 3
4λ

, θ1θ2θ3 =
3δ

4
.

The explicit form of the integral in the left side of Eq. (76) depends on relations
connecting the roots θi.

Case 1. θ1 = 0, θ2 �= θ3, θ2 �= 0, θ3 �= 0. Such a case taken place under δ = 0,
solution of Eq. (72) being given by the formulae

ϕ =

{ √
3C(u)

a(1 + C2(u)v)2

}1/2

under λ = a2 > 0, (77)

ϕ =

{ √
3C(u)

a(1− C2(u)v)2

}1/2

under λ = −a2 < 0, (78)

Case 2. θ1 = θ2, θ2 �= 0, θ3 �= 0, θ3 �= θ2. Such relations are satisfied provided
λ = a2 > 0, δ = ±(3a)−1, solution of Eq. (72) taking the form

ϕ =
{

sin(ln(vC(u))) + 1
av(2 sin(ln(vC(u)))− 4)

}1/2

. (79)

Case 3. θ1 �= θ2, θ2 �= θ3, θ3 �= θ1. λ = −a2 < 0. In such a case the polynomial
S(R) has two real and two complex roots. Therefore it is represented in the form

S(R) =
4a2

3
R(R + θ1)((R + θ2)2 + θ2

3),

solution of Eq. (72) taking the form

ϕ =




pθ1

(
1− cn

[
2a√

3

√
pq ln(vC(u))

])
v
[
(p + q)cn

[
2a√

3

√
pq ln(vC(u))

]
+ q − p

]



1/2

. (80)

Here

p =
√

θ2
2 + θ2

3, q =
√

(θ1 + θ2)2 + θ2
3, h =

1
2

√
(p + q)2 + θ2

1

pq
.

Case 4. θ1 �= θ2, θ2 �= θ3, θ3 �= θ1, 0 < 1
λ < (3δ)2, λ = a2. The polynomial S(R)

has two real and two complex roots and is given by the formula

S(R) =
4a2

3
R(θ1 −R)((R + θ2)2 + θ2

3).
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The solution of Eq. (72) has the form

ϕ =




qθ1

(
1 + cn

[
2a√

3

√
pq ln(vC(u))

])
v
[
(p + q) + (q − p)cn

[
2a√

3

√
pq ln(vC(u))

]]



1/2

, (81)

where

p =
√

(θ2 − θ1)2 + θ2
3, q =

√
θ2
2 + θ2

3, h =
1
2

√
θ2
1 − (p + q)2

pq
.

Case 5. θ1 �= θ2, θ2 �= θ3, θ3 �= θ1, λ = a2 > 0, λ(3δ)2 < 1. Is this case the
polynomial S(R) has four real roots θ0 < θ1 < θ2 < θ3 (one of them is equal to zero)
and is represented in the form

S(R) =
4a2

3
(θ0 −R)(R− θ1)(R− θ2)(R− θ3).

Solution of Eq. (72) reads

ϕ =




θ0(θ1 − θ3)− θ3(θ1 − θ0) sn2
[

a√
3

√
(θ0 − θ2)(θ1 − θ3) ln(vC(u))

]
v
(
θ1 − θ3 − (θ1 − θ0) sn2

[
a√
3

√
(θ0 − θ2)(θ1 − θ3) ln(vC(u))

])



1/2

.(82)

In the above formulae (80)–(82) cn, sn are elliptic functions of the order k.
Substituting the formulae (77)–(82) into the ansatz 2 from (67) with h ≡ 0, where

u = u(x) is determined by JSSF (43a) we obtain wide families of new exact solutions
of the nonlinear PDE (34) under F (w) = λw5.

Eq. (73) is integrated in analogous way. As a result we have

1. λ = −a2 < 0,

ϕ =
1
av

tg

(
±
√

2
a2

ln(vC(u))

)
;

(83)

2. λ = a2 > 0,

ϕ =
2
√

2C(u)
a(1 + v2C2(u))

;
(84)

3. λ = −a2 < 0,

ϕ =
2
√

2C(u)
a(1− v2C2(u))

;
(85)

4. λ = 2a−2 > 0, a > 0,

ϕ =
b

v
cn

[√
b2 + d2

a
ln(vC(u))

]
,

(86)

where

b =
(
a2 + a

√
a2 + 4δ

)1/2

, d =
(
−a2 + a

√
a2 + 4δ

)1/2

,

δ ∈ R
1, k = b−1

√
b2 − d2;
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5. λ = 2a−2 > 0, a > 0,

ϕ =
b

v
dn
(

b

a
ln(vC(u))

)
,

(87)

where

b =
(
a2 + a

√
a2 + 4δ

)1/2

, d =
(
a2 − a

√
a2 + 4δ

)1/2

, k = b−1
√

b2 − d2;

6. λ = −2a−2 < 0, a > 0,

ϕ =
b

v

[
cn

(√
b2 − d2

a
ln(vC(u))

)]
,

(88)

where

b =
(
a2 + a

√
a2 + 4δ

)1/2

, d =
(
a
√

a2 + 4δ − a2
)1/2

,

δ > 0, k = d(b2 + d2)−1/2;

7. λ = −2a−2 < 0, −a2

4
< δ < 0, a > 0,

ϕ =
b

v
tn
(

b

a
ln(vC(u))

)
,

(89)

where

b =
(
a2 + a

√
a2 + 4δ

)1/2

, d =
(
a2 − a

√
a2 + 4δ

)1/2

, k = b−1
√

b2 − d2;

8. λ = −2a−2 < 0,

ϕ =
b

v

(
1 + cn

(
2b
a ln(vC(u))

)
1− cn

(
2b
a ln(vC(u))

)
)1/2

,
(90)

where

b = 4
√
−4δa2, δ < −a2

4
, k =

√
b2 − d2

√
2b

.

In the above formulae (83)–(90) cn, dn, tn are elliptic functions of the order k.
Substituting the formulae (83)–(90) into the ansatz 1 from (67) with h = 0, where

u = u(x) is determined by JSSP (43a) we get ad families of exact solutions of the
nonlinear Eq. (34) under F (w) = λw3.

Let us emphasize once more that solutions of nonlinear PDE (34) obtained in the
above described manner contain several arbitrary functions and cannot in principle be
constructed by means of symmetry reduction procedure.

In conclusion, we adduce two examples of exact solutions of Eq. (34) with F (w) =
λw3 that can be written down in the explicit form

u(x) =
(
x2

1 + x2
2 + x2

3 − x2
0

)1/2
tg

{√
2

[
ln
(
x2

1 + x2
2 + x2

3 − x2
0

)1/2
+

+ ln

[
C

(
x0x1 ± x2

√
x2

1 + x2
2 − x2

0

x2
1 + x2

2

)]]}
,
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u(x) =
(
x2

1 + x2
2 + x2

3 − x2
0

)1/2
tg

{√
2

[
ln
(
x2

1 + x2
2 + x2

3 − x2
0

)1/2
+

+ ln

[
C

(
x1x2 ± x0

√
x2

1 + x2
2 − x2

0

x2
1 + x2

2

)]]}
.

(91)

Here C is an arbitrary smooth function.
It is important to note that the formulae (91) under C ≡ const give the already

known solutions (see, e.g. [8, 11]).
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