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Conditional symmetry and reduction
of partial differential equations
W.I. FUSHCHYCH, R.Z. ZHDANOV

Sufficient reduction conditions for partial differential equations possessing nontrivial
conditional symmetry are established. The results obtained generalize the classical
reduction conditions of differential equations by means of group-invariant solutions.
A number of examples illustrating the reduction in the number of independent and
dependent variables of systems of partial differential equations are considered.

An analysis of well-known methods for the construction of exact solutions of
nonlinear partial differential equations (PDE) (e.g., method of group-theoretic re-
duction [1, 2], method of differential constraints [3], method of ansatz [4–6]) led
us to conclude that most of these methods involve narrowing the set of solutions,
i.e., out of the whole set of solutions of the particular equations specific subsets
are selected that admit analytic description. In order to implement this approach,
certain additional constraints (expressed in the form of equations) that enable us to
distinguish these subsets must be imposed on the solution set. For obvious reasons,
these additional equations are assumed to be simpler than the initial equations. By
complementing the initial equation with additional constraints, we are usually led
to an over-determined system of PDE. Consequently, there arises the problem of
investigating the consistency of a system of PDE. A second restriction on the choice
of these additional constraints is that the resulting system of PDE possesses broader
symmetry than the initial system of PDE (or simply a different type of symmetry).

In the present paper we establish sufficient conditions for the reduction of differen-
tial equations that generalize the classical reduction conditions of PDE possessing
a nontrivial Lie transformation group. Our concern will be with the following:

UA(x, u, u
1
, . . . , u

r
) = 0, A = 1,M, (1)

ξaµ(x, u)uαxµ
− ηαa (x, u) = 0, a = 1, N, (2)

where x = (x0, x1, . . . , xn−1), u(x) = (u0(x), . . . , um−1(x)), u
s

= {∂suα/∂xµ1 . . . ∂xµs
,

0 ≤ µi ≤ n− 1}, s = 1, r, UA, ξaµ, ηαa are sufficiently smooth functions, N ≤ n− 1.
Below summation over repeated indices is understood. Let us introduce the nota-

tion

R1 = rank ‖ξaµ(x, u)‖N n−1
a=1 µ=0,

R2 = rank ‖ξaµ(x, u), ηαa (x, u)‖N n−1 m−1
a=1 µ=0 α=0.

It is self-evident that R1 ≤ R2. We shall prove that the case R1 = R2 leads to
a reduction in the number of independent variables of the PDE (1), while the case
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R1 < R2 leads to a reduction in the number of independent and the number of
dependent variables of the PDE (1).

1. Reduction of number of independent variables of PDE. In this section we
assume that R1 = R2.

Definition 1. The set of first-order differential equations

Qa = ξaµ(x, u)∂xµ
+ ηαa (x, u)∂uα , (3)

where ∂xµ
= ∂/∂xµ

, ∂uα = ∂/∂uα; ξaµ, ηαa are smooth functions, is said to be
involutive if there exist function fcab(x, u) such that:

[Qa, Qb] = fcabQc, a, b = 1, N. (4)

Here [Q1, Q2] = Q1Q2 −Q2Q1.

The simplest example of an involutive set of operators is a Lie algebra.
It is well-known that conditions (4) ensure that the over-determined system of

PDE (2) is consistent (Frobenius theorem [7]). The general solution of the system (2)
is given by the formulas

Fα(ω1, ω2, . . . , ωn+m−R1) = 0, α = 0,m− 1, (5)

where ωj = ωj(x, u) are functionally independent first integrals of the system of
PDE (2) and Fα are arbitrary smooth functions.

By virtue of the condition R1 = R2, first integrals (say, ω1, . . . , ωm) may be chosen
that satisfy the condition

det ‖∂ωj/∂uα‖m m−1
j=1 α=0 �= 0. (6)

By solving (5) with respect to ωj , j = 1, . . . ,m, we have

ωj = ϕj(ωm+1, ωm+2, . . . , ωm+n−R1), j = 1,m, (7)

where ϕj are arbitrary smooth functions

Definition 2. Formula (7) is called the ansatz of the field uα = uα(x) invariant
with respect to the involutive set of operators (3) provided (6) is satisfied.

Formula (7) become especially simple and self-evident if

∂ξaµ/∂u
α = 0, ηαa = fαβa (x)uβ ,

a = 1, N, µ = 0, n− 1, α, β, γ = 0,m− 1.
(8)

Under conditions (8) the operators in (3) may be rewritten in the following non-Lie
form [8]:

Qa = ξaµ(x)∂xµ + ηa(x), a = 1, N, (9)

where ηa = ‖ − ∂ηαa /∂u
β‖m−1
α,β=0 are (m ×m) matrices and the system (2) takes the

form

ξaµ(x)uxµ
+ ηa(x)u = 0, a = 1, N. (10)

Here u = (u0, u1, . . . , um−1)T is a column function.
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In this case, the set of functionally independent first integrals of the system (2)
with R1 = R2 may be chosen as follows [7]:

ωj = bjα(x)uα, j = 1,m,

ωi = ωi(x), i = m+ 1,m+ n−R1

(11)

and, moreover, det ‖bjα(x)‖m m−1
i=1 α=0 �= 0.

Substituting (11) in (7) and solving for the variables uα, α = 0, . . . ,m−1, we have

uα = Aαβ(x)ϕβ(ωm+1, ωm+2, . . . , ωm+n−R1)

or (in matrix notation)

u = A(x)ϕ(ωm+1, ωm+2, . . . , ωm+n−R1). (12)

It is easily verified that the matrix

(x) =
(‖bjα(x)‖m m−1

j=1 α=0

)−1

satisfies the following system of PDE:

QaA ≡ ξaµ(x)Axµ
+ ηa(x)A = 0, a = 1, N, (13)

and that the functions ωm+1(x), ωm+2(x), . . . , ωm+n−R1(x) form a complete set of
functionally independent first integrals of the system of PDE

ξaµ(x)ωxµ
= 0, a = 1, N. (14)

The ansatz (7) is said to reduce the system of PDE (1) if substitution of (7) in (1)
yields a system of PDE for the functions ϕ0, ϕ1, . . . , ϕm−1 that contains only the new
independent variables ωm+1, ωm+2, . . . , ωm+1−R1 .

Definition 3. The system of PDE (1) is conditionally invariant with respect to the
involutive set of differential operators (3) if the over-determined system of PDE
(1), (2) is Lie invariant with respect to a one-parameter transformation group with
generators Qa, a = 1, . . . , N .

Before stating the reduction theorem, we prove several auxiliary assertions.

Lemma 1. Suppose that the operators (3) form an involutive set. Then the set of
differential operators

Q′
a = λab(x)Qb, a = 1, N (15)

with det ‖λab(x, u)‖Na,b=1 �= 0 is also involutive.
We prove the assertion by direct computation. In fact,

[Q′
a, Q

′
b] = [λacQc, λbdQd] = λac(Qcλbd)Qd − λbd(Qdλac)Qc + λacλbdf

d1
cdQd1 =

= f̃cabQc = f̃cabλ
−1
cd Q

′
d.

Here λ−1
cd are the elements of the inverse of the matrix ‖λab(x, u)‖Na,b=1.

Lemma 2. Suppose that the differential operators (3) satisfy the condition R1 = R2

and that the conditions

[Qa, Qb] = 0, a, b = 1, N (16)
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are satisfied. Then there exists a change of variables

x′µ = fµ(x, u), µ = 0, n− 1, u′α = gα(x, u), α = 0,m− 1 (17)

that reduces the operators Qa to the form Q′
a = ∂x′

a−1
.

Proof. It is known that for any first-order differential operator

Q = ξµ(x, u)∂xµ
+ ηα(x, u)∂uα ,

where ξµ and ηα are sufficiently smooth functions, there exists a change of variab-
les (17) that reduces the operator Q to the form Q′ = ∂x′

0
(cf. [1]). Consequently, the

operator Q1 from the set (3) is reduced to the form Q′
1 = ∂x′

0
by means of the change

of variables (17). From the condition [Q1, Qa] = 0, a = 2, . . . , N , it follows that the
coefficients of the operators Q′

2, Q
′
3, . . . , Q

′
N do not depend on the variable x′0, whence

the operator Q′
2 reduces to the operator Q′′

2 = ∂x′′
1
under the change of variables

x′′0 = x′0, x′′µ = f ′µ(x
′
1, . . . , x

′
n−1, u

′), µ = 1, n− 1,
u′′α = g′α(x′1, . . . , x

′
n−1, u

′), α = 0,m− 1,

without the form of the operator Q′
1 changing.

Repeating the above procedure N − 2 times completes the proof.

Lemma 3. A system of PDE of the form (1) that is conditionally invariant with
respect to a set of differential operators ∂x′

µ
, µ = 0, N − 1, possesses the structure

UA = FABWB(xN , xN+1, . . . , xn−1, u, u
1
, . . . , u

r
) + FαAµu

α
xµ
,

A = 1,M, α = 0,m− 1, µ = 0, N − 1,
(18)

where FAB and FαAµ are arbitrary smooth functions of x and u, u
1
, . . . , u

r
, WB are

arbitrary smooth functions, and, moreover, ‖FAB‖MA,B=1 �= 0.

We shall prove the lemma with N = 1. By Definition 3, the system (1) is condi-
tionally invariant under the operator Q = ∂x0 if the system

UA(x, u, u
1
, . . . , u

r
) = 0, A = 1,M,

uαx0
= 0, α = 1,m− 1

(19)

is Lie invariant with respect to a one-parameter translation group with respect to the
variable x0. Denoting by Q̃ the r-th extension of Q, the Lie invariant criteria for the
system of PDE (19) under this group assume the form (cf. [1, 2])

Q̃UA

∣∣∣UB = 0
uα

x0
= 0

= 0, A,B = 1, N, α = 0,m− 1, (19a)

Q̃uαx0

∣∣∣UB = 0

uβ
x0

= 0

= 0, B = 1, N, α, β = 0,m− 1. (19b)

Direct computation shows that the relations

Q̃ ≡ ∂x0 , Q̃uαx0
≡ ∂x0(u

α
x0

) = 0
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hold (recall that in the extended space of the variables x, u, u
1
, . . . , u

r
variables x0 and

uαx0
are independent), whence, using the method of undetermined coefficients, we may

rewrite (19a) and (19b) in the form

∂UA/∂x0 = RABUB + PαAu
α
x0
, A = 1,M, (19c)

where RAB and PαA are arbitrary smooth functions of x, u, u
1
, . . . , u

r
.

The system (19c) may be considered a system of inhomogeneous ordinary diffe-
rential equations for the functions UA, A = 1, . . . ,M . Integrating (19c) with respect
to PαA = 0, we have

U
(0)
A = FABWB , A = 1,M,

where WB , B = 1, . . . ,M , are arbitrary smooth functions of the variables x1, x2, . . .,
xn−1, u, u

1
, . . . , u

r
; F = ‖FAB‖MA,B=1 is the fundamental matrix of the system (19c)

(which is known to satisfy the condition detF �= 0).
Further, by applying the method of variation of an arbitrary parameter, we deduce

(18) with N = 1, where

FαA0 = FAB

∫
(F )−1

BCP
α
c dx0, A = 1,M, α = 0,m− 1.

The lemma is proved.

Theorem 1. Suppose that the system of PDE (1) is conditionally invariant with
respect to the involutive set of operators (3). Then the ansatz invariant with respect
to the set of operators (3) reduces this system.
Proof. By the definition of the quantity R1, R1 ≤ N . We denote by δ the difference
N − R1. Then R1 equations of the system (2) are linearly independent (without loss
of generality, we may assume that it is the first R1 equations which are linearly
independent), and the other δ equations are linear combinations of these first R1

equations.
By the condition that R1 = R2, there exists a nonsingular (R1 × R1) matrix

||λab(x, u)||R1
a,b=1 such that

λab(ξbµuαxµ
− ηαb ) = uαxa−1

+
n−1∑
µ=R1

ξ̃aµu
α
xµ

− η̃αa , a = 1, R1 α = 0,m− 1.

By the definition of conditional invariance, the system of PDE (1), (2) is invariant
with respect to one-parameter transformation groups with generators (3), whence the
equivalent system of PDE

UA(x, u, u
1
, . . . , u

r
) = 0, A = 1,M,

uαxa−1
+

n−1∑
µ=R1

ξ̃aµu
α
xµ

− η̃αa = 0, a = 1, R1, α = 0,m− 1
(20)

is invariant with respect to a one-parameter group with generators

Q′
a = λabQb = ∂xa−1 +

n−1∑
µ=R1

ξ̃aµ∂xµ
+ η̃αa ∂uα . (21)
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In fact, the action of a one-parameter transformation group with infinitesimal
operator Qa on the solution manifold of the system (20) is equivalent to an identity
transformation.

Since the set of operators (21) is involutive (Lemma 1), there exist functions
fcab(x, u) such that

[Q′
a, Q

′
b] = fcabQ

′
c, a, b, c = 1, R1. (22)

Computing the commutators on the left side of (22) and equating the coefficients
of the linearly independent operators ∂x0 , ∂x1 , ∂xR1−1 gives us fcab = 0, with a, b, c =
1, . . . , R1. Consequently, the operators Q′

a commute. Hence, by Lemma 2, there exists
a change of variables (17) that reduces these operators to the form Q′′

a = ∂/∂x′a−1.
Expressed in terms of the new variables x′ and u′(x′), the system (20) takes the

form

U ′
A(x′, u′, u′

1
, . . . , u′

r
) = 0, A = 1,M,

u′αxa−1
= 0, α = 0,m− 1, a = 1, R1.

(23)

Moreover, the system of PDE (23) is conditionally invariant with respect to the set
of operators Q′′

a = ∂′xa−1
, a = 1, . . . , R1, whence, by Lemma 3, the system (23) may

be rewritten in the form

U ′
A = FABWB(x′R1

, . . . , x′n−1, u
′, u′

1
, . . . , u′

r
) + FαAµu

′α
x′

µ
,

A = 1,M, α = 0,m− 1, µ = 0, R1 − 1,

u′αx′
a−1

= 0, α = 0,m− 1, a = 1, R1,

where det ‖FAB‖R1
A,B=1 �= 0, whence

WA(x′R1
, . . . , x′n−1, u

′, u′
1
, . . . , u′

r
) = 0,

u
′α
x′

a−1
= 0, A = 1, R1, α = 0,m− 1, a = 1, R1.

(24)

The ansatz of the field u′α = u′α(x′) invariant under the involutive set of operators
Q′′
c = ∂x′

a−1
, a = 1, . . . , R1, is given by the formulas

u′α = ϕα(x′R1
, x′R1+1, . . . , x

′
n−1), α = 0,m− 1. (25)

Here ϕα are arbitrary sufficiently smooth functions.
Substituting (25) in (24), we obtain

WA(x′R1
, . . . , x′n−1, u

′, u′
1
, . . . , u′

r
) ≡W ′

A(x′R1
, . . . , x′n−1, ϕ, ϕ

1
, . . . , ϕ

r
) = 0, (26)

where ϕ
s
is the set of partial derivatives of the functions ϕα = ϕα(x′R1

, . . . , x′n−1) of

order s.
Rewriting ansatz (25) in terms of the initial variables x and u(x)

gα(x, u) = ϕα(fR, (x, u), . . . , fn−1(x, u)), α = 0,m− 1, (27)

yields the ansatz for the field uα = uα(x), α = 0, . . . ,m − 1, invariant with respect
to the involutive set of operators (3) that reduces the system (1) to a system of PDE
with n−R1 independent variables. The theorem is proved.



530 W.I. Fushchych, R.Z Zhdanov

Corollary. Suppose that the operators

Qa = ξaµ(x, u)∂xµ
+ ηαa (x, u)∂uα , a = 1, N, N ≤ n− 1

are the basis elements of a subalgebra of the invariance algebra of the system of
equations (1) and, moreover, that R1 = R2. Then the ansatz invariant in the Lie
algebra 〈Q1, Q2, . . . , QN 〉 reduces the system (1) to a system of PDE having n −N
independent variables.
Proof. From the definition of a Lie algebra it follows that the operators Qa satisfy (4)
with fcab = const. Consequently, they form an involutive set of first-order differential
operators, which renders the above assertion a direct consequence of Theorem 1.

By the above assertion, the classical reduction theorem for differential equations
by means of group-invariant solutions [1, 2, 9] is a special case of Theorem 1. If
any one of the operators Qa does not belong to the invariance algebra of the given
equation and if the conditions of Theorem 1 hold, a reduction via Qa-conditionally
invariant ansätzes is obtained (numerous examples of conditionally invariant solutions
are constructed in [4–6, 10–14]).

We shall now consider several examples.

Example 1. The Lie-maximal invariance algebra of the Schrodinger equation

∆3u+ U(�x 2)u = 0 (28)

with arbitrary function U is the Lie algebra of the rotation group having basis
elements

Jab = xa∂xb
− xb∂xa, a, b = 1, 3. (29)

To obtain the ansatz invariant relative to the set of operators (29), the complete
set of first integrals of the following system of PDE must be constructed:

xauxb
− xbuxa

= 0, a, b = 1, 3. (30)

This set contains 3 −R1 functionally invariant first integrals, where

R1 = rank ‖ξab(x)‖3
a,b=1 = rank

∥∥∥∥∥∥
0 −x3 x2

x3 0 −x1

−x2 x1 0

∥∥∥∥∥∥ = 2.

Consequently, the ansatz for the field u = u(�x) invariant with respect to a Lie
algebra having basis elements (29) has the form

u(�x) = ϕ(ω), (31)

where ϕ ∈ C2(R1,C1) is an arbitrary smooth function and ω = ω(�x) is the first
integral of the system of PDE (30). It is not hard to see that ω = �x 2 satisfies (30)
and, consequently, is the first integral. Substitution of (31) in (28) yields an ordinary
differential equation for the function ϕ(ω):

4ωϕ̈+ 6ϕ̇+ U(ω)ϕ = 0.

Thus, the ansatz for the field u = u(�x) invariant with respect to a three-dimensio-
nal Lie algebra with basis elements (29) reduces (28) to a (3−R1)-dimensional PDE
(in this case, to an ordinary differential equation).
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Example 2. Consider the nonlinear eikonal equation

u2
x0

− u2
x1

− u2
x2

− u2
x3

+ 1 = 0. (32)

As shown in [15], the maximal invariance algebra of (32) is the 21-parameter
conformal algebra AC(2, 3). This algebra contains, in particular, a one-dimensional
subalgebra generated by the operator Q = x0∂u − u∂x0 .

To obtain the ansatz invariant under the operator Q, the complete set of first
integrals of the following PDE must be constructed:

uux0 + x0 = 0. (33)

The solution of (33) is sought for in the implicit form f(x, u) = 0, whence ufx0 −
x0fu = 0.

The complete set of first integrals of the latter PDE is ω0 = u2 + x2
0, ω1 = x1,

ω2 = x2, ω3 = x3. Solving f(ω0, ω1, ω2, ω3) = 0 with respect to ω0, we have

u2 + x2
0 = ϕ(ω1, ω2, ω3) (34)

Consequently, (34) gives the ansatz of the field uα = uα(x) invariant under the
operator Q. Solving (34) for u yields

u = {−x2
0 + ϕ(ω1, ω2, ω3)}1/2. (35)

Let us emphasize that ansatz (34) cannot be represented in the form (12), since
the coefficients of Q do not satisfy condition (8).

Substituting (35) in (32) gives us a three-dimensional PDE for the function ϕ =
ϕ(�ω):

ϕ2
ω1

+ ϕ2
ω2

+ ϕ2
ω3

− ϕ2 = 0.

Example 3. A detailed group-theoretic analysis of the nonlinear wave equation

utt = (a2(u)ux)x, (36)

where a(u) is some smooth function, was performed in [16]. It was established that
the maximal invariance algebra of (36) has the basis operators

Q1 = ∂t, Q2 = ∂x, Q3 = t∂t + x∂x, (37)

whence the most general group-invariant ansatz for the PDE (36) is given by the
formula u = ϕ(ω), where ω = ω(t, x) is the first integral of the PDE

{α∂t + β∂x + δ(t∂t + x∂x)}ω(t, x) = 0. (38)

Here α, β, and δ are arbitrary real constants. Using transformations from the group G
with generators of the form (37), Eq. (38) may be reduced to either one of the
following equations:

1) αωt + βωx = 0 (under δ = 0);
2) tωt + xωx = 0 (under δ �= 0),

The first integrals of these equations are given by the formulas ω = αx − βt and
ω = xt−1, respectively.
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Thus, there are two distinct group-invariant ansätzes of the PDE (36) with arbit-
rary function a(u):

1) u(t, x) = ϕ(αx− βt),
2) u(t, x) = ϕ(xt−1).

(39)

Substitution of the above ansätzes in (36) yields the ordinary differential equations

1) (β2 − α2a2(ϕ))ϕ̈− 2α2a(ϕ)ȧ(ϕ)ϕ̇2 = 0,
2) (ω2 − a2(ϕ))ϕ̈− 2ωϕ̇− 2a(ϕ)ȧ(ϕ)ϕ̇2 = 0.

It was established recently [17] that ansätzes (39) do not exhaust the complete
set of ansätzes reducing the PDE (36) to ordinary differential equations. This result
is a consequence of conditional symmetry, a property that is not found within the
framework of the infinitesimal Lie method.

Let us show, following [17], that (36) is conditionally invariant under the operator

Q = ∂t − εa(u)∂x, (40)

where ε = ±1.
Proceeding on the basis of the second extension of Q in (36), we have

Q̃{utt − (a2(u)ux)x} = εȧux{utt − (a2ux)x} + ε(ȧu̇x + ȧ∂x)(u2
t − a2u2

x), (41)

whence it follows that the PDE (36) is Lie-noninvariant with respect to a group with
infinitesimal operator (40). But if the additional constraint

Qu ≡ ut − εa(u)ux = 0 (42)

is imposed on u(t, x), the right side of (41) vanishes. Consequently, the system (36),
(42) is Lie-invariant with respect to a group with generator (40), whence we conclude
that the initial PDE (36) is conditionally invariant under the operator Q.

The complete set of functionally independent first integrals of (42) may be chosen
in the form ω1 = u, ω2 = x+ εa(u)t.

Consequently, the ansatz invariant under the operator Q is given by the formula
ω2 = ϕ(ω1), or

x+ εa(u)t = ϕ(u), (43)

where ϕ(u) is an arbitrary sufficiently smooth function.
Substituting (43) in (36) leads us to conclude that the PDE (36) is satisfied

identically. Put differently, (43) gives a solution of the nonlinear equation (36) for an
arbitrary function ϕ(u). Recall that solutions that are obtained by means of the group-
invariant ansätzes (39) contain two arbitrary constants of integration, and cannot, in
theory, contain arbitrary functions.

Thus, the conditional symmetry of PDE enlarges the range of possibilities for
reduction of PDE in an essential way.

Example 4. Consider the system of nonlinear Dirac equations

{iγµ∂µ − λ(ψ̄ψ)1/2k}ψ = 0, (44)
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where γµ, µ = 0, . . . , 3, are (4 × 4) Dirac matrices, ψ = ψ(x0, x1, x2, x3) a four-
dimensional complex column function, ψ̄ = (ψ∗)T γ0, λ, k real constants, and ∂µ =
∂/∂xµ, µ = 0, . . . , 3.

It is well known (cf. [5]) that the Lie-maximal invariance group of the system
of PDE (44) is the 11-parameter extended Poincaré group complemented with the
3-parameter group of linear transformations in the space ψα, ψ∗α. In [5, 10] it is
established that the conditional symmetry of the nonlinear Dirac equation is essen-
tially broader. From [10], it follows that the system: (44) is conditionally invariant
with respect to the involutive set of operators

Q1 =
1
2
(∂0 − ∂3), Q2 = ω1∂2 − {B1ψ}α∂ψα ,

Q3 =
1
2
(∂0 + ∂3) − ω̇1(x1∂1 + x2∂2) − ω̇2∂1 − {B2ψ}α∂ψα ,

(45)

where B1 and B2 are (4 × 4) matrices of the form

B1 =
1
2
(1 − 2k)ω̇1γ2(γ0 + γ3),

B2 = −kω̇1 + (2ω1)(2ω̇2
1 − ω1ω̈1)(γ1x1 + 2(k − 1)γ2x2)(γ0 + γ3) + (2ω1)−1 ×

× ((2ω̇1ω̇2 − ω1ω̈2)γ1 + 2(ω3ω̇1 − ω1ω̇3)γ2)(γ0 + γ3),

ω1, ω2, and ω3 are arbitrary smooth functions of x0 + x3, and {ψ}α denotes the α-
th component of the function ψ. Since the coefficients of the operators (45) satisfy
conditions (8), they may be rewritten in non-Lie form:

Q1 =
1
2
(∂0 − ∂3), Q2 = ω1∂2 +B1,

Q3 = 1
2 (∂0 + ∂3) − ω̇1(x1∂1 + x2∂2) − ω̇2∂1 +B2.

Consequently, the ansatz of the field ψ(x) invariant with respect to the set of
operators Q1, Q2, Q3 must be found in the form (12), where A(x) is a (4× 4) matrix
and ω = ω(x) a real function satisfying the following system of PDE

1
2
(Ax0 −Ax2) = 0, ω1Ax2 +B1A = 0,

1
2
(Ax0 +Ax3) − (ω̇1x1 + ω̇2)Ax1 − ω̇1x2Ax2 −B2A = 0,

ωx0 − ωx3 = 0, ωx2 = 0,
ωx0 + ωx3 − 2(ω̇1x1 + ω̇2)ωx1 − 2ω̇1x2ωx2 = 0.

Omitting the steps in integration of the above system, let us write down the final
result, the ansatz for the field ψ = ψ(x) invariant with respect to the involutive set
of operators (45):

ψ(x) = ωk1 exp{(2ω1)−1(ω̇1x1 + ω̇2)γ1(γ0 + γ3) +
+ (2ω1)−1((2k − 1)ω̇1x2 + ω3)γ2(γ0 + γ3)}ϕ(ω1x1 + ω2).

(46)

This ansatz reduces me system of PDE (44) to a system of ordinary differential
equations for the 4-component function ϕ = ϕ(ω),

iγ1ϕ̇− λ(ϕ̄ϕ)1/2kϕ = 0. (47)
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The general solution of the system (47) has the form [5]

ϕ = exp{iλγ1(χ̄χ)1/2kω}χ,
where χ is an arbitrary constant 4-component column. Substituting the resulting
expression for ϕ = ϕ(ω) in (46) gives us the class of exact solutions of the nonlinear
Dirac equation containing three arbitrary functions.

Nonlinear equations of mathematical and theoretical physics that admit nontrivial
conditional symmetry have been analyzed in [14].

3. Reduction of number of independent and number of dependent variab-
les of PDE. Suppose (3) is an involutive set of operators that satisfy the condition
R2 − R1 = δ > 0. In this case we have to modify somewhat the above technique
of reducing PDE by means of ansätzes invariant with respect to the involutive set
(3). Note that the case in which (3) are basis operators of a subalgebra of the Lie
invariance algebra of a given equation satisfying the condition R1 < R2 leads to
“partially invariant” solutions [18].

We wish to solve the initial system of PDE in implicit form:

ωα(x, u) = 0, α = 0,m− 1, (48)

where ωα are smooth functions satisfying the condition

det ‖∂ωα/∂uβ‖m−1
α,β=0 �= 0. (49)

As a result, (1) and (2) assume the form

HA(x, u, ω, ω
1
, . . . , ω

r
) = 0, A = 1,M, (50)

ξaµ(x, u)ωαxµ
+ ηβa (x, u)ωαuβ = 0, a = 1, N, (51)

where ω
s

= {∂sω/∂xµ1 · · · ∂xµp
∂uα1 · · · ∂uαq , p+ q = s}.

It is clear that, as they are defined in the space of the variables x, u, ω(x, u), the
operators (3) satisfy the condition R′

1 = R′
2 (since the coefficients of ∂ωα are all zero).

By means of the same reasoning as in the proof of Theorem 1, we may establish the
following result. There exists a change of variables (17) that reduces the system (51)
to the form

ωαx′
µ

= 0, µ = 0, R1 − 1, ωαu′β = 0, β = 0, δ − 1. (52)

If the system (48), (50) is conditionally invariant with respect to the set of opera-
tors (3) and if condition (52) holds, it may be rewritten as follows:

ωa(x′, u′) = 0, α = 0,m− 1,
H ′
A(x′R1

, . . . , x′n−1, u
′δ, . . . , u′m−1, ω, ω

1
, . . . , ω

r
) = 0, (53)

where the symbol ω
s
denotes the collection of partial derivatives of the function ω of

order s with respect to the variables x′R1
, . . . , x′n−1, u

′δ, . . . , u′m−1.
Integrating (52) yields the ansatz of the field wα:

ωα = Fα(x′R1
, . . . , x′n−1, u

′δ, . . . , u′m−1), α = 0,m− 1, (54)
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where Fα are arbitrary smooth functions. But the ansatz of the field u′α(x′) cannot
be obtained by substituting (54) in the relations ωα(x′, u′(x′)) = 0, α = 0, . . . ,m− 1,
since the inequality R2 −R1 = δ > 0 violates the condition (49) (if δ > 0, the matrix
‖∂ωα/∂uiβ‖m−1

α,β=0 has null columns).
To overcome this problem, we shall, by definition, let the expressions

Fα(x′R1
, . . . , x′n−1, u

′δ, . . . , u′m−1) = 0, α = δ,m− 1,

u′j = Cj , j = 0, δ − 1

be the ansatz of the field u′α = u′α(x′) invariant with respect to the set of operators

Qj = ∂x′
j−1

, j = 1, R1, Xi = ∂u′i−1 , i = 1, δ. (55)

The latter ansatz may be rewritten in the form

u′α = Cα, α = 0, δ − 1,

u′α+β = ϕβ(x′R1
, . . . , x′n−1), β = 0,m− δ − 1,

(56)

where ϕβ are arbitrary smooth functions and Cα are arbitrary constants.
Rewriting (56) in terms of the initial variables gives us

gα(x, u) = Cα, α = 0, δ − 1,

gβ+δ(x, u) = ϕβ(fR1(x, u), . . . , fn−1(x, u)), β = 0,m− δ − 1.
(57)

Moreover, substituting (57) in the initial system of PDE (1) or, equivalently,
substituting the expressions ωα = gα − Cα, α = 0, . . . , δ − 1, ωβ = gβ+δ − ϕβ ,
0 ≤ β ≤ m − δ − 1 in the PDE (50) yields a system of M differential equations
for m − δ functions. Consequently, the dimension of the system (1) decreases by R1

independent and δ dependent variables.
Let us rewrite (57) in a form more convenient in applications. For this purpose,

note that, without loss of generality, we may renumber the operators (3) satisfying
the condition R2 − R1 = δ > 0 in such a way that the first R1 operators satisfy the
condition

rank ‖ξaµ‖R1 n−1
a=1 µ=0 = rank ‖ξaµ, ηαa ‖R1 m−1 n−1

a=1 α=0 µ=0

and the last N −R2 operators are linear combinations of the previous R2 operators.
Let ωj(x, u), j = 1, . . . ,m+n−R2, be the complete set of functionally independent

first integrals of the system (51) and, moreover,

rank ‖∂ωj/∂uα‖m−δ m−1
j=1 α=0 = m− δ

and let ρj(x, u) be the solutions of the equations Q1+R1ρ(x, u) = 1 with i = 1, 2, . . . , δ.
Then (57) may be expressed in the following equivalent form:

ρi(x, u) = Ci, i = 1, δ,

ωj(x, u) = ϕj(ωR1(x, u), . . . , ωn−1(x, u)), j = 1,m− δ.
(58)

Definition 4. Expressions (58) are called the ansatz of the field uα = uα(x) invari-
ant with respect to the involutive set of operators (3) provided R2 −R1 ≡ δ > 0.

The above reasoning may be summarized in the form of a theorem.
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Theorem 2. Suppose that the system of PDE (1) is conditionally invariant with
respect to the involutive system of operators (3) and, moreover, that R1 < R2.
Then the system (1) is reduced by the ansatz invariant with respect to the set of
operators (3).
Example 1. The system of two wave equations

�u = 0, �v = 0 (59)

is invariant with respect to a one-parameter group with infinitesimal operator Q = ∂v.
Since R1 = 0 and R2 = 1, the parameter δ is equal to 1. The complete set of first
integrals of the equation ∂ω(x, u, v)/∂v = 0 is given by the functions

ωµ = xµ, µ = 0, 3, ω4 = u,

whence the ansatz for the field u(x), v(x) invariant under the operator Q has the
form (58),

u = ϕ(ω0, ω1, ω2, ω3), v = C, C = const.

Substituting the above expressions in (59) yields

ϕω0ω0 − ϕω1ω1 − ϕω2ω2 − ϕω3ω3 = 0

i.e., the number of dependent variables of the initial system (59) is reduced.

Example 2. Consider the system of nonlinear Thirring equations

ivx = mu+ λ1|u|2v, iuy = mv + λ2|v|2u, (60)

where u, v are complex functions of x, y and λ1, λ2 are real constants.
The above system admits a one-parameter transformation group with generator

Q = iu∂u + iv∂v − iu∗∂u∗ − iv∗∂v∗ .

Following the change of variables

u(x, y) = H1(x, y) exp{iZ1(x, y) + iZ2(x, y)},
v(x, y) = H2(x, y) exp{iZ1(x, y) − iZ2(x, y)},

where Hj and Zj are the new dependent variables, Q assumes the form Q′ = ∂Z1 .
Consequently, the ansatz invariant under Q has the form

u(x, y) = H1(x, y) exp{iC + iZ2(x, y)},
v(x, y) = H2(x, y) exp{iC − iZ2(x, y)}.

(61)

Substitution of (61) in (60) yields a system of four PDE for the three functions
H1, H2, and Z2,

H2x = mH1x sin 2Z2, H1y = −mH2 sin 2Z2,

H2Z2x = mH1 cos 2Z2 + λ1H1H
2
2 ,

−H1Z2y = mH2 cos 2Z2 + λ2H2H
2
1 .

Example 3. A group analysis of the one-dimensional gas dynamics equations

ut + uux + ρ−1px = 0, ρt + (uρ)x = 0, pt + (up)x + (γ − 1)pux = 0 (62)
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has been carried out by Ovsyannikov [1], who established, in particular, that the
invariance algebra of the system of PDE (62) contains the basis element

Q = p∂p + ρ∂ρ. (63)

The complete set of functionally independent first integrals of the equation Qw(t,
x, u, p, ρ) = 0 is: ω1 = u, ω2 = pρ−1, ω3 = t, and ω4 = x. Consequently, the ansatz
invariant under Q (63) may be chosen in the form

u = ϕ1(t, x), pρ−1 = ϕ2(t, x), ln ρ+ F (pρ−1) = C, (64)

where C = const and F is some smooth function.
Substituting the ansatz (64) in the system of PDE (62) yields a system of three

differential equations for the two unknown functions ϕ1(t, x) and ϕ2(t, x):

ϕ1
t + ϕ1ϕ1

x − ϕ2Ḟ (ϕ2)ϕ2
x = 0,

ϕ2
t + ϕ1ϕ2

x + (γ − 1)ϕ2ϕ1
x = 0,

ϕ1
x((1 − γ)ϕ2Ḟ (ϕ2) − 1) = 0,

(65)

Thus we have achieved a reduction of the number of dependent variables of the
gas dynamics equations.

It is of interest that if ϕ1
x �= 0, it follows from the third equation of the system (65)

that F = λ+ (1 − γ)−1 ln(ρ−1p). Substituting this expression in (62) yields p = kργ ,
k ∈ R

1, which is the relation that characterizes a polytropic gas.
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