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Nonlocal symmetry and generating solutions
for Harry–Dym type equations
W.I. FUSHCHYCH, V.A. TYCHININ

Изучена нелиевская симметрия уравнений u0 = f(u)u111, w0 = g(w1)w111, выде-
лены уравнения, допускающие нелокальную линеаризацию; установлены формулы
размножения решений. Для редукции нелинейных уравнений применяется нелиев-
ский анзац u = h(x)ϕ̇(ω) + f(x)ϕ(ω) + g(x).

1. Let us consider two classes of one-dimensional third order nonlinear equations

u0 − f(u)u111 = 0, (1)

w0 − g(w11)w111 = 0, (2)

uµ = ∂µu =
∂u

∂xµ
, u1 . . . 1︸ ︷︷ ︸

n

= ∂n
1 u =

∂nu

∂xn
1

, wµ = ∂µw =
∂w

∂xµ
,

w1 . . . 1︸ ︷︷ ︸
n

= ∂n
1w =

∂nw

∂xn
1

(µ = 0, 1, n ∈ N),

where f(u), g(w11) are arbitrary smooth functions.
In the present paper linearizable equations are picked out from the sets of equa-

tions (1) and (2) by means of nonlocal transformations. Non-Lie symmetry of equa-
tions (1), (2) is investigated. The formulas of generating solutions for nonlinear equati-
ons belonging to classes (1), (2) are obtained. Non-Lie ansatz

u = h(x)ϕ̇(ω) + f(x)ϕ(ω) + g(x), x = (x0, x1), ϕ̇(ω) =
dϕ

dω
, (3)

which should be consider as the generalization of ansatz [1]

u = f(x)ϕ(ω) + g(x)

is used for reducing equations (1), (2) to ODE. Some sets of exact partial solutions
for nonlinear equations are constructed.

Note 1. The Eq. (1) is equivalent to equation

z0 − ∂3
1c(z) = 0 (4)

The connection between these equations is given by transformation

c(z) = u. (4a)

Thereby, the equality

f(u) = ċ(c−1[u])
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holds. Here c−1[u] is the function inverse to c(u). In that case, when f(u) = u3,
c(z) = z−

1
2 , the Eq. (4) coincides with the known Harry–Dym equation [2].

2. Nonlocal symmetry. Consider the Eq. (4)

z0 = ∂3
1c(z) = ∂2

1(ċ(z)z1).

The substitution

z = w11 (5a)

reduces (4) to equation

w0 = ċ(w11)w111. (5)

Making use the Euler–Ampere transformation

w = y1v1 − v, x1 = v1, x0 = y0, v = v(y0, y1), v11 �= 0, (6)

under Eq. (5), we get

v0 = ċ(v−1
11 )v−3

11 v111. (7)

Using the substitution

v11 = z(y0, y1) (7a)

in equation (7), twice differentiated on y1, we get

z0 = ∂2
1

(
ċ(z−1)z−3z1

)
. (8)

It follows from (8), that transformations (5a), (6), (7a) do not take out any Eq. (4)
beyond the this class of equations, none the less the set of Eq. (4) is not invariant
under these transformations. If function ċ(z−1)z−3 in (8) satisfies the condition

ċ(z−1)z−3 = λ, λ = const. (9a)

then Eq. (4) is linearisable. When the condition

ċ(z) = ċ(z−1)z−3 (9b)

holds, then the Eq. (8) coincides with initial equation (4), i.e. these equations are
invariant with respect to nonlocal transformations (5a), (6), (7a).
The condition (9b) allows to describe all the equations of the class (4) which are

invariant with respect to transformations (5a), (6), (7a).

Theorem 1. The Eq. (4) is invariant with respect to transformations. (5a), (6), (7a),
if it has the form

z0 = ∂2
1

(
z−

1
2ϕ(ln z)z1

)
. (10)

Here ϕ(α) is an arbitrary smooth even function.
Corollary 1. The Eq. (1) is invariant with respect to transformations (4a), (5a), (6),
(7a), (4a) if it has the form

u0 =
(
c−1[u]

)− 3
2 ϕ

(
ln c−1[u]

)
u111, (11)
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where c−1[u] is the function inverce to c(u) and it is determined implicitly from the
formula

u =
∫
z−

3
2ϕ(ln z)dz. (12)

Example 1. From the theorem 1 and the corollary 1 under ϕ(α) = 1 we get the
following invariant equations

z0 = ∂2
1

(
−1

2
z−

3
2 z1

)
= ∂3

1

(
z−

1
2

)
, (13)

u0 = u3u111. (14)

So, Eq. (13) is known as Harry–Dym equation. Letting ϕ(α) = cosα, we obtain the
equation

z0 = ∂2
1

(
z−

3
2 cos ln zz1

)
(15)

and corresponding to it equation of the class (1)

u0 =
(
c−1[u]

)− 3
2 cos ln

(
c−1[u]

)
u111. (16)

Here c−1[u] is determined implicitly by formula

u =
4
5

[
sin ln z − 1

2
cos ln z

]
z−

1
2 . (17)

So, we establish that the equations

u0 = u
3
2u111, z0 = ∂3

1

(
z−2

)
, w0 = w−3

11 w111 (18a,b,c)

are reduced to the linear equation

v0 = v111 (λ = 1) (19)

and that, in particular, the Harry–Dym equation and connected with it equations

u0 = u3u111, z0 = ∂3
1

(
z−

1
2

)
, w0 = w

− 3
2

11 w111 (20a,b,c)

are invariant with respect to corresponding nonlocal transformations.

3. The nonlocal superposition and the generating solutions.

Theorem 2. The solutions superposition formula for Eq. (18a)

u0 = u
3
2u111 (18a)

has the form

(3)
u (x0, x1) =

(1)
u (x0, τ

1) +
(2)
u (x0, τ

2) + 2

√
(1)
u (x0, τ1)

(2)
u (x0, τ2), (21a)

dτ1√
(1)
u (x0, τ1)

=
dτ2√

(2)
u (x0, τ2)

, (21b)
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τ1 + τ2 = x1, (21c)

τ1
0 =

1
2

√
(1)
u (x0, τ1)

(2)
u (x0, τ2)√

(1)
u (x0, τ1) +

√
(2)
u (x0, τ2)

[
(1)
u11(x0, τ

1) +
(2)
u11(x0, τ

2)
]
. (21d)

Let us illustrate the efficiency of the formula (21).

Example 2. Let us take, as initial, the simplest stationary solutions of Eq. (18a)

(1)
u (

1
x1) = (

1
x1)2,

(2)
u (

2
x1) = 4(

2
x1)2.

Replace
1
x1 and

2
x1 in this solutions for parameters τ1, τ2

(1)
u = (τ1)2,

(2)
u = 4(τ2)2.

The differential Eq. (21b) takes the form

dτ2

dτ1
= 2

τ2

τ1
(22)

and has the general solution

τ2 = − (τ1)2

2λ(x0)
. (23)

Here λ(x0) is an arbitrary smooth function. The equation for τ1

(τ1)2 − 2λτ1 + 2λx1 = 0 (24)

we obtain making use of (21c) and replacing in (23) τ2 for the expression x1 − τ1.
From (24) we find

(3)
u (x0, x1) = [τ1 + 2τ2]2 = [2x1 − τ1]2 =

[
2x1 − λ±

√
λ2 − 2λx1

]2

. (25)

The function λ(x0) can be defined more precisely from the condition that τ1 is the
solution of Eq. (21d). As a result, we get the equation for λ(x0)

λ̇ = −6λ.

Therefore

λ = c exp(−6x0),

where c is an arbitrary constant. So, the new solution
(3)
u , which is constructed from

(1)
u and

(2)
u , is of the form

(3)
u (x0, x1) =

[
2x1 − ce−6x0 ±

√
c2e−12x0 − 2cx1e−6x0

]2

. (26)

Example 3. Let us choose, as initial, the following two solutions of Eq. (18a):

(1)
u = x2

1,
(2)
u = 9x2

1
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and rewrite them in variables τ1 and τ2

(1)
u = (τ1)2,

(2)
u = 9(τ2)2.

Unlike the previous example when solving ODE (21b), one obtains the cubic equation
for τ1

(τ1)3 − λτ1 + λx1 = 0, λ = λ(x0). (27)

The real solution of the Eq. (27) can be written in the form

τ1 = −3λ−1 cos
1
3

arccosλx1, λ =
1
2
3
√

3λ−
1
2 (x0). (27a)

The solution
(3)
u

(3)
u (x0, x1) = [3x1 − 2τ1]2 = 9

[
x1 − 2

3
τ1

]2

= 9
[
x1 + 2λ−1 cos

1
3

arccosλx1

]2

(28)

we find from the formula (21a). The condition on λ(x0) is of the form

λ̇ = 12λ.

Hence

λ = c exp(12x0).

c is an arbitrary constant. Finally, one can write solution
(3)
u in the form

(3)
u (x0, x1) = 9

[
x1 + 2ce−12x0 cos

1
3

arccos
(
cx1e

12x0
)]2

. (29)

4. The non-group generating of solutions. For equations of the class (11) we

can write formula of generating solutions. Let
(1)
u (x0, x1) be a known partial solution

of nonlinear Eq. (11) and
(2)
u (x0, x1) is its new solution, then the following assertion

holds true.

Theorem 3. The formula of generating solutions for Eq. (11), giving by nonlocal
symmetry (4a), (5a), (6), (7a), (4a) has the form

(2)
u (x0, x1) =

[
x1τ −

∫
[
(1)
u (x0, τ)]−2dτ

] 1
2

, (30a)

= [
(1)
u (x0, τ)]−1, (30b)

x1 =
∫

[
(1)
u (x0, τ)]−2dτ, (30c)

τ0 = ∂1

(
τ
− 3

2
1 τ11

)
. (30d)

Let us demonstrate the efficiency of the formula (30) for Eq. (20a) on several
simple examples.
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Example 4. Let
(1)
u . Then

(2)
u (x0, τ) =

[
x1τ −

∫ (∫
dτ

)
dτ

] 1
2

, x1 =
∫
dτ = τ + λ1(x0).

λ1(x0) is an arbitrary function. Calculating the integral in the first equality and
resolving the second one with respect to τ , we get

(2)
u (x0, τ) =

[
x1τ − 1

2
τ2 − λ1τ + λ2(x0)

] 1
2

, (31)

τ = x1 − λ1(x0). (32)

Having excluded parameter τ from equalities of the system (31), (32) we get the

solution
(2)
u (x0, x1) in explicit form

(2)
u (x0, x1) =

(
λ2 − 1

2
λ2

1

) 1
2

≡ λ3 = const. (33)

Example 5. The function

(1)
u (x0, x1) =

1
4
(λ1 − x1)2 (34)

is the solution of the Eq. (20a). λ1 is an arbitrary constant. It follows from relations
(30b,c), that

(2)
u (x0, τ) = 4(λ1 − τ)−2, (35)

x1 =
16
3

(λ1 − τ)−3 + λ2(x0). (36)

Resolving (36) with respect to τ , one obtain

τ = h(x1 − λ2(x0))−
1
3 + λ1, h = −

(
3
16

)− 1
3

. (37)

Substituting τ from the formula (37) into condition (30d), one gets

λ̇2 = −1.

Let us substitute specified value of τ into the formula (35) and find the solution
(2)
u

(2)
u (x0, x1) = k(x0 + x1)

2
3 , k =

(
3
2

) 2
3

. (38)

5. The non-Lie ansätze. Let us consider the ansatz of the form

w = h(x)ϕ̇(ω) + f(x)ϕ(ω) + g(x), x = (x0, x1), ϕ̇(ω) =
dϕ

dω
(39)

for constructing of solutions for Eq. (20c):

w0 − w
− 3

2
11 w111 = 0. (20c)

Let us summarize the results obtained for Eq. (20c) in table.
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ω h(x) f(x) g(x)

1 x0 0
x−2
1
6

ϕ−3(ω) λ1(x0)x1 + λ2(x0),

2 x0 + x−1
1 1 −2x1 λ1(x0)x1 + λ2(x0),

3 ln x0 + x−1
1 x

− 1
3

0 −2x1x
− 1

3
0 λ1(x0)x1 + λ2(x0),

4 ln x0 + arth x1 −x
− 1

3
0 2x1x

− 1
3

0 x
− 1

3
0

{
− 2

∫
ϕ(ω)dx1 + 2

∫
ϕ(ω)×

× x2
1+1

x2
1−1

dx1 + 8
∫ ( ∫

ϕ(ω) x1
(x2

1−1)2
dx1

)
×

×dx1 + λ1(x0)x1 + λ2(x0)

}
,

5 ln x0 − arctg x1 x
− 1

3
0 −2x1x

− 1
3

0 x
− 1

3
0

{
2

∫
ϕ(ω)dx1 − 2

∫
ϕ(ω)×

× 1−x2
1

1+x2
1
dx1 − 8

∫ ( ∫
ϕ(ω) x1

(1+x2
1)2

dx1

)
×

×dx1 + λ1(x0)x1 + λ2(x0)

}
,

6 x0 + arth x1 1 −2x1 −2
∫

ϕ(ω)dx1 + 2
∫

ϕ(ω)
1+x2

1
1−x2

1
dx1−

−8
∫ ( ∫

ϕ(ω) x1
(1−x2

1)2
dx1

)
dx1+

+λ1(x0)x1 + λ2(x0),

7 x0 − arctg x1 1 −2x1 −2
∫

ϕ(ω)dx1 − 2
∫

ϕ(ω)
1−x2

1
1+x2

1
dx1+

+8
∫ ( ∫

ϕ(ω) x1
(1+x2

1)2
dx1

)
dx1+

+λ1(x0)x1 + λ2(x0),

The ansätze 1–3 reduce the PDE (20c) to such ODEs:

1. ϕ̇ = 0, λ̇1 = −4ϕ, λ̇2 = 0,

2. [2x1∂ω − 1]
[
2(

...
ϕ)−

1
2 − ϕ̈

]
= 0, λ̇1 = 0, λ̇2 = 0,

3. [∂w − 2x1]
[

2
3ϕ+ ϕ̇− 2(

...
ϕ)−

1
2

]
= 0, λ̇1 = 0, λ̇2 = 0,

Before to reduce the Eq. (20c) using ansätze 4–7, let us make substitution putting

(
...
ϕ(ω))−

1
2 = ψ(ω).

As a result we get other reduced ODEs:

4.
1
3
ψ − ψ̇ + ψ3(4ψ̇ −

...

ψ) = 0,

5.
1
3
ψ − ψ̇ + ψ3(4ψ̇ +

...

ψ) = 0,

6. ψ̇ − ψ3(4ψ̇ −
...

ψ) = 0,

7. ψ̇ + ψ3(4ψ̇ +
...

ψ) = 0,

It is known [1], that infinitesimal operator

X = ξi(x,w)∂i + η(x,w)∂w (i = 1, n),
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which generates a Lie ansatz, corresponds to the equation

Q[w] = ξi(x,w)wi − η(x,w) = 0. (40)

Equations of the form (40) correspond to non-Lie ansätze 1–7:

1. x1w111 + 4w11 = 0,
2. w110 + x2

1w111 + 4x1w11 = 0,

3. x0w110 + x2
1w111 + 4

(
x1 − 1

6

)
w11 = 0,

4. x0w110 + (x2
1 − 1)w111 + 4

(
x1 − 1

6

)
w11 = 0,

5. x0w110 + (x2
1 + 1)w111 + 4

(
x1 − 1

6

)
w11 = 0,

6. w110 + (x2
1 − 1)w111 + 4x1w11 = 0,

7. w110 + (x2
1 + 1)w111 − 4x1w11 = 0.
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