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Nonlocal symmetry and generating solutions
for Harry—Dym type equations

W.1. FUSHCHYCH, V.A. TYCHININ

V3yueHa HesqMeBCKash CHMMETPHsl ypaBHeHHH uo = f(uw)uiii, wo = g(wi)wi11, BbIEE-
JIeHbl YDaBHEHHsl, JOMYCKAKLIHe HEJOKAJbHYI JIMHeapu3alHtio; YCTAHOBJEHb (HOPMYJibl
pasMHOXKeHHsl pemteHUH. JIJsl peiyKIMH HeJMHEAHbIX ypaBHEHHE NMPUMEHSIeTCS HeJueB-
ckuil anzau u = h(z)p(w) + f(x)p(w) + g(x).

1. Let us consider two classes of one-dimensional third order nonlinear equations

ug — f(u)ulu =0, (1)
wo — g(wir)winn =0, 2)
u —8u—ﬂ u = ”u—@ w—@w—aw
B _836”’ »-\1""/—«L'1_ S s _8xu’

8”
wy,, . 1= ilw:_w (Mzo’l’neN)7

n

where f(u), g(wi1) are arbitrary smooth functions.

In the present paper linearizable equations are picked out from the sets of equa-
tions (1) and (2) by means of nonlocal transformations. Non-Lie symmetry of equa-
tions (1), (2) is investigated. The formulas of generating solutions for nonlinear equati-
ons belonging to classes (1), (2) are obtained. Non-Lie ansatz

w=hE)pw) + @olw) + 9(a), = (w0,m), $lw) = P )

which should be consider as the generalization of ansatz [1]
u= f(z)p(w) + g(z)

is used for reducing equations (1), (2) to ODE. Some sets of exact partial solutions
for nonlinear equations are constructed.

Note 1. The Eq. (1) is equivalent to equation

20 — Ofe(z) = 0 (4)
The connection between these equations is given by transformation

c(z) = u. (4a)
Thereby, the equality

Flu) = é(c [u])
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holds. Here ¢7![u] is the function inverse to c(u). In that case, when f(u) = u?,

c(z) = 22, the Eq. (4) coincides with the known Harry-Dym equation [2].
2. Nonlocal symmetry. Consider the Eq. (4)

20 = O3e(z) = 03 (é(2)21).
The substitution

Z = w1 (5a)
reduces (4) to equation

wo = ¢(win)win- (5)
Making use the Euler—Ampere transformation

W=y —v, Ty=v1, To="Y, v=0(yo,y1), vi1F#0, (6)
under Eq. (5), we get

vo = ¢(v v, (7)
Using the substitution

v11 = z(Yo, Y1) (7a)
in equation (7), twice differentiated on y;, we get

29 = 02 (é(zil)zfgzl) . (3)

It follows from (8), that transformations (5a), (6), (7a) do not take out any Eq. (4)
beyond the this class of equations, none the less the set of Eq. (4) is not invariant
under these transformations. If function ¢(271)z~2 in (8) satisfies the condition

(27273 =\, X = const. (9a)
then Eq. (4) is linearisable. When the condition
é(z) =¢(z71)273 (9b)

holds, then the Eq. (8) coincides with initial equation (4), i.e. these equations are
invariant with respect to nonlocal transformations (5a), (6), (7a).

The condition (9b) allows to describe all the equations of the class (4) which are
invariant with respect to transformations (ba), (6), (7a).

Theorem 1. The Eq. (4) is invariant with respect to transformations. (5a), (6), (7a),
if it has the form

29 = 0F (z_%cp(ln z)z1> . (10)

Here ¢(«) is an arbitrary smooth even function.

Corollary 1. The Eq. (1) is invariant with respect to transformations (4a), (5a), (6),
(7a), (4a) if it has the form

ug = (cfl[u])_%

@ (Inc u]) us, (11)
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where ¢~ [u] is the Junction inverce to c(u) and it is determined implicitly from the
formula

u = /z_%gp(lnz)dz. (12)

Example 1. From the theorem 1 and the corollary 1 under ¢(a) = 1 we get the
following invariant equations

29 = 0} (%zgzl) =03 (z*%) , (13)

Ug = U3U111. (14)

So, Eq. (13) is known as Harry—-Dym equation. Letting ¢(«) = cos«, we obtain the
equation

29 = 0F (z_% cos In zz1> (15)
and corresponding to it equation of the class (1)

Uy = (c_l [u])

Here ¢ ![u] is determined implicitly by formula

_3
2

cos In (c_l[u]) Ui11- (16)

4 1
u = 5 {sinlnz — §coslnz} 27z (17)

So, we establish that the equations

ug = u%uul, Zo = 3? (2_2) , wo = wﬁswlu (18a,b,c)
are reduced to the linear equation

vo=v111 (A=1) (19)
and that, in particular, the Harry-Dym equation and connected with it equations

ug = vduig, 20 =03 (z_%) , W= wl_lgwlu (20a,b,c)

are invariant with respect to corresponding nonlocal transformations.
3. The nonlocal superposition and the generating solutions.
Theorem 2. The solutions superposition formula for Eq. (18a)

Ug = u%’qu (183)

has the form

W (o, 21) = W (@0, ) + W (o, 1) + 2\/ W (o, 71) W (2, 72), (21a)

1

dr B dr
1 2 ’
Vo) V@ wor)

2
(21b)
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=1, (21¢c)
(1) 1@ 5
To,TH) W (xg, T (1) (2)
= 2 (\1/) (20, ") 52)0 ) [un(mo,Tl)-i— uy (z0,72)] . (21d)
\/ an +\/u<x0772)

Let us illustrate the efficiency of the formula (21).
Example 2. Let us take, as initial, the simplest stationary solutions of Eq. (18a)

1) 1 1 (2),2 2
u(nm) = (m)?, u(n)=4@)
Replace 21 and 2, in this solutions for parameters 71, 72
W _ e Dy
The differential Eq. (21b) takes the form
dr? 72
29l 22
drl o1 (22)

and has the general solution

2o () (23)

Here A(zg) is an arbitrary smooth function. The equation for 7!
(ThH2 =2 ' +2 2, =0 (24)

we obtain making use of (2lc) and replacing in (23) 72 for the expression z; — 7!.

From (24) we find

(vi)(xo,:m) = [+ 27 = 200 —7']? = [25”1 A M} (25)

The function A(xg) can be defined more precisely from the condition that 7! is the
solution of Eq. (21d). As a result, we get the equation for A(zo)

A= —6\.
Therefore

A = cexp(—6xg),

3
where c is an arbitrary constant. So, the new solution (u), which is constructed from

(1) (2)
u and w, is of the form

3 2
(u)(xo,xl) = [Qxl — ce 070 + /c2e—1270 — 2cxle*610} . (26)

Example 3. Let us choose, as initial, the following two solutions of Eq. (18a):

1 2
(u) =2 (u) = 92?
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1

and rewrite them in variables 7! and 72

1 2
W= (2, W= o2,

Unlike the previous example when solving ODE (21b), one obtains the cubic equation
for 7!

(TH3 =Mt Ar =0, A= A(xo). (27)

The real solution of the Eq. (27) can be written in the form

1 1
= -3\ cos 3 arccos Azy, A= 53\/5)\_% (zo).- (27a)

)
The solution u
3) 2,17 1 2
u (wo, 1) = [321 — 271]2: 9 [:rl — ng] =9 |:[L'1 + 227 cos 3 arccos A\x1| (28)
we find from the formula (21a). The condition on A(zg) is of the form
A= 12X
Hence

A = cexp(12xg).

3
c is an arbitrary constant. Finally, one can write solution (u) in the form

2
3 1
(u)(xo, x1) =9 |z1 + 2ce” 1?0 cos 3 arceos (cxleuzo) . (29)
4. The non-group generating of solutions. For equations of the class (11) we
1
can write formula of generating solutions. Let (u)(:ro,xl) be a known partial solution

2
of nonlinear Eq. (11) and (u)(xo,xl) is its new solution, then the following assertion
holds true.

Theorem 3. The formula of generating solutions for Eq. (11), giving by nonlocal
symmetry (4a), (5a), (6), (7a), (4a) has the form

@ (20, 21) = [Jclr— / [(llt)(:no,r)]”d{ g (30a)

= (% (w0, 7], (30b)
v = / (4 (w0, 7)]2dr, (30¢)
o= (ri ) (30d)

Let us demonstrate the efficiency of the formula (30) for Eq. (20a) on several
simple examples.
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Example 4. Let (11L). Then

(2)

Do) = e [ ([ ) dTr, S )

A1(xo) is an arbitrary function. Calculating the integral in the first equality and
resolving the second one with respect to 7, we get

2 1 2

(u)(zo, T) = {le — 57'2 - M7+ )\Q(xo)] , (31)

T=x1 — )\1(.1'0). (32)
Having excluded parameter 7 from equalities of the system (31), (32) we get the

2
solution (u)(xo,xl) in explicit form

(2) 1., 3
U (zg,x1) = | A2 — 5)\1 = A3 = const. (33)
Example 5. The function

1 1
W0, 0) = 700 —0)? (34)

is the solution of the Eq. (20a). Ay is an arbitrary constant. It follows from relations
(30b,c), that

W (o, 7) = 400 — )2, (35)
16 Ly
Tr] = 3()\1 — 7') + )\2(.%'0). (36)
Resolving (36) with respect to 7, one obtain
_1 3\ ¢
T = h(l’l — )\2(1’0)) 34+ X, h=- (1—6> . (37)

Substituting 7 from the formula (37) into condition (30d), one gets
Ao = —1.

Let us substitute specified value of 7 into the formula (35) and find the solution (121)

3\ 3
, k:<§> . (38)

5. The non-Lie ansatze. Let us consider the ansatz of the form

w = hz)p(w) + f(@)p(w) +9(x), == (ro,21), ¢w)= Z—i (39)

(2)
u (Jjo,xl) = k(ﬂ?o + xl)

Wl

for constructing of solutions for Eq. (20c¢):

wo — U/1_1%UJ111 =0. (200)

Let us summarize the results obtained for Eq. (20c) in table.
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w h(z) f(@) g(x)
—2
xo 0 z}i 4,0_3((,0) )\1(%0)%1 + Ag(l‘o),
2 Xo + x;l —2.’1}1 )\1(.’1’0).’1’1 —+ AQ(ZEO),
_1 1
3 Inzg + xfl xy® —2z11 ° A1(zo)z1 + A2(zo),
_1 _1
4 | Inxo +arthmy | —z4° 212, T 3{ =2 [p(w)dz: + 2 [ p(w)x
2 "
xdz1 + A\ (zo)z1 + )\2(330)}7
_1 _1 _1
5 | Inzo —arctgzy | zo° 2wz ° xg 3 {2f<p(w)dx1 =2 [ p(w)x
1+ Zdl‘l—gf(f@( (1+I2>2dajl>
xdxy1 + M (zo)z1 + >\2($0)}
6 zo + arth z1 1 —211 —2f<p( )dz1 + 2fg0 H ld:rl—
_8f (f(p = T2)2d$1)d$1+
+A1(zo)z1 + /\2(10)
7| zo—arctgz: 1 —2z1 =2 [p(w)dzr — 2 [ o(w) 1+ 2dgcl—i-
+8f (fcp( (1+z2>2 dxl>dx1+
+ A1 (o)1 + A2(z0),

The ansétze 1-3 reduce the PDE (20c¢) to such ODEs:

L ¢=0, A\ =—dop,

3. [9w

A2 =0,
2. 2210, —1}[() —¢}=0, A

:0,

Ao =0,

- 2%1] [%SD—’_QD - 2(%0)7%:| = 07 ).‘1 = 07 ).\2 = 07

Before to reduce the Eq. (20c¢) using ansdtze 4-7, let us make substitution putting

1

(b)) =9(w).

As a result we get other reduced ODEs:

4.%w7¢+W@¢fw:&
5.%¢—¢+W@¢+%=&

6. ¢ — 34— ) =0,
7. Y+ (4 + ) =0,

It is known [1], that infinitesimal operator

X = fz(wi)al + n(wi)aw

(i=1n),
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which generates a Lie ansatz, corresponds to the equation
Equations of the form (40) correspond to non-Lie ansitze 1-7:

T1wi11 + 4wy = 0,

2 _
2. wiio + rywiir +4r1wy =0,

1
3. xowiio + l’?wul +4 <.7J1 — 6) w11 =0,
9 1
4. ToW110 -+ (IEl — 1)w111 -+ 4 T, — 6 w11 = 0,

1
5. Towiig + (.T% =+ 1)11}111 +4 (l‘l — 6) w1y = 0,

6. wiio + (.’E% — 1)’(1)111 + 4x1wip =0,

7. wiig + (JE% + 1)10111 —4xqwy; = 0.
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