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Q-conditional symmetry

of the linear heat equation
W.I. FUSHCHYCH, W.M. SHTELEN, M.I. SEROV, R.O. POPOVYCH

HccnenoBana (Q-ycjoBHasi CHMMETPHS OHOMEPHOIO JIMHEHHOrO YpaBHEHHS TeMJonpo-
BopHOCTH. [losmyueHnl ompenesnsitolye ypaBHeHHS! 1718 KO3(D(UIMEHTOB omeparopa Q-
YCJIOBHOH CHMMETpPHUM, M3yueHa HMX JIMEBCKas CHMMETPHs, TOJYyUeHbl HEKOTOpble MX TO-
yHble peleHus. HalineHsl HeJloKasnbHble 3aMeHbl, CBOASIINE ONpPeNe/ISolIe YPaBHEHUS K
HCXOIHOMY YPaBHEHHIO TeIJIONpOBOAHOCTH. [lokasaHo, KaK MOXKHO HCIOJIB30BaTh Olepa-
TOpBl (Q-YCJIOBHOM CUMMETPUH IJsl JuHeapudauuu HequHedHbx HYUIl u pasmHoxeHus
pelleHH# ypaBHEHHs TeINJONPOBOLHOCTH.

In this article we consider in full detail, as a simple but non-trivial example, how
to find and use @-conditional symmetry of the one-dimensional linear heat equation

Up = U11 (1)

(u = u(zg, 21), ug = Ou/dxg, u; = du/dx; and so on.
[t is known [1] that the maximal in Lie sense invariance algebra of equation (1) is
an algebra with the basis elements

1
Oy = _8 , 01 = _8 , G =12001 — zx1udy, I=ud,,
6x0 81’1 2 (2)
1 2
D =2x00) + 2101, II =g (Zoao 4+ x101 — 2U0u> — %u@u

The problem of finding non-classical symmetry (in our terminology Q-conditional
symmetry) was firstly put forward by Bluman and Cole [5]. However, in this impor-
tant paper the authors did not give explicitly none of operators which would different
from those of (2). Below we will present quite complete investigation of this problem.
All notions used without explanations are defined in [1-4].

Definition 1 [2, 4]. A differential equation of order m
Sl(x,u,%gw..,u):o 3)

for a function v = u(zx) where u denotes all partial derivatives of order k is called

conditionally invariant under an operator Q if there is an additional condition of
the form

SQ($,U,71L,12L,.-.,U):O (4)

m

compatible with (3), that

QSQ S =0 :05 o = 1a27 (5)
SQ=O

In the formula (5) Q is the standard prolongation of Q.
Joxaaget AH Ykpaunsi, 1992, Ne 12, C. 28-33.
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In that particular case when equation (4) has the form

Qu=0 (6)

equation (3) is called Q-conditionally invariant under the operator (. The notion
of @Q-conditional invariance coincides with the notion of “non-classical” invariance
introduced by Bluman and Cole in the work [5].

The general form of a first-order operator is

Q = A(IO, X1, U)ao + B(IO7 X1, U)al + C(an T, u)aﬂ.a (7)
where A, B, C are some differentiable functions of g, 1, v to be determined from
the invariance condition (5). It will be noted that because of the imposed condition (6)

Qu=0 < Aug+ Bu; =C (8)

there are really only two independent cases of operator (7).

Theorem 1. The heat equation (1) is Q-conditionally invariant under operator (7) if
and only if its coordinates are as follows:

Case 1.
A=1, B=WYxo,21), C=W?3(xg,21)u+W3(x0,71) 9)
and functions W = W (zo,21) = {W?*, W2, W3} satisfy equations
(8o + 2W) — )W = F, F={-2W2,0,0}. (10)
Case 2.
A=0, B=1, C=v(xg,z1,u) (11)

and function v = v(xg, x1,u) satisfies the PDE
Vo = V11 + 20014 + V2 0y (12)

Proof. From the criterion of invariance

Quo — u11)|yy = oy, =0, (13)
2 Qu =20

absolutely analogously to the standard Lie’s algorithm one finds the defining equations
for the coordinates of operator (7) which can be reduced to (9)—(12). It is to be pointed
out that unlike Lie’s algorithm, in the cases considered above the defining equations
(10), (12) are nonlinear ones and it is a typical feature of Q-conditional invariance.

It goes without saying that @)-conditional invariance includes Lie’s invariance in
particular. So, in our case of the heat equation, we obtain infinitesimals (2) as simplest
solutions of (10), (12):

-

A=1, W=0 = Q:ao,
A=v=0, B=1 = Q=0,

r1u
A=0, B=1, v=-—2 o (=g,
Lo @ (14)
A=1, W= wl_wi=0 = Q=D,

2170,

A=1, W=D R o —@ugtad)/af, WP=0 = Q=1L
0
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Remark 1. System of defining equations (10) was firstly obtained by Bluman and Cole
[5]. Further investigation of system (10) was continued in [6], where the question of
linearization of the first two equations of (10) had been studied. The general solution
of the problem of linearization of equations (10), (12) will be given after a while.

Now let us list some concrete operators (7) of @-conditional invariance of equa-
tion (1) obtained as partial solutions of the defining equations (10), (12). In the
following Table we also give corresponding invariant ansitze and the reduced equa-
tions.

Of course, operators 1-10 from Table do not exhaust the all possible operators of
Q-conditional invariance.

N Operator @ Ansatz Reduced equation
1 —x100 + O1 u—ga(xo—ké (p”:O
4
2 —2100 + 1 + 230, o (oo+%)+ 2 o' =3
2
3 ZE%@O — 32101 — 3u0y U =2x1p ( + % gp” =
4 | 2300 — 32101 — Bu+25)0y | u=m19 (a:o + %) + 1—2 o =-15
5 2101 + w0y u = z19(20) ¢ =0
6 cthz101 + u0y u = @(x0) chxy o —p=0
7 —ctgx101 + udy u = ¢(z0) cos x1 o +e=0
8 O — ulu — 5257 0u u= (2z0 — z1)e "1 p(x0) o —p=0
9 — v/ —2(z0 + u)du u=—z0 — 3[z1+ p(20)]? =0
5132 12 1
10 (:Co + 71> 0o — x101 U= <x0x1 + 3%) " =0

Next we study Lie symmetry of the defining equations (10), (12).
Theorem 2. The Lie maximal invariance algebra of system (10) is given by the

operators
1 1 .
Qy, 01, G = o0 + Owr — §W18W2 — §x1W‘36W3,
DW = 2208y + 2101 — WOy — 2W20w2, TN = W30ys,

W = 2 ( 28y + 2101 — W'y — 2W20yy2 — §W38W3> " 19

1 1
+ 21 (awl — EWlaw2> — anz — —Wgaw?,

= (fo+ AW — fW?)dys.
where f = f(xg,x1) is an arbitrary solution of (1), that is fo = fi1.

Theorem 3. The Lie maximal invariance algebra of equation (12) is given by the
operators

&, 01, D® =22000 + 2161 + udy, DO =ud, + vd,,
1 1
G(Q) = 1‘081 — §x1(u8u + v@v) — iuav,

3

= (16)
—v&,) — Zl(u(“)u +v0,) —

T1
—ud,,

2

1
o® =z, (xOBO + 2107 — §u8u ~ 3

R=f0,+ f10y (fo = f11)-
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One can get the proofs of these two theorems by means of the standard Lie’s
algorithm.

Operators (15), (16) can be used to find exact solutions of equations (10), (12).
In particular, using the formula of generating solutions at the expense of invariance
under 1)

03 0
1) = 0= ) e { oo o)

1— 0z 1—0xzp 2
’_ Zo r T
0T Ty T 10y (17)
1 022
u' = (1= 0z)"/? exp {—Z 1 —x91x0 } u (0 = const)

one can construct new solutions of equations (12) starting from known ones.

Solutions of equations (10), (12) can be obtained by the use of reduction on
subalgebras of the invariance algebras (15), (16). For example, using the subalgebra
(0o + az(-l)) of the algebra (15) we find the following solution of the system (10)

02 _ 02
wl = 1—C3
-1 tg(Cll‘l + 02) + Cs tg(ngl + 04)’
W2 = 0,0y C1tg(Csz1 + Cy) — C3tg(Cra1 + C) (18)

-C4 tg(C’lxl + CZ) + C3 tg(C}’El + C’4)7
W3 = (11 — Whor — W2p)e™,

where C1,...,Cy are arbitrary constants, ¢ = ¢(x1), p11 = ay.

Theorem 4. The system (10) is reduced to the system of disconnected heat equations
_‘0 = 211 (52 Z(J?Q,l‘l) = {21,22,2’3}) (19)

with the help of the nonlocal transformation

1,2 1,2 1,2 1,2

wl = 21177 T 2R 2 R11R1 T AR

- 1.2 _ 1.2 1.2 _ 1,20
21% zleg 21 % zleg (20)

W3 =23 + Wl — w223

Expressions (20) result in (after using the corresponding operator (7), (9)) the
ansatz

Z2

u=z2'pw)+2°, w= o (21)

(2%, 22, 23 are solutions of (19)), and the reduced equation is ¢”” = 0. This means that
u=C1z" + Cyz? 4+ C52°. (22)

So, we get just the well-known superposition principle for the heat equation.
Letting W?2 = W3 = 0 we get from (10) the Burger’s equation

Wi +2Wiw]l = w. (23)
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Using Hopf-Cole transformation one obtains solutions of equation (23) in the form

W= —oilnf =~ (o= ). 24)
This result in the operator
Q= [0 — f101. (25)

Q-conditional symmetry of equation (1) under the operator (25) lead to the following
statement.

Theorem 5. If function f is an arbitrary solution of the heat equation (1) and u is
the general integral of the ODE
Jidzo + fdz1 =0, (26)

then u satisfies equation (1).
Proof. We note that equation (26) is a perfect differential equation and therefore its

general solution u(xg,z1) = C possesses the following property

up = f1, w1 =f. (27)
Having used (27) we obtain

u —unn=fi—f1=0

and the theorem is proved.

Theorem 5 may be considered as another algorithm of generating solutions of
equation (1). Indeed, even starting from a rather trivial solution of the heat equation
u =1 we get the chain of quite interesting solutions

2 3

1—>x1—>x0+x2—}—>x0$1+%—>---7 (28)

and among them the solutions

AN e A g g a g o)
2m)! 1 (2m-2)! 2! (2m —4)! (m—=1)120 " m!’
2m+1)! 11 2m-1)! 2! (2m—3)!
m— 3 m (30)
xo .7;1 .'I;O T

(m—1)!3 " m! 1"
[t will be also noted that supposing function v in (12) to be independent on x; and
denoting

_ 1
o w(zg, u)

(31)

we get instead of (12) the following remarkable nonlinear heat equation

wo = c’)u(wﬂwu). (32)
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One easily sees that the operator
Q = w(xg,u)01 + Oy (33)

sets the connection between equations (32) and (1):

_ 1 Ug — U11
wo — Oy (W w,) = —0 (7) ;
Ul (5%

) (34)
uo — U1 = — /[wo — 0y (w2wy,)]du
by means of the change of variables
w(zo,u) = axlgzo,u)7 8u(g;,1m1) = w(xz,u)' (35)
This result has been obtained differently in [7, 8].
[t suppose v from (12) to have the form
v = @(zo, T1)u (36)
then (12) is reduced to the Burger’s equation for ¢
o = 2¢p1 + 11 (37)
and one may say that operator
Q = O + pudy (38)
sets the connection between equation (37) and (1) via the substitution
v=fi/f (39)
Letting
v = @(xg,x1)u + h(xo, 1) (40)

and substituting it into (12) one finds the Burger’s equation (37) for function ¢ and
the following equation for A

ho = thol -+ h11~ (41)

System of equation (37), (41) was also obtained in [6] when considering the sys-
tem (10). Having made the change of variables

pe=nf/f, h=(fi/flg—an (42)
we reduced (37), (41) to two disconnected heat equations
Jo=fi1, go=gn. (43)

Now we consider how to linearise the equation (12) in general case. Let us
introduce the notations

Sl($0,$1,u,v) = vy — (1)11 + 2UU1u —+ vzvuu). (44)
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After changing the variables
v= —ﬂ, z = z(xo, x1,u)
2y

we get

1
Sl(l‘o,ﬂf],’u,, U) = ——(81 + Uau)52($0,$17U7Z),

u
where
2
z z
2 1 1
S%(wo, w1, u,v) = 20 — 211 + 27214 — 5 Zuu-
Zu z;

Having applied the hodograph transformation
Yo=72T0, Y1=21, Y2=2 R=u

we get

(RO - R11)7

1
Sz($03x17uaz) - 7R_
2

where R = R(yo,y1,Y2)-

(45)

(46)

(47)

(48)

(49)

1. ®ymuy B.U., Ulrenens B.M., CepoB H.W., CuMMeTpuiiHbI# aHAIN3 U TOUYHbIE PeLIeHHs HeJUHEHHBIX

ypaBHeHHH MareMaTHueckod ¢uanku, Kues, Hayk. nymka, 1989, 336 c.

2. ®ymuu B.M., Kak pacmupuTs cuMMeTpuio auddepeHInanbHEX ypaBHeHUH?, B ¢6. CHMMeTpHUs U pe-
LIeHHs] HeIMHeHHBIX ypaBHEHHH MaTeMatHueckod dusuku, Kues, MHetutyr Maremaruku AH Ykpau-

Hbl, 1987, 4-16.

3. @ywuu B.M., YenoBHasi cUMMeTpHUsi ypaBHEeHHH HeJIMHEHHOH MaTeMaTHuecKod (U3UKH, YKkp. mam.

acypr., 1991, 43, Ne 11, 1456-1470.

4. ®ymnu B.M., CepoB H.U., Yci0BHAasi HHBapHAHTHOCTb U PeAYKIHsl HEJHHEHHOTO ypaBHEHHUS TeILIo-

nposogtocth, JAH ¥Yxkpaune:, 1990, Ne 7, 24-28.

5. Bluman G.W., Cole J.D., The general similarity solution of the heat equation, J. Math. and Mech.,

1969, 18, Ne 11, 1025-1042.

6. Webb G.M., Lie symmetries of a coupled nonlinear Burger’s—heat equation system, J. Phys. A,

1990, 23, Ne 17, 3885-3894.

7. Rosen G., Nonlinear heat condition in solid Ha, Phys. Rev. B, 1979, 23, Ne 4, 2398-2399.

8. Bluman G.W., Kumei S., On the remarkable nonlinear diffusion equation ~ [a(u+b)*22—;] —

% =0, J. Math. Phys., 1980, 21, Ne 5, 1019-1023.



