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Q-conditional symmetry
of the linear heat equation
W.I. FUSHCHYCH, W.M. SHTELEN, M.I. SEROV, R.O. POPOVYCH

Исследована Q-условная симметрия одномерного линейного уравнения теплопро-
водности. Получены определяющие уравнения для коэффициентов оператора Q-
условной симметрии, изучена их лиевская симметрия, получены некоторые их то-
чные решения. Найдены нелокальные замены, сводящие определяющие уравнения к
исходному уравнению теплопроводности. Показано, как можно использовать опера-
торы Q-условной симметрии для линеаризации нелинейных ДУЧП и размножения
решений уравнения теплопроводности.

In this article we consider in full detail, as a simple but non-trivial example, how
to find and use Q-conditional symmetry of the one-dimensional linear heat equation

u0 = u11 (1)

(u = u(x0, x1), u0 = ∂u/∂x0, u1 = ∂u/∂x1 and so on.
It is known [1] that the maximal in Lie sense invariance algebra of equation (1) is

an algebra with the basis elements

∂0 =
∂

∂x0
, ∂1 =

∂

∂x1
, G = x0∂1 − 1

2
x1u∂u, I = u∂u,

D = 2x0∂0 + x1∂1, Π = x0

(
x0∂0 + x1∂1 − 1

2
u∂u

)
− x2

1

4
u∂u.

(2)

The problem of finding non-classical symmetry (in our terminology Q-conditional
symmetry) was firstly put forward by Bluman and Cole [5]. However, in this impor-
tant paper the authors did not give explicitly none of operators which would different
from those of (2). Below we will present quite complete investigation of this problem.
All notions used without explanations are defined in [1–4].

Definition 1 [2, 4]. A differential equation of order m

S1(x, u, u
1
, u
2
, . . . , u

m
) = 0 (3)

for a function u = u(x) where u
k
denotes all partial derivatives of order k is called

conditionally invariant under an operator Q if there is an additional condition of
the form

S2(x, u, u
1
, u
2
, . . . , u

m
) = 0 (4)

compatible with (3), that

Q̃Sα

∣∣∣S1 = 0
S2 = 0

= 0, α = 1, 2, (5)

In the formula (5) Q̃ is the standard prolongation of Q.

Доклады АН Украины, 1992, № 12, С. 28–33.



480 W.I. Fushchych, W.M. Shtelen, M.I. Serov, R.O. Popovych

In that particular case when equation (4) has the form

Qu = 0 (6)

equation (3) is called Q-conditionally invariant under the operator Q. The notion
of Q-conditional invariance coincides with the notion of “non-classical” invariance
introduced by Bluman and Cole in the work [5].

The general form of a first-order operator is

Q = A(x0, x1, u)∂0 + B(x0, x1, u)∂1 + C(x0, x1, u)∂u, (7)

where A, B, C are some differentiable functions of x0, x1, u to be determined from
the invariance condition (5). It will be noted that because of the imposed condition (6)

Qu = 0 ⇔ Au0 + Bu1 = C (8)

there are really only two independent cases of operator (7).

Theorem 1. The heat equation (1) is Q-conditionally invariant under operator (7) if
and only if its coordinates are as follows:

Case 1.

A = 1, B = W 1(x0, x1), C = W 2(x0, x1)u + W 3(x0, x1) (9)

and functions �W = �W (x0, x1) = {W 1,W 2,W 3} satisfy equations

(∂0 + 2W 1
1 − ∂11) �W = �F , �F = {−2W 2

1 , 0, 0}. (10)

Case 2.

A = 0, B = 1, C = v(x0, x1, u) (11)

and function v = v(x0, x1, u) satisfies the PDE

v0 = v11 + 2vv1u + v2vuu. (12)

Proof. From the criterion of invariance

Q
2
(u0 − u11)

∣∣∣u0 = u11,
Qu = 0

= 0, (13)

absolutely analogously to the standard Lie’s algorithm one finds the defining equations
for the coordinates of operator (7) which can be reduced to (9)–(12). It is to be pointed
out that unlike Lie’s algorithm, in the cases considered above the defining equations
(10), (12) are nonlinear ones and it is a typical feature of Q-conditional invariance.

It goes without saying that Q-conditional invariance includes Lie’s invariance in
particular. So, in our case of the heat equation, we obtain infinitesimals (2) as simplest
solutions of (10), (12):

A = 1, �W = 0 ⇒ Q = ∂0,

A = v = 0, B = 1 ⇒ Q = ∂1,

A = 0, B = 1, v = −x1u

2x0
⇒ Q = G,

A = 1, W 1 =
x1

2x0
, W 2 = W 3 = 0 ⇒ Q = D,

A = 1, W 1 =
x1

x0
, W 2 = −(2x0 + x2

1)/4x2
0, W 3 = 0 ⇒ Q = Π.

(14)



Q-conditional symmetry of the linear heat equation 481

Remark 1. System of defining equations (10) was firstly obtained by Bluman and Cole
[5]. Further investigation of system (10) was continued in [6], where the question of
linearization of the first two equations of (10) had been studied. The general solution
of the problem of linearization of equations (10), (12) will be given after a while.

Now let us list some concrete operators (7) of Q-conditional invariance of equa-
tion (1) obtained as partial solutions of the defining equations (10), (12). In the
following Table we also give corresponding invariant ansätze and the reduced equa-
tions.

Of course, operators 1–10 from Table do not exhaust the all possible operators of
Q-conditional invariance.

N Operator Q Ansatz Reduced equation

1 −x1∂0 + ∂1 u = ϕ
(
x0 +

x2
1
2

)
ϕ′′ = 0

2 −x1∂0 + ∂1 + x3
1∂u u = ϕ

(
x0 +

x2
1
2

)
+

x4
1
4

ϕ′′ = −3

3 x2
1∂0 − 3x1∂1 − 3u∂u u = x1ϕ

(
x0 +

x2
1
6

)
ϕ′′ = 0

4 x2
1∂0 − 3x1∂1 − (3u + x5

1)∂u u = x1ϕ
(
x0 +

x2
1
6

)
+

x5
1

12
ϕ′′ = −15

5 x1∂1 + u∂u u = x1ϕ(x0) ϕ′ = 0

6 cth x1∂1 + u∂u u = ϕ(x0) ch x1 ϕ′ − ϕ = 0

7 − ctg x1∂1 + u∂u u = ϕ(x0) cos x1 ϕ′ + ϕ = 0

8 ∂1 − u∂u − u
2x0−x1

∂u u = (2x0 − x1)e
−x1ϕ(x0) ϕ′ − ϕ = 0

9 ∂1 −
√−2(x0 + u)∂u u = −x0 − 1

2
[x1 + ϕ(x0)]

2 ϕ′ = 0

10
(
x0 +

x2
1
2

)
∂0 − x1∂1 u = ϕ

(
x0x1 +

x2
1

3!

)
ϕ′′ = 0

Next we study Lie symmetry of the defining equations (10), (12).
Theorem 2. The Lie maximal invariance algebra of system (10) is given by the
operators

∂0, ∂1, G(1) = x0∂1 + ∂W 1 − 1
2
W 1∂W 2 − 1

2
x1W

3∂W 3 ,

D(1) = 2x0∂0 + x1∂1 − W 1∂W 1 − 2W 2∂W 2 , I(1) = W 3∂W 3 ,

Π(1) = x0

(
x0∂0 + x1∂1 − W 1∂W 1 − 2W 2∂W 2 − 5

2
W 3∂W 3

)
+

+ x1

(
∂W 1 − 1

2
W 1∂W 2

)
− 1

2
∂W 2 − x2

1

4
W 3∂W 3 ,

X = (f0 + f1W
1 − fW 2)∂W 3 .

(15)

where f = f(x0, x1) is an arbitrary solution of (1), that is f0 = f11.
Theorem 3. The Lie maximal invariance algebra of equation (12) is given by the
operators

∂0, ∂1, D(2) = 2x0∂0 + x1∂1 + u∂u, D(3) = u∂u + v∂v,

G(2) = x0∂1 − 1
2
x1(u∂u + v∂v) − 1

2
u∂v,

Π(2) = x0

(
x0∂0 + x1∂1 − 1

2
u∂u − 3

2
v∂v

)
− x2

1

4
(u∂u + v∂v) − x1

2
u∂v,

R = f∂u + f1∂v (f0 = f11).

(16)
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One can get the proofs of these two theorems by means of the standard Lie’s
algorithm.

Operators (15), (16) can be used to find exact solutions of equations (10), (12).
In particular, using the formula of generating solutions at the expense of invariance
under Π(2)

vII(x0, x1, u) = (1 − θx0)−3/2 exp
{

θx2
1

4(1 − θx0)

}
v1(x′

0, x
′
1, u

′) +
θ

1 − θx0

x1u

2
,

x′
0 =

x0

1 − θx0
, x′

1 =
x1

1 − θx0
,

u′ = (1 − θx0)1/2 exp
{
−1

4
θx2

1

1 − θx0

}
u (θ = const)

(17)

one can construct new solutions of equations (12) starting from known ones.
Solutions of equations (10), (12) can be obtained by the use of reduction on

subalgebras of the invariance algebras (15), (16). For example, using the subalgebra
〈∂0 + a

(1)
i 〉 of the algebra (15) we find the following solution of the system (10)

W 1 =
C2

1 − C2
3

−C1 tg(C1x1 + C2) + C3 tg(C3x1 + C4)
,

W 2 = −C1C3
C1 tg(C3x1 + C4) − C3 tg(C1x1 + C2)
−C1 tg(C1x1 + C2) + C3 tg(C3x1 + C4)

,

W 3 = (ϕ11 − W 1ϕ1 − W 2ϕ)eax0 ,

(18)

where C1, . . . , C4 are arbitrary constants, ϕ = ϕ(x1), ϕ11 = aϕ.

Theorem 4. The system (10) is reduced to the system of disconnected heat equations

�z0 = �z11 (�z = �z(x0, x1) = {z1, z2, z3}) (19)

with the help of the nonlocal transformation

W 1 = −z1
11z

2 − z1z2
11

z1
1z2 − z1z2

1

, W 2 = −z1
11z

2
1 − z1

1z2
11

z1
1z2 − z1z2

1

,

W 3 = z3
11 + W 1z3

1 − W 2z3.

(20)

Expressions (20) result in (after using the corresponding operator (7), (9)) the
ansatz

u = z1ϕ(ω) + z3, ω =
z2

z1
(21)

(z1, z2, z3 are solutions of (19)), and the reduced equation is ϕ′′ = 0. This means that

u = C1z
1 + C2z

2 + C3z
3. (22)

So, we get just the well-known superposition principle for the heat equation.
Letting W 2 = W 3 = 0 we get from (10) the Burger’s equation

W 1
0 + 2W 1W 1

1 = W 1
11. (23)
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Using Hopf–Cole transformation one obtains solutions of equation (23) in the form

W 1 = −∂1 ln f = −f1

f
(f0 = f11). (24)

This result in the operator

Q = f∂0 − f1∂1. (25)

Q-conditional symmetry of equation (1) under the operator (25) lead to the following
statement.

Theorem 5. If function f is an arbitrary solution of the heat equation (1) and u is
the general integral of the ODE

f1dx0 + fdx1 = 0, (26)

then u satisfies equation (1).
Proof. We note that equation (26) is a perfect differential equation and therefore its
general solution u(x0, x1) = C possesses the following property

u0 = f1, u1 = f. (27)

Having used (27) we obtain

u0 − u11 = f1 − f1 = 0

and the theorem is proved.

Theorem 5 may be considered as another algorithm of generating solutions of
equation (1). Indeed, even starting from a rather trivial solution of the heat equation
u = 1 we get the chain of quite interesting solutions

1 → x1 → x0 +
x2

1

2!
→ x0x1 +

x3
1

3!
→ · · · , (28)

and among them the solutions

x2m
1

(2m)!
+

x0

1!
x2m−2

1

(2m − 2)!
+

x2
0

2!
x2m−4

1

(2m − 4)!
+ · · · + xm−1

0

(m − 1)!
x2

1

2!
+

xm
0

m!
, (29)

x2m+1
1

(2m + 1)!
+

x0

1!
x2m−1

(2m − 1)!
+

x2
0

2!
x2m−3

1

(2m − 3)!
+ · · ·

· · · + xm−1
0

(m − 1)!
x3

1

3!
+

xm
0

m!
x1

1!
.

(30)

It will be also noted that supposing function v in (12) to be independent on x1 and
denoting

v =
1

w(x0, u)
(31)

we get instead of (12) the following remarkable nonlinear heat equation

w0 = ∂u(w−2wu). (32)
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One easily sees that the operator

Q = w(x0, u)∂1 + ∂u (33)

sets the connection between equations (32) and (1):

w0 − ∂u(w−2wu) =
1
u1

∂1

(
u0 − u11

u1

)
,

u0 − u11 =
1
w

∫
[w0 − ∂u(w−2wu)]du

(34)

by means of the change of variables

w(x0, u) =
∂x1(x0, u)

∂u
,

∂u(x0, x1)
∂x1

=
1

w(x0, u)
. (35)

This result has been obtained differently in [7, 8].
It suppose v from (12) to have the form

v = ϕ(x0, x1)u (36)

then (12) is reduced to the Burger’s equation for ϕ

ϕ0 = 2ϕϕ1 + ϕ11 (37)

and one may say that operator

Q = ∂1 + ϕu∂u (38)

sets the connection between equation (37) and (1) via the substitution

ϕ = f1/f. (39)

Letting

v = ϕ(x0, x1)u + h(x0, x1) (40)

and substituting it into (12) one finds the Burger’s equation (37) for function ϕ and
the following equation for h

h0 = 2hϕ1 + h11. (41)

System of equation (37), (41) was also obtained in [6] when considering the sys-
tem (10). Having made the change of variables

ϕ = f1/f, h = (f1/f)g − g1 (42)

we reduced (37), (41) to two disconnected heat equations

f0 = f11, g0 = g11. (43)

Now we consider how to linearise the equation (12) in general case. Let us
introduce the notations

S1(x0, x1, u, v) = v0 − (v11 + 2vv1u + v2vuu). (44)
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After changing the variables

v = − z1

zu
, z = z(x0, x1, u) (45)

we get

S1(x0, x1, u, v) = − 1
zu

(∂1 + v∂u)S2(x0, x1, u, z), (46)

where

S2(x0, x1, u, v) = z0 − z11 + 2
z1

zu
z1u − z2

1

z2
u

zuu. (47)

Having applied the hodograph transformation

y0 = x0, y1 = x1, y2 = z, R = u (48)

we get

S2(x0, x1, u, z) = − 1
R2

(R0 − R11), (49)

where R = R(y0, y1, y2).
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