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Conditional symmetry and exact solutions
of equations of nonstationary filtration

W.I. FUSHCHYCH, N.I. SEROV, A.I. VOROB’EVA

Hocninkena ymoBHa iBapiaHTicTh, omep:kaHi HesiiBCbKi aH3aud Ta TNOOYAOBaHi TOUHi
pO3B’sI3KM DIiBHSIHHS HecTalioHapHO! (inbTpauil 3 HesiHifiHO0O mpaBolo uyacTHHOW0. Pe-
3y/lbTaTH y3arajbHeHO [/ n-BUMipHOro HeJsliHiHHOTO pPiBHSIHHS TeMNJONPOBiAHOCTI.

In describing filtration processes of gas the following nonlinear equation is widely
used [1]

ov  0%p(v) N dp(v)
oz0 T 07 ' m = (), (1)

T (91’1

where v = v(x), = (20, 21) € Ra, N = const; ¢(v), ®(v) are given smooth functions.
Substitution u = ¢(v) reduces equation (1) to equivalent equation

N
H(uw)ug + u11 + :c_ul = F(u), (2)
1
where uy = 2% Ou — 2%u

— 9xzg’ Uy = g, Y11 = 0x2 "

Lie symmetry of equation (2) under N = 0 was studied in [2, 3] and its conditional
symmetry was studied in [4-7].

In present paper we study conditional symmetry of equation (2) with N # 0.
Operators of conditional symmetry are used to construct ansidtze which reduce (2)
to ordinary differential equations (ODE). By means of this method we obtain exact
solutions of equations (2) and then exact solutions of multidimensional nonlinear heat
equation. Below we will use terms and definitions given in [4-7].

Theorem 1. Equation (2) is Q-conditionally invariant under the operator
Q= A(la u)aO + B((E, u)al + C((L'7 u)auv (3)

iff function A, B, C satisfy the following system of equations:
Case I. A # 0 (without lose of generality one can put A =1)

N
Buu =0, Cuu=2 (Blu + HBB, — —Bu) , 3ByF =2(Cyy + HB,C) —
Z1

N

N .
- (HBO + By — x—Bl + PB +2HBB; + HBC) , (4)
1 1

. N .
CF —(C, —2B,)F = HCy + Cy; + l_—Cl +2NCB; + HC?;
1

JHomnosini AH Ykpaiuu, 1992, Ne 6, C. 20-24



Conditional symmetry and exact solutions 465

Casell. A=0, B=1,

. H N N
CF — (Cu + c) F=HCy+Cii+—C1 — —C +20C1, + C*Clyy—
H 1 7
H N ©
-C—= (OCu +Ci+ —C’> .
H T
In formulas (4), (5) and everywhere below subscripts mean differentiation with

respect to corresponding arguments.

To prove the theorem one should use the method described in [4-7].
To find the general solution of equations (4), (5) is impossible, but we succeeded
in obtaining several partial solutions.

Theorem 2. Equation (2) is Q-conditionally invariant under operator (3) with
Hu)=1, A=1, D, #0 it is leeally equivalent to the equation

up + u11 + iul = ? (X = const), (6)
21‘1

and in this case operator (3) takes the form
1 1
Q:&)+§ v2)\u—|—— 81 + §'Ll/ 2)\U2 ) 8u (7)
2 X1 4 1

To prove the theorem one has to solve equations (4) under H(u) =1, B(u) # 0.
By means of operator (7) we construct an implicit ansatz

2 5 1+ v2A
15 <x03;)1>w+4v2)\x13 =pw), w= %, 8)

which reduces equation (6) to the ODE ¢ = 0. Having solved this latter one and
taking into account (8), we obtain the following solution of equation (6), u(xo,x1) is
a new solution
5 33
w= — L1 7 970 (c1 = const). 9

Vo) xf — 15x0x1 + c14/71

All inequivalent ansétze of Lie type are given by one of formulae

u=p(x1), u=my2p(x, 1) (10)

[t is obvious that (9) does not belong to (10).
The above solutions of equation (6) can be multiplied by means of formulae of
generating solutions using Lie symmetry:

u(zo, 21) = 01 f (6720 + b0, 6121), (11)
where 6y, 6, are group parameters, f(xg,x1) is a known solution of equation (6),
u(xo,x1) is a new solution.

Theorem 3. Equation

1 N 1
—up +urn + —up = —(Mu+ A2) (A1, A2 = const), (12)
u T1 u
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is Q-conditionally invariant under operator

Q=00+ (N+ 1) 81 + (Au+ A2)d,. (13)
Prooi. To prove the theorem it is sufficient to show that the following relation holds
true

QS = MiS + AaQu, (14)
where

1 N 1
S = —ug+up + —u — —(>\1U—|—)\2),
U 21 U

Qu = Uug + (N + 1)%’1“ — ()\1u =+ )\2),
1

Q is corresponding prolongation of operator Q: A1, Ag are some functions.
On acting operator @ on S we get after rather tedious calculations,

~ N+1
QS = |:)\1 + x—g (2'LL + 31’1U1):| S -
1

uy — (2U+ 3I’1U1)

N+1 N+1 AL+ Ao
- — 5| Qu
T1U z3u u

So, the theorem is proved.
Operator (13) results in the ansatz

U
=x9g— | —— 15
N+1 /)\1U+A2 go(w), w Zo />\1U—|—)\2’ ( )
which reduces equation (12) to the ODE
-9 = Y+ Ao (16)

Having integrated equation (16) and using once more (15) one finds solution of
equation (12)
Aoz + %)\%(N + 1)_1{E%
1+ A3 exp(—zo)

Xozd + X3+ (N + 1) 1a?
= 3 )\1 = 07
2500

>\1U+)\2: 5 )\1750,

(17)

where A3 is a constant of integration.

[t is not difficult to verify that solutions (17) cannot be obtained by means of Lie
ansitze (analogously to above solutions of equation (6)).

The rest results obtained for equation (2) are collected in table, where A1, A2, A3
are arbitrary constants, W = W (u) an arbitrary smooth function.

Let us give some solutions of equation (2) obtained as a result of integration of
reduced equations listed in the table.

N—-1

N—BZ‘O I

1. =A — + —
Y ( )\2 [L'1+ 2) ’

N-—1

A3 > .
A:[m] 5 /\1750, N;él,Q,
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72
2. u=ux%p(w), where w=mzy— 71,
p(w) satisfies ODE ¢ = —A\1 Inp + Asw;
—1 Zo x%
3. u:—21nx1 V23 )\——Z , A1 =0, )\2750, Az > 0;
2
)\41‘%

Ay 4z 2 ’
exp;\—;(/\—;—%)—l

>\17é0a >\27é0a >\3:07 A47é07

u=1In

A (4
4. u:_ln_1<i2°—1>, M A0, Ag £ 0, A3 =0;

A2 &y (18)

)\ -3
W(u) =z <— +exp (/\—2300)> s A #E 0, A # 0
1

o / )\1 e - /\2$% .
5. W(U) =T %, )\2 = 0, u = )\1%‘0 + m,

(EQ
6. u=ANxo+ )\371;

A
7. u=exp (exp)\gxo + ng% + > .

Numeration in (18) corresponds to that of ansdtze in the table.
Note, that substituting ; — r = \/2? + 23 + --- + 22 and putting N =n — 1 we
find that equation (2) coincides with reduced nonlinear heat equation

H(u)up + Au = F(u), (19)

where u = u(zg,Z), A = g—i + -+ %. Equation (19) is reduced to (2) by means
of the O(n)-invariant ansatz u = w(xg,r). Therefore, many results obtained above
for equation (2) can be used straightforwardly for finding operators of conditional
symmetry and corresponding solutions of multidimensional equation (19). We sum-
marize them in the following statement.

Theorem 4. Nonlinear heat equation (19) is Q-conditionally invariant under the set
of operators {AO(n),Q} if:

1) H(u)= AMuTT 4 Ay, F(u) = )\g%ﬁ,
Q = X@20) + (4 — )04 + (4 — 1) (2 = n)udy, Ia #0, n#2, 4

2) H(u):%, Fu)=X3, n=4, Q=7F%0y+ 1,0, — 2udy;

3) H(u)=XMexpu+ Ay, F(u)=A3expu, n=2, (20)
Q = \oT200 + 22,0, +40,, Ao #0;

4) Hu)=1, F(u)=Xulhu, Q=2x,0,+ %52118”;

1 1
5) H(u)=—. Flu)=>(\u+h) Q=0+ %uxaﬁa + (Mt + X2)By.
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AUHEY = ALY + D Tw«m?&v& =n "oniz & + 10 nuyney 1 i
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=4 AL — (w3 =n Sl 410 0 7 oY oY + miy - # N ‘(MM g
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14
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e=d+31¢ AW|SV97§|: ngng — ez + %glw ey E=N ‘T 4
08 4 o non(N — (N — &)+
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- N
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Remark. Basis elements of AO(n) have the form

Iy = 2,0y — 2404, a,b=1,n. (21)

Repeated indices are to be summed over 1,2,...,n.
Let us give some exact solutions of equation (19) obtained by means of opera-
tors (20):
Moo + 45
x
AMA2R0 T Ton (A1 #0)
1+ Azexp(—xo)

AU+ g =
is solution of equation

1 1

—ug + Au = —()\1u + )\2)

u u

and

is solution of equation under n = 2.
Aoty + Au = Agexpu

under n = 2.
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