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A simple method of finding solutions
of the nonlinear d’Alembert equation
P. BASARAB-HORWATH, W.I. FUSHCHYCH, M. SEROV

We consider the nonlinear d’Alembert equation

�u = F (u), (1)

where u = u(x) and x = (x0, x1, . . . , xn) ∈ R
n,

� =
∂2

∂x2
0

− ∂2

∂x2
1

− · · · − ∂2

∂x2
n

and F (u) is an arbitrary differentiable function. In equation (1) we make the local
change of variable

u = Φ(w), (2)

where w(x) is a new unknown function and Φ is a function to be determined later.
On making this change, (1) becomes

Φ̇�w + Φ̈wµwµ = F (Φ), (3)

where

Φ̇ =
dΦ
dw

, wµwµ =
(

dw

dx0

)2

−
(

dw

dx1

)2

− · · · −
(

dw

dxn

)2

.

Equation (3) is equivalent to the following equation

Φ̇

(
�w − λ

Ṗn

Pn

)
+ Φ̈(wµwµ − λ) + λ

(
Φ̈ + Φ̇

Ṗn

Pn

)
− F (Φ) = 0, (4)

where Pn(w) is an arbitrary polynomial of degree n in w, and λ = −1, 0, 1. Choosing
Φ such that

λ

(
Φ̈ + Φ̇

Ṗn

Pn

)
= F (Φ) (5)

equation (4) becomes

Φ̇

(
�w − λ

Ṗn

Pn

)
+ Φ̈(wµwµ − λ) = 0. (6)

From this it is clear that a solution of the system

�w = λ
Ṗn

Pn
, wµwµ = λ (7)
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is also a solution of (6), and in this way we obtain a solution of (1) provided Φ
satisfies (5). There remains, of course, the problem of the existence of solutions
of (7). We have the following result.

Theorem 1. For n = 3 the system

�w = H(w), wµwµ = λ

with λ = −1, 0, 1 is compatible if and only if

H(w) =
λN

w + C
,

where N = 0, 1, 2, 3 and C is an arbitrary constant.
This result follows from theorem 2 of [2]. In theorem 1 of [3], it is further shown

that if the system in theorem 1 above is compatible, then it is necessarily of the type
given in equation (7). Moreover, as is mentioned in [3], the system (7) is always
compatible (for any n) if H(w) is as in theorem 1 above. Having discussed the
question of compatibility, we now turn to equation (5), which gives us the appropriate
choice of Φ. We do this for several cases of the function F (u). Note that for the
remainder of this paper, we take n = 3.

Case 1. F (u) = uk with k �= 1. If Pn = wm with m = 0, 1, 2, 3 then (5) becomes

λ
(
Φ̈ +

m

w
Φ̇
)

= Φk. (8)

Assuming Φ to be of the form

Φ(w) = αwβ

with α, β constants, we obtain

Φ(w) =
(

(1 − k)w
(2λ(1 + k + m − km))1/2

)2/(1−k)

(9)

as a solution of (8).
Case 2. F (u) = exp u. Again using Pn(w) = wm, m = 0, 1, 2, 3, equation (5)

becomes

λ
(
Φ̈ +

m

w
Φ̇
)

= exp Φ. (10)

and we seek solutions Φ with the help of me ansatz

exp(Φ(w)) = αwβ

with α, β constants. We obtain

Φ(w) = log
(

2λ(m − 1)
w2

)
, m = 2, 3. (11)

Case 3. F (u) = −Ψ̈(u)/Ψ̇3(u). Here we take Ψ to be an arbitrary differentiable
function such that Ψ̈ �= 0. If we take Pn(w) = λ0 = const, then (5) becomes

λΨ̈ = − Ψ̈(Φ)
Ψ̇3(Φ)

(12)
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and this gives us

√
λ

∫
dΦ

(c1 + Ψ̇−2(Φ))1/2
= w + c2, (13)

where c1, c2 are two constants of integration. On choosing these two constants of
integration to be zero, we obtain

w =
√

λΨ(Φ)

as a solution of (12), and the change of variable (2) is then given by

w =
√

λΨ(u). (14)

In this case of F , we have replaced Φ by another function Ψ; we now took at some
cases of Ψ.

Case 3(a). F (u) = λ1 sin u, where λ1 = const. On setting

λ1 sin u = − Ψ̈(u)
Ψ̇3(u)

we obtain

Ψ(u) =
∫

du

(c1 − 2λ1 cos u)1/2
+ c2. (15)

For c1 = 2λ2, c2 = 0, λ1 > 0 we find

Ψ(u) =
1√
λ1

log tan(u/4)

and for c1 = −2λ1, c2 = 0, λ1 < 0 one obtains

Ψ(u) =
1√−λ1

tanh−1 tan(u/4).

On putting λ = |λ1| in (14), the change of variable then takes on the form

u =

{
4 arctan exp(w/

√
λ1) for λ1 > 0,

4 arctan tanh(w/
√−λ1) for λ1 < 0.

Case 3(b). F (u) = sinhu. Integrating the equation

sinh u = − Ψ̈(u)
Ψ̇3(u)

we obtain

Ψ(u) =
∫

du

(c1 + 2 cosh u)1/2
+ c2. (16)

For c1 = 2, c2 = 0 one finds

Ψ(u) = 2 arctan tanh(u/4)
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and for c1 = −2, c2 = 0 one gets

Ψ(u) = log tanh(u/4).

Then (14) gives, with λ > 0

u = 4 tanh−1 tan(w/
√

λ),

u = 4 tanh−1 exp(w/
√

λ).

Case 3(c). F (u) = sin u/ cos3 u. In this case, the equation

sin u

cos3 u
= − Ψ̈(u)

Ψ̇3(u)

yields

Ψ(u) =
∫

du

(c1 + 2 tan2 u)1/2
+ c2. (17)

Again, we choose values for the integration constants. For c1 = 1, c2 = 0 we find

Ψ(u) = sin u

and for c1 = c2 = 0 we obtain

Ψ(u) = log sin u.

Using (14), with λ > 0 the change of variable (2) is given by the equations

u = arcsin(w/
√

λ)

and

u = arcsin exp(w/
√

λ).

We present our results in table 1.

Table 1. Summary of results obtained in cases 1–3(c).

F (u) Solution of (1) System (7)

uk, k �= 1 u =

(
(1−k)w√

2λ(1+k+m−km)

)2/(1−k)

1 + k + m − km �= 0, m = 0, 1, 2, 3 �w = mλ/w

exp u u = log
(

2λ(m−1)

w2

)
, m = 2, 3 wµwµ = λ

−Ψ̈(u)/Ψ̇3(u) Ψ(u) = w√
λ
, λ > 0

λ1 sin u u = 4arctan exp(w/
√

λ1), λ1 > 0
u = 4 arctan tanh(w/

√−λ1), λ1 < 0 �w = 0

sinh u u = 4 tanh−1 tan(w/
√

2λ), λ > 0 wµwµ = λ

u = 4 tanh−1 exp(w/
√

2λ), λ > 0

sin u/ cos3 u u = 4arcsin(w/
√

λ), λ > 0

u = 4 arcsin exp(w/
√

λ), λ > 0
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We now present some results from [1] concerning the general solutions of the
system

�w =
mλ

w
, wµwµ = λ, n = 3. (18)

Theorem 2. The general solution of the system (18) for m = 3, λ = 1 is given by

w2 = [xµ + Aµ(τ)][xµ + Aµ(τ)],

where the function τ(x) is defined implicitly by the equation

[xµ + Aµ(τ)]Bµ(τ) = 0

and Aµ, Bµ are arbitrary differentiable functions of one variable satisfying the
conditions

ȦµBµ = 0, BµBµ = 0.

Theorem 3. The general solution of the system (18) for m = 0, λ = −1 is given by

w = Aµ(τ)xµ + f1(τ), (19)

where the function τ = τ(x) is implicitly defined by the equation

Bµ(τ)xµ + f2(τ) = 0 (20)

and Aµ, Bµ, f1, f2 are arbitrary functions of one variable satisfying

AµAµ = −1, ȦµBµ = 0, AµBµ = 0, BµBµ = 0. (21)

The abtive theorems give us some general information about the solutions of (18)
in particular cases. Of course, these results express the solution in terms of other
functions, but now we know how to generate these functions: we have to choose
Aµ, Bµ, f1, f2 appropriately so as to define both τ and then w (as we do below
in a particular case). In this way, we have a systematic way of obtaining solutions
of (18). Our approach to the solution of the nonlinear d’Alembert equation is based
on a change of variable as in (2), and a decomposition of the equation (4) for the
new variable w into ‘component’ equations (5), (6) and (7). Equation (5) involves
the change of variable and the nonlinearity F (u), whereas (7) provides us with a
system which can be dealt with using theorems 1–3. The d’Alembert equation with
nonlinearity sin u was discussed in [4], where a change of variable together with a
decomposition of the ensuing equation was also used. The result obtained in [4] can
be obtained with our results, as follows. In (20), (21) put

Aµ = βµ, Bµ = θµ,

where θµ = αµ − γµ, αµ, βµ, γµ are constant vectors satisfying

αµαµ = −βµβµ = −γµγµ = 1, αµβµ = αµγµ = βµγµ = 0.

Equation (20) then defines τ through

f2(τ) = −θµxµ
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and on choosing f2 invertible we obtain the solution of (19)

w = βµxµ + f(θµxµ).

When F (u) = − sin u we obtain

u = 4arctan exp[βµxµ + f(θµxµ)], (22)

where f is an arbitrary differentiable function. Equation (22) is the solution obtained
in [4]. As can be seen, our method gives a useful way of obtaining exact solutions of
nonlinear equations.
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