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On the reduction of the nonlinear
multi-dimensional wave equations
and compatibility of the d’Alembert–
Hamilton system
W.I. FUSHCHYCH, R.Z. ZHDANOV, I.A. YEGORCHENKO

The necessary conditions of the compatibility of the d’Alembert–Hamilton system in
Minkowsky space R(1, n) are established. The problem of reduction of P (1, n)-invariant
wave equations to ordinary differential equations is discussed.

1. Since Euler the method of reduction of partial differential equations (PDE) to
ordinary differential equations (ODE) is one of the most effective ways to construct
the exact solutions of PDE.

The papers [1–5] contain the symmetry reduction to ODE of the d’Alembert equati-
on

�u = G(u), � ≡ ∂2
x0

− ∂2
x1

− · · · − ∂2
xn

(1)

(where G(u) is an arbitrary smooth function). So the many-dimensional PDE [1] with
the ansatz

u = ϕ(ω), (2)

where ϕ ∈ C2(R1, R1); ω = ω(x) ∈ C2(Rn+1, R1), the new variable, is reduced to the
ODE of the form

ωµωµϕ̈(ω) + (�ω)ϕ̇(ω) = G(ϕ), (3)

where ωµ ≡ ∂ω/∂xµ, µ = 0, . . . , n. Hereafter summation over repeated indices is
understood in the Minkowsky space R(1, n) with the metric gµν = diag(1,−1, . . . ,−1).

In [3–5] using the symmetry properties of Eq. (1) and the subgroup structure of
the P (1, n) group the new variables ω = ω(x) for Eq. (3) had been constructed.

Equation (3) depends on ω and does not depend on “old” variables x. ω(x) are
invariants of the corresponding subgroups of the Poincaré group P (1, n).

In the present paper we suggest the approach to the problem of reduction of PDE
to ODE more general than one based on the employment of the symmetry properties
of PDE [1–5].

Definition. We say that the ansatz (2) reduces PDE (1) to ODE (3) when the new
variable ω = ω(x) satisfies both

�ω = F1(ω), ωµωµ = F2(ω), (4)

where F1(ω), F2(ω) are arbitrary smooth functions. Further we call Eqs. (4) the
d’Alembert–Hamilton system.
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Evidently for every ω(x) satisfying the system (4) ODE (1) depends on ω only.
Thus the problem of finding of the ansatze (2) reducing PDE (1) to ODE leads to the
construction of solutions of the d’Alembert–Hamilton system (4).

Before solving the system (4) it is necessary to clear the matter of its compatibility,
i.e., to describe all functions F1, F2 for the system (4) to possess nontrivial solutions.

In the three-dimensional case (n = 2) the compatibility of the system (4) was
investigated by Collins [6] with the geometry methods. The compatibility of the
d’Alembert–Hamilton system in the four-dimensional space R(1, 3) was investigated
in detail in [7]. We had generalized the results of [7] for the case of (1+n)-dimensional
system of PDE (4) using the classical Hamilton–Cayley theorem.

2. The system (4) with the change of dependent variable z = z(ω) transforms to
the following system of PDE

�ω = F (ω), ωµωµ = λ, λ = const, (5)

Eq. (3) having the form

λϕ̈ + F (ω)ϕ̇ = G(ϕ). (6)

Before formulating the main result we adduce some preliminary statements.

Lemma 1. The solutions of the system (5) satisfy the equalities

ωµν1ων1µ = −λḞ (ω), ωµν1ων1ν2ων2µ =
1
2!

λ2F̈ (ω), . . . ,

ωµν1ων1ν2 . . . ωνN µ =
(−λ)N

N !
F (N)(ω), N ≥ 1,

(7)

where ωµν ≡ ∂2ω/∂xµ∂xν , µ, ν = 0, . . . , n.
Proof. We prove the lemma with the method of mathematical induction by N .

Having differentiated twice the second equation of the system (5) with respect to
xα, xβ we obtain the relation

ωµαβωµ + ωµαωµβ = 0. (8)

Convoluting (8) with the metric tensor gαβ we come to the equality

ωµαωµα + ωµ�ωµ = 0.

Since �ωµ = (∂/∂xµ)F (ω) = ωµḞ (ω), on the solutions of the system (5) the last
expression can be rewritten in the form

ωµαωµα + λḞ (ω) = 0.

Thus the basic statement of induction is proved.
Let us suppose that the lemma holds for N = k. We prove that whence its

statement follows for N = k + 1.
Convoluting (8) with the tensor

ωαν2ων2ν3 · · ·ωνkβ

we get the equality

ωµαωαν2 · · ·ωνkβωβµ + ωµωαβµωαν2 · · ·ωνkβ = 0. (9)
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Since

ωµωαβµωαν2 . . . ωνkβ =
1

k + 1
ωµ(ωβαωαν2 · · ·ωνkβ)µ =

=
1

k + 1
ωµ

(
(−λ)k

k!
F (k)(ω)

)
µ

= − (−λ)k+1

(k + 1)!
F (k+1)(ω)

(we used the assumption of induction) then it follows from (9) that

ωµν1ων1ν2 · · ·ωνk+1µ =
(−λ)k+1

(k + 1)!
F (k+1)(ω)

The Lemma is proved.

Lemma 2. On the solutions of the system (5) the equality

det ‖ωµν‖ = 0 (10)

holds.
The proof follows from the fact that (10) is the criterium of functional dependence

of ω0, . . . , ωn.

Theorem 1. For the system (5) to be compatible it is necessary that

F (ω) = λḟ(ω)f−1(ω), (11)

f satisfying the condition

f (n+1)(ω) ≡ dn+1f(ω)
dωn+1

= 0. (12)

Proof. Let us first consider the case λ �= 0. For an arbitrary (n + 1)× (n + 1)-matrix
W = ‖wµν‖ by virtue of the Hamilton–Cayley theorem the equality

n−1∑
k=0

(−1)k
∑

Mk tr (Wn−k) + (−1)nndet W = 0 (13)

is true.
∑

Mk in (13) is the sum of basic minors of the order k of the matrix W ,
which is calculated with the recurrent formula

∑
Mk =

[
k−1∑
l=0

(−1)l
∑

Ml tr (W k−l)

]
(−1)k−lk−1, k ≥ 1;

∑
M0 = 1.

(14)

We take the matrix elements of W as

wµν =
n∑

α=0

gανωµα,

then from Lemmas 1, 2

tr (W k) =
(−λ)k−1

(k − 1)!
F (k−1)(ω), det W = 0. (15)
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The substitution of formula (15) into (14) gives the ODE for determination of the
function F = F (ω). Let us show that this ODE reduces using the nonlocal change of
variable (11) to the form (12).

Let

YN =
N∑

k=0

(−1)k
∑

Mk tr (WN−k+1)

then
∑

Mk = ((−1)k−1/k)Yk−1; whence

YN =
N∑

k=0

(−1)N−k+1

k(N − k)!
λN+1−k

(
ḟ

f

)(N−k)

Yk−1.

Using the method of mathematical induction we prove that

YN =
(−1)N+1

N !
λN+1 f (N+1)

f
. (16)

For N = 1, 2, 3 this equality follows from the results of [7]. Let us assume that (16)
holds for every m ∈ N, m ≤ N − 1. We show that whence it follows that (16) is true
for m = N .

Indeed

YN =
N∑

k=0

(−1)k+1

k(k − 1)!
λk f (k)

f

(−1)N−k

(N − k)!
λN+1−k

(
ḟ

f

)(N−k)

=

=
(−1)N+1λN+1

N !

N∑
k=0

Ck
N

f (k)

f

(
ḟ

f

)(N−k)

=
(−1)N+1λN+1

N !
f (N+1)

f
,

the same as what was to be proved.
From the equality (10) Yn = (−1)n+1ndet W = 0 whence by virtue of (15), (16)

we obtain

f (n+1) = 0.

Let us consider now the case λ = 0. Using Lemmas 1, 2 we have

tr (W k) = 0, k = 2, n; det W = 0.

Taking into account these equalities we can rewrite the Hamilton–Cayley identity
in the form

Yn = 0,

where Yn = (−1)n+1(F/n!). Whence we conclude that F = 0. The theorem is proved.

Consequence. The system �u = F (u), uµuµ = 0 is compatible iff F (u) = 0.
Proof. The necessity of the above statement follows from the Theorem 1. The suffi-
ciency is proved by the fact that the function u(x) = x0 + x1 satisfies both the
d’Alembert (�u = 0) and the Hamilton (uµuµ = 0) equations.

Let us note that this consequence was proved in [9] by another technique.
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Theorem 2. The system of PDE (5) is invariant with respect to the conformul group
of transformations of the Minkowskv space R(1, n) iff [7, 8]

F (ω) = λn(ω + C)−1, c = const, λ > 0. (17)

The proof is carried out by S. Lie’s method.
Let us note that the formula (17) is obtained from (11) when f = (ω + c)n. So

Theorem 2 demonstrates the deep connection between the symmetry of overdetermi-
ned system of PDE (5) and its compatibility.

Note. It is well known that PDE (1) is invariant under the conformal group C(1, n) iff
G(u) = cu(n+3)/(n−1) (see, e.g., [3, 10, 11]). Thus the additional condition uµuµ = λ
picks out the subset of solutions of Eq. (1) which admits a wider symmetry group
than the set of its solutions in a whole. In other words the nonlinear d’Alembert
equation is conditionally invariant under the conformal group if G(u) = λn(u + c)−1

(the notion of conditional invariance of PDE was introduced in [12–14]; see also [15,
16]).

The sufficient conditions of the compatibility of the d’Alembert–Hamilton sys-
tem (5) are

F (ω) = |λ|N(ω + c)−1, (18)

where c = const, N = 1 − n, 2 − n, . . . , 0, 1, . . . , n.
As shown by Collins [6] the above conditions are the necessary and sufficient

ones for the system (5) to be compatible if n = 1, 2. In the Appendix we list exact
solutions of the d’Alembert Hamilton system under (18) for n = 3 obtained in [3, 5,
7–9, 17]. Let us emphasize that solutions numbered (5)–(7), (9) are not invariants
of the Poincaré group P (1, n). Nevertheless they satisfy the d’Alembert–Hamilton
system and, consequently, can be used to reduce Eq. (1) to ODE via ansatz (2).

In conclusion we briefly consider the reduction of the arbitrary Poincaré-invariant
wave equation to ODE. As it was established in [18] every P (1, n)-invariant PDE for
the scalar function u = u(x) can be represented in the form where H(R1, . . . , Rn;
S1, . . . , Sn, u) = 0

Rj = uµ1uµ1µ2 · · ·uµj−1µj
uµj

, Sj = uµ1µ2uµ2µ3 · · ·uµjµ1 ,

and H is some continuous function.
It turns out that ansatz (2), where ω = ω(x) satisfies system (5), reduces every

PDE of the form (19) to ODE.
Using Lemma 2 we obtain

Sj(ϕ(ω)) = λjϕ̈j + ϕ̇jSj(ω) = λjϕ̈j + ϕ̇j (−λ)j−1

(j − 1)!
F (j−1)(ω),

Rj(ϕ(ω)) = ϕ̇2ϕ̈j−1λj , j = 1, n.

Substituting these formulae to (19) we get

H(R1, . . . , Rn, S1, . . . , Snu)|u=ϕ(ω) = H̃(ω, ϕ, ϕ̇, ϕ̈).

Thus knowing the exact solutions of the d’Alembert–Hamilton system we can
construct using ansatz (2) the exact solutions of the arbitrary Poincaré-invariant
equation (19).
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Appendix

Exact solutions of the d’AIembert–Hamilton system (5)
in 1 + 3-dimensional Minkowsky space

N ∗ F (ω) ω = ω(x)

1 1 0 x0

2 1 ω−1
(
x2

0 − x2
1

)1/2

3 1 2ω−1
(
x2

0 − x2
1 − x2

2

)1/2

4 1 3ω−1
(
x2

0 − x2
1 − x2

2 − x2
3

)1/2

5 −1 0 x1 cos(h1) + x2 sin(h2) + h2

6 −1 0 x0 − x1 cos(g1) − x2 sin(g1) − g2 = 0

7 −1 −ω−1
[
(x1 + h1)

2 + (x2 + h2)
2
]1/2

8 −1 −2ω−1
(
x2

1 + x2
2 + x2

3

)1/2

9 0 0 h1

Note. Here h1, h2 are arbitrary smooth functions on x0 + x3 and g1, g2 are arbitrary smooth
functions on ω + x3.
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