
W.I. Fushchych, Scientific Works 2002, Vol. 4, 355–360.

On the non-Lie reduction
of the nonlinear Dirac equation
W.I. FUSHCHYCH, R.Z. ZHDANOV

The method of construction of exact solutions of nonlinear spinor equations based on
their conditional (non-Lie) symmetry is suggested. With the help of this method new
ansätze that reduce the nonlinear Poincaré-invariant Dirac equation to ordinary di-
fferential equations are constructed. The new family of exact solutions of the nonlinear
Dirac equation with scalar selfinteraction is found.

1. Introduction
It is common knowledge that the classical Lie approach to the construction of

exact solutions of partial differential equations (PDEs) essentially uses invariance
properties of the set of solutions of the considered equation [1, 2]. In Refs. [3–5]
a natural generalization of the Lie approach was suggested that takes into account
not only the symmetry of the set of solutions of PDEs as a whole, but the symmetry
of their subsets as well. This is achieved by imposing on the solutions of the initial
equation such additional conditions (equations) that the obtained system of PDEs is
compatible and possesses wide symmetry.

Using the above idea, in the present paper we construct a family of the new exact
solutions of the following nonlinear spinor equation:

{iγµ∂mu − λ(ψ̄ψ)1/2k}ψ = 0, λ, k = const, (1)

where ψ = ψ(x0, x1, x2, x3) is the four-component complex function, ψ̄ = ψ†γ0 and
γµ are 4×4 Dirac matrices, ∂µ = ∂/∂xµ, and µ = 0, 3. Hereafter, the summation over
the repeated indices is supposed.

2. Construction of the non-Lie anzätze for the spinor field
The solution of Eq. (1) is found in the form

ψ(x) = exp{fµν(x)γµγν}ϕ(ω), (2)

where ϕ(ω) is a four-component function and fµν(x) and ω = ω(x) are scala real
functions. The functions fµν , ω are chosen such that substitution of expression (2)
into Eq. (1) yields an ordinary differential equation (ODE) for ϕ = ϕ(ω).

We shall describe ansätze (2) as reducing the PDE (1) to systems of ODEs if the
functions fµν , ω are of the following structure:

f00 = −f11 = −f22 = −f33 =
1
4
θ0(x0 + x3, x1, x2),

f01 = −f10 = f13 = −f31 =
1
2
θ1(x0 + x3, x1, x2),

f02 = −f20 = f23 = −f32 =
1
2
θ2(x0 + x3, x1, x2),

f03 = f30 = f12 = f21 = 0, ω = ω(x0 + x3, x1, x2).
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Substituting the ansatz

ψ(x) = exp{θ0 + (θ1γ1 + θ2γ2)(γ0 + γ3)}ϕ(ω) (3)

into Eq. (1) and multiplying the obtained equality by

exp{−θ0 − (θ1γ1 + θ2γ2)(γ0 + γ3)}
one has

i[(γ0 + γ3)∂ξθ0 + γa∂aθ0 + γaγB(∂aθB)(γ0 + γ3) − 2θa(∂aθ0)(γ0 + γ3)]ϕ+

+ i[(γ0 + γ3)(∂ξω − 2θa∂aω) + γa∂aω]ϕ− λeθ0/k(ϕ̄ϕ)1/2kϕ = 0,

where ξ = x0 + x3, ∂ξ = ∂/∂ξ, a = 1, 2, and B = 1, 2.
Hence it follows that ansatz (3) reduces the initial PDEs to ODEs if the nonlinear

equations hold:

∂ξθ0 − 2θa∂aθ0 − ∂aθa = eθ0/kf1(ω), ∂1θ0 = eθ0/kf2(ω),

∂aθ0 = eθ0/kf3(ω), ∂2θ1 − ∂1θ2 = eθ0/kf4(ω),

∂ξω − 2θa∂aω = eθ0/kf5(ω), ∂1ω = eθ0/kf6(ω), ∂2ω = eθ0/kf7(ω).

(4)

In Eqs. (4) f1, . . . , f7 are arbitrary smooth real functions.
It is worth noting that as a result of the arbitrariness of the function ϕ(ω) substi-

tution of the expressions

ω(x), θα(x) (5)

and

f̃(ω(x)), θα(x) + f̃α(ω(x)), (6)

where f̄ , f̄a ⊂ C1(R1,R1), α = 0, 2, into formula (3) gives the same ansatz for the
field ψ(x). In this sebse solutions of system (4) of the forms (5) and (6) are equivalent.

System (4) contains seven equations for four functions, i.e., it is an overdetermined
system. This fact makes it possible to construct its general solution.

Theorem. The general solution of the nonlinear system of PDEs (4) determined up
to the above equivalence relation is given by one of the following formulas:

θ0 = k lnω1, θ1 = (2ω1)−1(ω̇1x1 + ω̇2),
θ2 = (2ω1)−1[(2k − 1)ω̇1x2 + ω3], ω = ω1x1 + ω2;
θ0 = −k ln(x1 + ω1),
θa = ω3[(x1 + ω1)2 + (x2 + ω2)2]k−1(xa + ωa) + 1

2 ω̇a, a = 1, 2,
ω = (x1 + ω1)(x2 + ω2)−1;
θ0 = 0, θ1 = R(x1 + ix2, x0 + x3) +R(x1 − ix2, x0 + x3) + ω1x1,

θ2 = iR(x1 + ix2, x0 + x3) − iR(x1 − ix2, x0 + x3) + ω2x1, ω = x0 + x3.

(7)

Here ω1, ω2 and ω3 designate arbitrary real smoothfunctions on x0 + x3 and R
designates an arbitrary analytical function on the first variable.
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Let us adduce the main steps of the proof. First, an overdetermined system made
up of the second, third, sixth, and seventh equations in (7) is integrated. Upon making
the change of the variable θ = e−θ0/k we rewrite this system in the form

∂aθ = Fa(ω), ∂aω = θ−1Ga(ω), Fa, Ga ⊂ C1(R1,R1), a = 1, 2. (8)

From the necessary and sufficient compatibility conditions of system (8), ∂1∂2θ =
∂2∂1θ, ∂1∂2ω = ∂2∂1ω, one has the following relations for Fa(ω), Ga(ω):

Ḟ1G2 = G1Ḟ2, G2Ġ1 −G1F2 = G1Ġ2 −G2F1, (9)

where the overdot means differentiation with with respect to ω.
The procedure for the integration of the system of ODEs (9) is essentially simpli-

fied by the fact that the equivalence conditions (6) induce the equivalence relation on
the set of solutions of Eqs. (9):

Fa(ω) ∼ Fa(f(ω)) − ġ(ω)Ga(f(ω)),

Ga(ω) ∼ (ḟ(ω))−1Ga(f(ω))(g(ω))−1,
(10)

where f, g ⊂ C1(R1,R1), ḟg �= 0.
By integrating the system of PDEs (8) and (9) one establishes that is general

solution up to the equivalence relations (6) and (10) is determined by one of the
following formulas:

F1 = G1 = 1, F2 = G2 = 0, θ = ω−1
1 , ω = ω1x1 + ω2;

F1 = 1, F2 = 0, G1 = ω, G2 = −ω2,

θ = x1 + ω1, ω = (x1 + ω1)(x2 + ω2)−1;
F1 = F2 = G1 = G2 = 0, ω = ξ, θ = 1;
F1 = F2 = 0, Ga ⊂ C1(R1,R1), ω = ξ,

θ = G1(ξ)x1 +G2(ξ)x2 + ω3.

(11)

Here ω1, ω2, and ω3 are arbitrary real smooth functions on ξ.
Substitution on the sxpressions for the functions ω(x), θ0(x) = −k ln θ(x) into the

remainder of Eqs. (4) yields four systems of PDEs on θ1(x) and θ2(x). By integrating
the first systems of PDEs one arrives at formulas (7). The fourth system of PDEs
proves to be incompatible system.

Substitution of expressions (7) into formula (3) gives three classes of ansätze for
the spinor field:

ψ(x) = ωk
1 exp{(2ω1)−1[(ω̇1x1 + ω̇2)γ1 +

+ ((2k − 1)ω̇1x2 + ω3)γ2](γ0 + γ3)}ϕ(ω1x1 + ω2),
ψ(x) = (x1 + ω1)−k exp{ω3[(x1 + ω1)2 + (x2 + ω2)2]k−1

× γa(xa + ωa)(γ0 + γ3) + 1
2 ω̇aγa(γ0 + γ3)}ϕ((x1 + ω1)(x2 + ω2)−1);

ψ(x) = exp{[(R+R∗ + ω1x1)γ1 + (iR− iR∗ + ω2x1)γ2](γ0 + γ3)}ϕ(x0 + x3),

(12)

reducing the nonlinear Dirac equation (1) to the system of ODEs

iγ1ϕ̇ = λ(ϕ̄ϕ)1/2kϕ,

i(γ2 − γ1ω)ϕ̇ = λ(ϕ̄ϕ)1/2kϕ,

i(γ0 + γ3)ϕ̇ = λ(ϕ̄ϕ)1/2kϕ.

(13)
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The general solution of the first system in (13) is given by the formula [6]

ϕ(ω) = exp{iλγ1(χ̄χ)1/2kω}χ,
where χ is a constant four-componet column.

By substitutiong the above expression into the first ansatz in (12) we obtain the
new family of exact solutions of the nonlinear spinor equation (1) containing the three
arbitrary functions ωn(x0 + x3), n = 1, 3

ψ(x) = ωk
1 exp{(2ω1)−1[(ω̇1x1 + ω̇2)γ1 + ((2k − 1)ω̇1x2 + ω3)γ2](γ0 + γ3)} ×

× exp{iλγ1(χ̄χ)1/2k(ω1x1 + ω2)}χ.
(14)

Let us emphasize that ansätze (12) are noninvariant under the three-parameter
subgroups of the symmetry group admitted by Eq. (1) (in the case involved it is the
extended Poincaré group P̃ (1, 3) (see Ref. [6])) and, consequently, they cannot be
obtained in the framework of the traditional Lie approach.

3. Conditional invariance of nonlinear Dirac equation
Let us now construct the non-Lie ansätze (12) using the conditional invariance of

the nonlinear Dirac equation (1).
Definition. Equation (1) is conditionally invariant with respect to the operators

Qτ = ετµ(x)∂µ + ητ (x), τ = 1, N, (15)

where ετµ(x) are real scalar functions and ητ (x) are variable 4 × 4 matrices if the
system

{iγµ∂µ − λ(ψ̄ψ)1/2k}ψ = 0, Qτψ = 0, τ = 1, N (16)

is invariant in the Lie sense under the one-parameter transformations groups gene-
rated by the operators Qτ .

Described another way, Eq. (1) possesses conditional symmetry if the set of its
solutions contains the nonempty subset that does not coincide with the whole set
having nontrivial symmetry.

We shall point out the explicit form of the operators Qn, n = 1, 3 such that (14)
satisfies system (16). For this purpose it is necessary to solve the following system
of algebraic equations on the functions ενµ, ην :

εnµ∂µω = 0,
ηn − [εnµ∂µ exp{θ0 + (γ1θ1 + γ2θ2)(γ0 + γ3)}] ×

× exp{−θ0 − (γ1θ1 + γ2θ2)(γ0 + γ3)}.
(17)

Here ω, θ0, θ1, and θ2 are scalar functions determined by the first set of formulas
in (7) and n = 1, 3.

Solving Eqs. (17) one has

Q1 =
1
2
(∂0 − ∂3),

Q2 = ω1∂2 +
1
2
(1 − 2k)ω̇1γ2(γ0 + γ3),

Q3 =
1
2
ω1(∂0 + ∂3) − ω̇1(x1∂1 + x2∂2) − ω̇2∂2 − kω̇1 +

+ (2ω1)−1[(2ω̇1ω̇2 − ω1ω̈2)γ1 + 2(ω3ω̇1 − ω1ω̇3)γ2](γ0 + γ3) +
+ (2ω1)−1(2ω̇2

1 − ω1ω̈1)(γ1x1 + (2k − 1)γ2x2)(γ0 + γ3).

(18)
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It is evident that the operators Q2 and Q3 are not linear combinations of the
generators of the extended Poincaré group; consequently, they do not belong to the
Lie algebra of the symmetry group of Eq. (1). By direct verification one can be
convinced that the following relations hold:

Q̃1L = 0,

Q̃2L = 2(2k − 1)ω̇1γ2Q1ψ + 2kω̇1ω
−1
1 (γ0 + γ3)Q2ψ +

1
2
(2k − 1)ω̇1γ2(γ0+ γ3)L,

Q̃3L = 2ω−1
1 [(ω1ω̈1 − 2ω̇2

1)(γ1x1 + (2k − 1)γ2x2) + (ω1ω̈2 − 2ω̇1ω̇2)γ1 +

+ 2(ω1ω̇3 − ω3ω̇1)γ2]Q1ψ + 2ω−2
1 [(1 − k)(2ω̇2

1 − ω1ω̈1)x2 + ω1ω̇3 −
− ω3ω̇1]Q2ψ + 2ω̇1ω

−1
1 (γ0 + γ3)Q3ψ −

− {ω̇1 + (2ω1)−1(2ω̇2
1 − ω1ω̈1)(γ1x1 + (2k − 1)γ2x2)(γ0 + γ3) +

+ (2ω1)−1[(2ω̇1ω̇2 − ω1ω̈2)(γ1 + 2(ω3ω̇1 − ω1ω̇3)γ2](γ0 + γ3)}L,

where Q̃a designates the first prolongation of the operator Qa,

L = iγµ∂µψ − λ(ψ̄ψ)1/2kψ.

In addition, the commutational relations of the form

[Q1, Q2] = [Q1, Q3] = 0, [Q2, Q3] = −2ω̇1Q2

hold true.
Hence follows that the nonlinear Dirac equation (1) is conditionally invariant with

respect to the operators (18).
In the same way it is established that the second and third ansätze in (12) can be

obtained by using conditional invariance of Eq. (1).
In conclusion, let us note that ansatze (12) reduce to ODEs the more general

spinor equations

{iγµ∂µ − [f1((ψ̄ψ)(ψ̄γ4ψ)−1) + f2((ψ̄ψ)(ψ̄γ4ψ)−1)(ψ̄ψ)1/2k}ψ = 0,

where fa ⊂ C1(R1,C1).

4. Discussion
We emphasize once more that ansatze for the spinor field ψ constructed above

cannot be obtained with the help of symmetry reduction by subgroups of the invarian-
ce group of Eq. (1), These ansätze can be constructively described within the frame-
work of the conception of “conditional invariance” introduced for the first time in
Refs. [5] and [7] (see Appendix 4 of Ref. [7]). It seems impossible to obtain the
complete description of conditional symmetry of the nonlinear Dirac equation (1) since
(1) since the determining equations on the coefficients of the infinitesimal operators,
unlike the classical case, are nonlinear equations.

Conditional symmetry of some other nonlinear mathematical physics equations has
been investigated in Refs. [8–11]. Let us also mention that the wide classes of exact
solutions of Eq. (1) that correspond to its Lie symmetry were constructed in Ref. [12].
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