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On the connection between solutions of Dirac
and Maxwell equations, dual Poincaré
invariance and superalgebras of invariance
and solutions of nonlinear Dirac equations
W.I. FUSHCHYCH, W.M. SHTELEN, S.V. SPICHAK

The connection between solutions of massless Dirac and Maxwell equations is establi-
shed. It is shown that the massless Dirac equation is invariant under three different
representation of the Poincaré algebra corresponding to spins 1

2
and 1 and 0, and under

three superalgebras. All generators of these symmetry algebras and superalgebras are
local (differential operators of first order). A system of two Dirac equations with masses
m and −m has analogous symmetry properties. Invariant nonlinear generalizations of
this system are described. We construct the complete set of P (1, 3)-inequivalent ansätze
of codimension 1 for all representations of Poincaré algebra discused. These ansätze are
used for reduction and finding exact solutions of some nonlinear Dirac equations.

1. Introduction
It is well known that the Dirac equation describes a particle with spin- 12 , or

a fermionic field, because it is invariant with respect to the representation D(1
2 , 0) ⊕

D(0, 1
2 ) of the Poincaré algebra AP (1, 3). In this paper we will show that the massless

Dirac equation as well as the system of two coupled Dirac equations with masses m
and −m are invariant not only with respect to the spin- 12 representation of AP (1, 3)
but also under integer spin representations of AP (1, 3). This means that Dirac equa-
tions describe not only fermionic fields but also bosonic ones.

In section 2 we obtain formulae of connection between solutions of the massless
Dirac equation and Maxwell equations for a vacuum, so that one can construct soluti-
ons of the Dirac equation knowing solutions of the Maxwell equations and vice versa.
Further, we show that the massless Dirac equation is invariant under three different
representations of the Poincaré algebra AP (1, 3) and under three superalgebras. All
generators of these symmetries are differential operators of first order and belong to
the maximal in the sense of Lie invariance algebra of the equation. We shall call
invariance of an equation, with respect to different representations of the Poincaré
algebra, dual Poincaré invariance.

In section 3 we study dual Poincaré invariance of the Dirac equation with non-zero
mass and prove that the system of two coupled Dirac equations with masses m and
−m possesses this symmetry. It is worthwhile to note that the same Dirac system
was studied by Fushchych [1, 2] and by Petroni et al [12, 13]. Fushchych [1, 2] had
shown that the most symmetric (including discrete symmetries) spinor representation
of the Poincaré algebra is realized only on the system of two coupled Dirac equations
and such a realization is impossible on a single Dirac equation with non-zero mass.
We prove that the Dirac system under study is also invariant under two superalgebras.
Nonlinear dual Poincaré invariant generalizations of the equations are considered.
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In section 4 we construct the complete set of the P (1, 3)-inequivalent ansätze of
codimension 1 for all representations of AP (1, 3) discussed in the previous sections.
These ansätze reduce corresponding Poincaré invariant equation to a system of ordina-
ry differential equations (ODEs). Here we essentially used results on the subalgebraic
classification of AP (1, 3) of Patera et al [11] and Grundland et al [7]. It will be noted
that the P (1, 3)-inequivalent ansätze of codimenions 1 and 3 for the spin- 12 Dirac
field are fully described in Fushchych and Zhdanov [5], Fushchych and Shtelen [4]
and Fushchych et al [6]. Using ansätze constructed, we make reductions and find
exact solutions of some nonlinear Dirac equations. An example solution of a linear
Dirac equation is considered. This solution is obtained by making use of the vector
representation of AP (1, 3) of the coupled Dirac equations. It has an unusual structure
and can be obtained as the invariant solution of the non-Lie symmetry operator of
second order. In conclusion we give operators which transform the fermionic ansätze
into bosonic ones.

The massless Dirac equation and Maxwell equations
Consider the massless Dirac equation

iγ∂ψ ≡ iγµ∂µψ = 0, (2.1)

where ψ = ψ(x) is a four-component complex function (column), x = {x0 = t,x} ∈
R(1, 3), µ = 0, 3, ∂µ = ∂/∂xµ and γµ are 4 × 4 Dirac matrices,

γ0 =




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


 , γ1 =




0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0


 ,

γ2 =




0 0 0 −i
0 0 i 0
0 i 0 0
−i 0 0 0


 , γ3 =




0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0


 .

(2.2)

There is a connection between solutions of (2.1) and the Maxwell equations for
a vacuum [15]:

Ė ≡ ∂E

∂t
= rotH, div E = 0,

Ḣ ≡ ∂H

∂t
= −rotH, div H = 0,

(2.3)

where E = (E1, E2, E3) and H = (H1,H2,H3) are vectors of electric and magnetic
field. To establish this connection let us decompose an arbitrary solution of (2.1)
intoreal and imaginary parts using the notation of Ljolje [9]:

ψ = ψreal + iψimag =




−D1

D3

−B2

−G


 + i




D2

−F
−B1

B3


 . (2.4)
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Theorem 1. Let ψ defined by (2.4) be an arbitrary solution of the massless Dirac
equation (2.1). Then the functions

E = D + ∇
∫ t

t0

G(τ,x)dτ + ∇G̃(t0,x),

H = B + ∇
∫ t

t0

F (τ,x)dτ + ∇F̃ (t0,x),
(2.5)

where G̃(t0,x) and F̃ (t0,x) satisfy the Poisson equations

∆G̃(t0,x) =
∂G(τ,x)

∂τ

∣∣∣
τ=t0

, ∆F̃ (t0,x) =
∂F (τ,x)

∂τ

∣∣∣
τ=t0

, (2.6)

t0 is an arbitrary constant, are solutions of the Maxwell equations (2.3).
Prof. First of all we note that after substitution of (2.4) into (2.1) and separation into
real and imaginary parts we get Maxwell equations with currents

Ḋ − rotB = −∇G, div D = −Ġ,
Ḃ + rotD = −∇F, div B = −Ḟ , (2.7)

where D = (D1,D2,D3), B = (B1, B2, B3) and the dot means differentiation with
respect to t. So, the Dirac equation (2.1) and the system (2.7) are fully equivalent.
Therefore, taking into account (2.7) and the well known fact that every component of
the ψ-function (2.4) obeying (2.1) satisfies the wave equation �ψ = 0 (in particular,
∆G(τ,x) = ∂2G(τ,x)/∂τ2) we find after substitution of (2.5) into (2.3)

Ė − rotH = Ḋ + ∇G− rotB = 0,

div E = div D +
∫ t

t0

∆G(τ,x)dτ + ∆G̃(t0,x) =

= div D +
∫ t

t0

∂2G(τ,x)
∂τ2

dτ + ∆G̃(t0,x) =

= div D + Ġ− ∂G(τ,x)
dτ

∣∣∣
τ=t0

+∆G̃(t0,x) = 0.

In the last equality we have used (2.6). In the same spirit one can prove the validity
of the theorem for the second pair of Maxwell equations (2.3). Thus, the theorem is
proved.

The inverse statement also holds true.

Theorem 2. Let there be given a solution E, H of the Maxwell equations (2.3) and
two solutions F and G of the scalar wave equation

�F = �G = 0. (2.8)

Then the ψ-function (2.4) witn components F , G and

Da = Ea − ∂a

(∫ t

t0

G(τ,x)dτ + G̃(t0,x)
)
,

Ba = Ha − ∂a

(∫ t

t0

F (τ,x)dτ + F̃ (t0,x)
)
,

(2.9)
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where a = 1, 2, 3, G̃(t0, x) and F̃ (t0, x) are determined from (2.6), is a solution of
the massless Dirac equation (2.1).
Proof. Let us use the equivalence between the Dirac equation (2.1) and the system
(2.7). Having substituted (2.9) into (2.7) and taking into account (2.3), (2.8) and
(2.6), we get

Ḋ − rotB + ∇G = Ė −∇G+ ∇G− rotH = 0,

div D + Ġ = div E +
∫ t

t0

∆G(τ,x)dτ − ∆G̃(t0,x) + Ġ = 0.

Analogously one has to act to prove the theorem for the rest of the equations of
system (2.7).

Theorem 2 has an important corollary: choosing F = G = 0 we get from (2.9)
D = E, B = H, and in this case formula (2.4) takes the particularly simple form

ψ =




−E1 + iE2

E3

−H2 − iH1

iH3


 . (2.10)

So, if E and H satisfy the Maxwell equations (2.3), then ψ given by (2.10) automati-
cally satisfies the Dirac equation (2.1), and one can consider relation (2.10) as a repre-
sentation of the spinor field ψ by an electromagnetic field E, H. It is appropriate
to note that if E and H are transformed under Lorentz boost as an electromagnetic
Maxwell field, then the ψ-function (2.10) is not transformed like a Dirac spinor (this
point will be discussed in detail below). It will be also noted that, according to
theorem 1, the procedure of obtaining solutions of the vacuum Maxwell equations
(2.3) from those of the massless Dirac equation (2.1) and the associated Poisson
equations (2.6) is unique to within a gauge transformation, whereas the inverse
procedure, Maxwell → Dirac, involves ambiguities due to the arbitrary choice of
additional scalar fields F and G satisfying (2.8). When we construct solutions of
Maxwell equations via solutions of the massless Dirac equation using formulae (2.5),
then we have arbitrariness in determining F̃ and G̃. But this arbitrariness can be
considered as gauge transformetions E → E′ = E + ∇f(x), H → H ′ = H + ∇g(x)
(f and g are arbitrary scalar functions satisfying the Laplace equation ∆f = ∆g = 0),
which leave invariant the Maxwell equations (2.3). An analogous situation is when
considering the inverse procedure (formulae (2.9), Dirac equation in the form (2.7)).

Consider an example. Let us take solutions of the Maxwell equations (2.3) and
wave equations (2.8) in the form

E = α × x, H = −2αt, F = G = 3t2 + x2, (α = const).

Then, by means of (2.9) and (2.4) one easily finds the following solution of the Dirac
equation (2.1):

ψ =




−[(α × x)1 − 2tx1] + i[(α × x)2 − 2tx2]
[(α × x)3 − 2tx3] − i(3t2 + x2)

2t(α2 + x2) + 2it(α1 + x1)
−(3t2 + x2) − 2it(α3 + x3)


 .
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In terms of D, B, F , G from (2.4)

ψ̄ψ = D2 − B2 + F 2 −G2 (2.11)

and in the case of solution ψ considered above we have

ψ̄ψ = α2x2 − (α · x)2 − 4t2(α2 + 2α · x).

Let us make up a four-component ψ-function as

ψ = iγ∂




ϕ0

ϕ1

ϕ2

ϕ3


 , (2.12)

where ϕ0, . . . , ϕ3 are arbitrary solutions of the wave equation, that is �ϕµ = 0. Since
(iγ∂)2 = �, then the ψ-function (2.12) automatically satisfies the Dirac equation (2.1)
for any set of ϕµ, �ϕµ = 0. So, (2.12) and (2.4), (2.5) give the following chain
of solutions: scalar wave equation → massless Dirac equation → vacuum Maxwell
equations.

It will be noted that Shtelen [14] and Fushchych et al [6] described a simple pres-
cription for obtaining solutions of linear partial differential equations with nontrivial
symmetry. It consists of the following. Let there be given a solution u of the wave
equation (�u = 0). Then the functions

u1 = Ku, u2 = Ku1, . . . (2.13)

where K = 2cxx∂ −x2c∂ + 2cx (generator of conformal transformations) and cµ are
arbitrary constant, will be also solutions u = 1 we get from (2.13)

u1 = cx, u2 = (cx)2 − 1
4
c2x2, u3 = (cx)3 − 1

2
(cx)c2x2, . . . (2.14)

For further analysis it is convenient to consider the Dirac equation (2.1) together
with its conjugation and write it uniformly as

iΓµ∂µΨ = 0, (2.15)

where Ψ = Ψ(x) = column (ΨΨ̃), Ψ̃ = γ0Ψ∗, Γµ are 8 × 8 matrices,

Γµ =
(
γµ 04

04 −(γµ)T

)
, (2.16)

γµ are Dirac matrices (2.2), 04 is a 4 × 4 zero matrix.
Symmetry properties of (2.15) were studied first by Dirac who showed that the

equation is conformally invariant. Later, Pauli and Touschhek found that this equation
also admits an eight-parameter group, G8, of component transformations. And, finally,
Ibragimov [8] proved that a 23-parameter group, G23 = C(1, 3)⊗G8, is the maximal
in the sence of the Lie invariance group of the equation. Relativistic invariance of
(2.15) is usually understood as invariance with respect to the spinor representation

D

(
1
2
, 0

)
⊕D

(
0,

1
2

)
⊕D

(
1
2
, 0

)
⊕D

(
0,

1
2

)
(2.17)
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of the Poincaré group P (1, 3) (it means that Ψ is transformed under the Lorentz
boost as a spinor). However, the invariance of (2.15) under the Pauli–Touschek eight-
parameter group allows two additional representations of AP (1, 3), which are realized
on the set of solutions of (2.15), namely

D(1, 0) ⊕D(0, 1) ⊕D(0, 0) ⊕D(0, 0) (2.18)

and

D

(
1
2
,
1
2

)
⊕D

(
1
2
,
1
2

)
. (2.19)

The explicit form of basis elements of AP (1, 3) for representations (2.17)–(2.19) is

AP (k)(1, 3) =
〈
Pµ =

∂

∂xµ
, J (k)

µν = xµPν − xνPµ + S(k)
µν

〉
, (2.20)

where k = 1, 2, 3 corresponds to (2.17)–(2.19), respectively;

xµ = gµνx
ν , gµν = {1,−1,−1,−1}δµν

and matrices S(k)
µν are

S(1)
µν = −1

4
[Γµ,Γν ], S(2)

µν = S(1)
µν +Qµν , S

(3)
01 = S

(2)
01 , S

(3)
02 = S

(2)
02 ,

S
(3)
03 = S

(2)
03 − 2Q03, S

(3)
12 = S

(2)
12 , S

(3)
13 = S

(2)
13 − 2Q13, S

(3)
23 = S

(2)
23 − 2Q23.

(2.21)

Here Γµ are the same as in (2.16); Qµν are six basis elements of the Pauli–Touschek
algebra, they are 8 × 8 matrices of the form

Q01 =
1
2

(
04 −iγ0γ2

−iγ0γ2 04

)
, Q02 =

1
2

(
04 −γ0γ2

−γ0γ2 04

)
,

Q03 =
1
2

(−γ5 0
04 γ5

)
, Q12 =

i

2

(
I4 04

04 −I4
)
,

Q13 =
1
2

(
04 −γ1γ3

−γ1γ3 04

)
, Q23 =

i

2

(
04 γ1γ3

−γ1γ3 04

)
,

(2.22)

where

γ5 = iγ0γ1γ2γ3 =
(

02 I2
I2 02

)

I2, I4 are 2 × 2 and 4 × 4 unit matrices. It will be noted that the action of operators
(2.20) is defined in the space of the eight-component function introduced in (2.15).

Invariance of (2.15) under AP (2)(1, 3) results in the possibility of representing this
equation in the form (2.7), and invariance of (2.15) under AP (3)(1, 3) allows us to
rewrite it as [9]

∂µAν − ∂νAµ − 1
2
εµνρσ(∂ρBσ − ∂σBρ) = 0,

∂νA
ν = ∂νB

ν = 0,
(2.23)



326 W.I. Fushchych, W.M. Shtelen, S.V. Spichak

where

ψ = ψreal + iψimag =




−A2

−B0

−B1

B3


 + i




−A1

A3

B2

−A0


 . (2.24)

Now consider the following three sets of symmetry operators of (2.15):

SA(k) = 〈Pµ, J
(k)
µν ,Γ4, I;Qµν〉, (2.25)

where Pµ, J
(k)
µν and Qµν are defined in (2.20) and (2.22), Γµ are given in (2.16),

Γ4 = Γ0Γ1Γ2Γ3. There sets of operators form Lie algebra as well as superalgebras.
Operators Pµ, J

(k)
µν , Γµ, I are even and Qµν are odd in corresponding superalgebras.

To prove this statement we write down commutation and anticommutation relations
for these operators.

Operators Pµ and J
(k)
µν satisfy standard commutation relations of the Poincaré

algebra AP (1, 3)

[Pµ, Pν ] = 0, [Pσ, Jµν ] = gσµPν − gσνPµ,

[Jµν , Jρσ] = gνρJµσ + gµσJνρ − gµρJνσ − gνσJµν ,
(2.26)

Γ4 and I commute with all elements of SA(k). Further, it is convenient to introduce
the notation

Ra = Q0a, Ta =
1
2
εabcQbc, N (k)

a = J
(k)
0a , M (k)

a =
1
2
εabcJ

(k)
bc . (2.27)

It is easy to check that

{Ra, Rb} ≡ RaRb +RbRa =
1
2
σab,

{Ta, Tb} = −1
2
δabI, {RaTb} = δabΓ4.

(2.28)

Operators Ra, Ta from SA(1) commute with all even operators of SA(1). For SA(2)

we have

[Pµ, Ra] = [Pµ, Ta] = 0, [N (2)
a , Rb] = [Ra, Rb] = εabcTc,

[N (2)
a , Tb] = [Ra, Tb] = −εabcRc, [M (2)

a , Rb] = [Ta, Rc] = −εabcRc,

[M (2)
a , Tb] = [Ta, Tb] = −εabcTc.

(2.29)

Subalgebra SA(3) is isomorphis to SA(2). The isomorphism is achived by means of
the transformations

R3 → R′
3 = −R3, T1 → T ′

1 = −T1, T2 → T ′
2 = −T2. (2.30)

So, the structure of superalgebras (2.25) is fully described. The superalgebras (2.25)
do not belong to the semi-simple family, but the quotient by their radical is simply
SO(1, 3).
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3. Dirac equations with non-zero mass
possessing dual Poincaré invariance

The Dirac equation for a massive particle (field)

(iγµ∂µ −m)ψ = 0, (3.1)

where γµ are given in (2.2) and m is an arbitrary real constant (mass of the particle),
is invariant under a 14-parameter group only [8], which includes the Poincaré group,
and identical, phase and two charge-type transformations. As always, we are factoring
out an infinite-demensional ideal, present for any linear equation, and corresponding
to the linear superposition principle. It is to be emphasized that we are considering
group action on the field of real numbers, and therefore identical ψ′ = eαψ (α is an
arbitrary real constant) and phase transformations ψ′ = eiαψ should be distinguished.

The above-mentioned four-parameter group of component transformations is not
sufficient to construct a non-spinor representation of AP (1, 3), as was done in the
case of the massless field. The situation can be improved by considering the system
of two Dirac equations

(iγ∂ −m)Ψ− = 0, (iγ∂ +m)Ψ+ = 0. (3.2)

The full information on Lie symmetry of this system gives the following statement.

Theorem 3. The maximal in the sense of the Lie invariance algebra of system (3.2)
is a 26-dimensional Lie algebra A26 = AP (1)(1, 3)⊕A16, with basis elements having
the form

AP (1)(1, 3) =
〈
Pµ =

∂

∂xµ
, Ĵ (k)

µν = xµPν − xνPµ + Ŝ(1)
µν

〉
,

A16 =
〈
matrices 16 × 16 of the form

(
Λ Σ
Σ̃ Λ̃

)〉
,

(3.3)

where

Ŝ(1)
µν = −1

4
[Γ̂µ, Γ̂ν ], Γ̂µ =

(
Γµ 08

08 −Γµ

)
, 〈Λ, Λ̃〉 = 〈I,Q01, Q02, Q03〉,

〈Σ, Σ̃〉 = 〈Q12, Q13, Q23,Γ4〉, Γ4 = Γ0Γ1Γ2Γ3

(3.4)

(matrices 8 × 8 Γµ and Qµν are defined in (2.16)), and acting in the space of
16-component functions

Ψ̂ = column (Ψ−Ψ+) ≡ column (Ψ−, Ψ̃− = γ0Ψ∗
−,Ψ+, Ψ̃+ = γ0Ψ∗

+). (3.5)

Proof. First of all we write system (3.2) together with its conjugation as

(iΓ̂µ∂µ −m)Ψ̂ = 0, (3.6)

where Ψ̂ = Ψ̂(x) is defined in (3.5). To prove the theorem is to find the general form
of infinitesimal operator of invariance

Q = ξµ(x)∂µ + η(x), (3.7)
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where ξµ(x) are scalar functions and η(x) is a 16 × 16 matrix. It can be done by
means of the standard Lie algorithm (see [10]), but the simplest way is to use the
invariance condition in the form

[L,Q] = λ(x)L, (3.8)

where L is the operator of (3.6), L ≡ iΓ̂µ∂µ − m and λ(x) is some scalar smooth
function. Starting from (3.8) one gets, after some simple but tedious calculations, the
proof of the theorem.

Invariance of the system (3.6) with respect to the matrix algebra A16 (3.3) allows
a vector representation of AP (1, 3), which can be realized on the set of solutions of
this system. This representation is

L(D(1, 0) ⊕D(0, 1)) ⊕ 4D(0, 0). (3.9)

It is defined by the basis elements

AP (2)(1, 3) = 〈Pµ, Ĵ
(2)
µν = Ĵ (1)

µν + Q̂µν〉, (3.10)

where Pµ and Ĵ (1)
µν are given in (3.3),

Q̂µν =




(
Qµν 08

08 Qµν

)
, if (µν) = 〈(0, 1), (0, 2), (1, 2)〉,(

08 Qµν

Qµν 08

)
, if (µν) = 〈(0, 3), (1, 3), (2, 3)〉

(3.11)

and matrices 8 × 8 Qµν are given in (2.22). Invariance of (3.6) with respect to
AP (2)(1, 3) (3.10) means that (3.6) describes not only spinor particles(fermionic fi-
elds) but also a coupled system of vector and scalar particles (bosonic fields).

Now consider the following two sets of symmetry operators of equation (3.6):

SA(i) = 〈Pµ, Ĵ
(i)
µν , Γ̂4, I; Q̂µν〉, i = 1, 2, (3.12)

where

Γ̂4 =
(

08 Γ4

Γ4 08

)
, (3.13)

Γ4 is givel in (3.4). These sets of operators form Lie algebras as well as superalgebras.
Superalgebras (3.12) are isomorphic to those from (2.25). The isomorphism is achieved
by means of the transformations

Pµ → Pµ, J (i)
µν → Ĵµν , Γ4 → Γ̂4, I → I, Qµν → Q̂µν . (3.14)

In conclusion of this section let us consider a nonlinear generalization of (3.6)
possessing dual Poincaré invariance.

Theorem 4. The equation

[iΓ̂µ∂µ − F (Ψ̄Ψ̂,ΨMΨ̂)]Ψ̂ = 0, (3.15)

where Ψ̂ is defined in (3.5),

Ψ̄ = row (Ψ̄−ΨT
−Ψ̄+ΨT

+), M =
(

08 I8
I8 08

)
(3.16)
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and F is an arbitrary smooth function, is invariant under the two Poincaré algebras
(3.3) and (3.10).
Proof. One can make sure that the operator iΓ̂µ∂µ commutes with all generators
of the considered Poincaré algebras. Further, the quantities Ψ̄Ψ̂, Ψ̄MΨ̂ are absolute
invariants of these Poincaré algebras. Thus, the theorem is proved.

It will be noted that

Ψ̄Ψ̂ = 2(Ψ̄−Ψ− + Ψ̄+Ψ+), Ψ̄MΨ̂ = 2(Ψ̄−Ψ+ + Ψ̄+Ψ−), (3.17)

where Ψ−, Ψ+ are four-component functions, Ψ̄± = (Ψ±)+γ0.

4. P (i)(1, 3)-inequivalent ansätze, reduction and solutions
of nonlinear Dirac equations

The nonlinear equation (3.15), as we have shown, is dual Poincaré invariant and
therefore it unites fermionic and bosonic fields. Such unification opens new ways to
solve the general problem of unification forces and fields.

It is important to find exact solutions of (3.15). Of course, we shall be looking
for classical solutions, but these solutions may be very useful as basic ones in the
corresponding quantum theory. It is to be emphasized that the standard procedure
of quantization, when the complete set of solutions of a given equation is quantized
according to bosonic or fermionic rules, may be misleading because our equation
may have bosonic and fermionic subsets of solutions simultaneously (the simplest
example is the massless Dirac equation considered in section 2). Therefore, it is more
preferable to quantize separate families of solutions, having established beforehand
what representation of the Poincaré algebra is realized on them.

To fing exact solutions of equations of the (3.15) we construct P (i)(1, 3)-inequiva-
lent ansätze of codimension 1. These ansätze reduce a given equation to ODEs. The
general form of such an anzatz is

Ψ̂(x) = A(x)φ(ω), (4.1)

where A(x) is 16× 16 matrix, φ is 16-component function (column) depending on the
new variable ω. Matrix A(x) and the new independent variable ω are determined from
the equations [3]

QkA(x) ≡ (ξν
k (x)∂ν + ηk(x))A(x) = 0,

ξν
k (x)∂νω(x) = 0, k = 1, 2, 3,

(4.2)

where 〈Q1, Q2, Q3〉 is a three-dimensional subalgebra of AP (1, 3). The full description
of subalgebras of AP (1, 3) is given in [11] and [7]. Fushchych and Shtelen [4]) (see
also [6]) have used one-dimensional subalgebras of AP (1, 3) to construct ansätze of
codimension 3 for the Dirac spinor field. Ansätze of codimension 1 for the Dirac spinor
field are fully described in [5]. We present the complete set of P (i)(1, 3)-inequivalent
ansätze of codimension 1 for a 16-component field (3.5) in table 1. Basis elements of
AP (i)(1, 3) are given in (3.3) and (3.10).

In table 1 α and β are arbitrary non-zero constants,

G
(i)
k = ĵ

(i)
0k + j

(i)
3k = (x0 + x3)Pk + xk(P0 − P3) + Ŝ

(i)
0k + Ŝ

(i)
3k , (4.3)

Ŝ
(1)
µν are given in (3.4) and Ŝ(2)

µν = Ŝ
(1)
µν + Q̂µν see (3.10) and (3.11).
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Table 1. P (i)(1, 3)-inequivalent ansätze (4.1) of codimension 1 for field (3.5).

N Algebra A(x) ω

1 P0, P1, P2 1 x3

2 P1, P2, P3 1 x0

3 P0 − P3, P1, P2 1 x0 + x3

4 Ĵ
(i)
03 , P1, P2 exp[−Ŝ

(i)
03 ln(x0 + x3)] x2

0 − x2
3

5 Ĵ
(i)
03 , P1, P0 − P3 exp[−Ŝ

(i)
03 ln(x0 + x3)] x2

6 Ĵ
(i)
03 + αP2, P0, P3 exp

(
−x2

α
Ŝ

(i)
03

)
x1

7 Ĵ
(i)
03 + αP2, P0 − P3, P1 exp

(
−x2

α
Ŝ

(i)
03

)
α ln(x0 + x3) − x2

8 Ĵ
(i)
12 , P0, P3 exp

(
Ŝ

(i)
12 tan−1 x1

x2

)
x2
1 + x2

2

9 Ĵ
(i)
03 − αP0, P1, P2 exp

(
x0
α

Ŝ
(i)
12

)
x3

10 Ĵ
(i)
12 + αP3, P1, P2 exp

(
−x3

α
Ŝ

(i)
12

)
x0

11 Ĵ
(i)
12 − P0 + P3, P1, P2 exp

(
− 1

2
(x3 − x0)Ŝ

(i)
12

)
x0 + x3

12 G
(i)
1 , P0 − P3, P2 exp

[
− x1

x0+x3
(Ŝ

(i)
01 + S

(i)
31 )

]
x0 + x3

13 G
(i)
1 , P0 − P3, P1 + αP2 exp

[
x2−αx1

α(x0+x3)
(Ŝ

(i)
01 + S

(i)
31 )

]
x0 + x3

14 G
(i)
1 + P2, P1, P0 − P3 exp

[
−x2(Ŝ

(i)
01 + S

(i)
31 )

]
x0 + x3

15 G
(i)
1 − P0, P2, P0 − P3 exp

[
(x0 + x3)(Ŝ

(i)
01 + Ŝ

(i)
31 )

]
2x1 + (x0 + x3)2

16 G
(i)
1 − P0, P0 − P3, exp

[
(x0 + x3)(Ŝ

(i)
01 + Ŝ

(i)
31 )

]
2(x2 − αx1) − α(x0 + x3)2

P1 + αP2

17 Ĵ
(i)
03 + αĴ

(i)
12 , P0, P3 exp

[
1
α

(Ŝ
(i)
03 + αŜ

(i)
12 ) tan−1 x1

x2

]
x2
1 + x2

2

18 Ĵ
(i)
03 + αĴ

(i)
12 , P1, P2 exp

[
−(Ŝ

(i)
03 + αŜ

(i)
12 ) ln(x0 + x3)

]
x2
0 − x2

3

19 G
(i)
1 , G

(i)
2 , P0 − P3 exp

{
− 1

x0+x3
[x1(Ŝ

(i)
01 + Ŝ

(i)
31 ) + x0 + x3

+ x2(Ŝ
(i)
02 + Ŝ

(i)
32 )]

}

20 G
(i)
1 + P2, G

(i)
2 + αP1+ exp

[
αx2−x1(x0+x3+β)

(x0+x3)(x0+x3+β)−α
(Ŝ

(i)
01 + Ŝ

(i)
31 ) + x0 + x3

+βP2, P0 − P3 +
x1−x2(x0+x3)

(x0+x3)(x0+x3+β)−α
(Ŝ

(i)
01 + Ŝ

(i)
32 )

]

21 G
(i)
1 , G

(i)
2 + P1 + βP2, exp

[
− x1

x0+x3
(Ŝ

(i)
01 + Ŝ

(i)
31 ) − x0 + x3

P0 − P3 − x2
x0+x3+β

(Ŝ
(i)
02 + Ŝ

(i)
32 ) +

+ x2
(x0+x3)(x0+x3+β)

(Ŝ
(i)
01 + Ŝ

(i)
31 )

]

22 G
(i)
1 , G

(i)
2 + P2, P0 − P3, exp

[
− x1

x0+x3
(Ŝ

(i)
01 + Ŝ

(i)
31 ) − x0 + x3

− x2
x0+x3+1

(Ŝ
(i)
02 + Ŝ

(i)
32 )

]
23 G

(i)
1 , Ĵ

(i)
03 , P2 exp

[
− x1

x0+x3
(Ŝ

(i)
01 + Ŝ

(i)
31 )

]
× x2

0 − x2
1 − x2

3

× exp[−Ŝ
(i)
3 ln(x0 + x3)]
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Table 1. (continued)

N Algebra A(x) ω

24 J
(i)
03 + αP1 + βP2, Ĝ

(i)
1 , P0 − P3 exp

[
α ln(x0+x3)−x1

x0+x3
(Ŝ

(i)
01 + Ŝ

(i)
31 )

]
× x2 − β ln(x0 + x3)

× exp[−Ŝ
(i)
03 ln(x0 + x3)]

25 Ĵ
(i)
12 − P0 + P3, G

(i)
1 , G

(i)
2 exp

{
− 1

x0+x3
[x1(Ŝ

(i)
01 + Ŝ

(i)
31 ) + x0 + x3

+ x2(Ŝ
(i)
02 + Ŝ

(i)
32 )

}
×

× exp
(

x·x
2(x0+x3)

(Ŝ
(i)
12

)
26 Ĵ

(i)
03 + αĴ

(i)
12 , G

(i)
1 , G

(i)
2 exp

{
− 1

x0+x3
[x1(Ŝ

(i)
01 + Ŝ

(i)
31 ) + x · x

+ x2(Ŝ
(i)
02 + Ŝ

(i)
32 )]

}
×

× exp[−(Ŝ
(i)
03 + αŜ

(i)
12 ) ln(x0 + x3)]

Let us substitute ansätze (4.1) from table 1 info (3.15). As a result we obtain the
following reduced ODEs:

(1) Γ̂2φ̇+ iRφ = 0,

(2) Γ̂0φ̇+ iRφ = 0,

(3) (Γ̂0 + Γ̂3)φ̇+ iRφ = 0,

(4) −(Γ̂0 + Γ̂3)Ŝ(i)
03 φ+ [ω(Γ̂0 + Γ̂3) + (Γ̂0 + Γ̂3)]φ̇+ iRφ = 0,

(5) −(Γ̂0 + Γ̂3)Ŝ(i)
03 φ+ Γ̂2φ̇+ iRφ = 0,

(6) − 1
α

Γ̂2Ŝ
(i)
03 Γ̂1φ̇+ iRφ = 0,

(7) − 1
α

Γ̂2Ŝ
(i)
03 φ+ [α(Γ̂0 + Γ̂3)eω/α − Γ̂2]φ̇+ iRφ = 0,

(8)
1√
ω

Γ̂1Ŝ
(i)
12 φ+ 2

√
ωΓ̂2φ+ iRφ = 0,

(9)
1
α

Γ̂0Ŝ
(i)
12 φ+ Γ̂3φ̇+ iRφ = 0,

(10) − 1
α

Γ̂3Ŝ
(i)
12 φ+ Γ̂0φ̇+ iRφ = 0,

(11) −1
2
(Γ̂0 − Γ̂3)Ŝ(i)

12 φ+ (Γ̂0 + Γ̂3)φ̇+ iRφ = 0,

(12) − 1
ω

Γ̂1(Ŝ
(i)
01 + Ŝ

(i)
31 )φ+ (Γ̂0 + Γ̂3)φ̇+ iRφ = 0,

(13)
1
αω

(Γ̂2 − αΓ̂1)(Ŝ(i)
01 + Ŝ

(i)
31 )φ+ (Γ̂0 + Γ̂3)φ̇+ iRφ = 0,

(14) −Γ̂2(Ŝ(i)
01 + Ŝ

(i)
31 )φ+ (Γ̂0 + Γ̂3)φ̇+ iRφ = 0,

(15) (Ŝ(i)
01 + Ŝ

(i)
31 )(Γ̂0 + Γ̂3)φ+ 2Γ̂1φ̇+ iRφ = 0,

(16) (Ŝ(i)
01 + Ŝ

(i)
31 )(Γ̂0 + Γ̂3)φ+ 2(Γ̂2 − αΓ̂1)φ̇+ iRφ = 0,
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(17) − 1
α
√
ω

Γ̂1(Ŝ
(i)
03 + αŜ

(i)
12 )φ+ 2

√
ωΓ̂2φ̇+ iRφ = 0,

(18) −(Γ̂0 + Γ̂3)(Ŝ(i)
03 + αŜ

(i)
12 )φ+ [ω(Γ̂0 + Γ̂3) + (Γ̂0 − Γ̂3)]φ̇+ iRφ = 0,

(19) − 1
ω

[Γ̂1(Ŝ
(i)
01 + Ŝ

(i)
31 ) + Γ̂2(Ŝ(i)

02 + Ŝ
(i)
32 )]φ+ (Γ̂0 + Γ̂3)φ̇+ iRφ = 0,

(20) [ω(ω + β) − α]−1{[αΓ̂2 − (ω + β)Γ̂1](S(i)
01 + S

(i)
31 ) +

+ (Γ̂1 − ωΓ̂2)(Ŝ(i)
02 + Ŝ

(i)
32 )}φ+ (Γ̂0 + Γ̂3)φ̇+ iRφ = 0,

(21) [(−Γ̂1 + (ω + β)−1Γ̂2)ω−1(Ŝ(i)
01 + Ŝ

(i)
31 ) −

− (Γ̂2(ω + β)−1(Ŝ(i)
02 + Ŝ

(i)
32 )]φ+ (Γ̂0 + Γ̂3)φ̇+ iRφ = 0,

(22)

[
− 1
ω

Γ̂1(Ŝ(i)
01 + Ŝ

(i)
31 ) − Γ̂2

ω + 1
(Ŝ(i)

02 + Ŝ
(i)
32 )

]
φ+ (Γ̂0 + Γ̂3)φ̇+ iRφ = 0,

(23) −[(Γ̂0+ Γ̂3)Ŝ(i)
03 + Γ̂1(Ŝ(i)

31 + Ŝ
(i)
31 )]φ+ [ω(Γ̂0+ Γ̂3) + Γ̂0− Γ̂3]φ̇+ iRφ = 0,

(24) −[(Γ̂0 + Γ̂3)Ŝ(i)
03 + Γ̂1(Ŝ(i)

31 + Ŝ
(i)
31 )]φ+ [Γ̂2 − β(Γ̂0 + Γ̂3)]φ̇+ iRφ = 0,

(25)
[
2Ŝ(i)

03 (Γ̂0 + Γ̂3)ω−1 +
1
2
Ŝ

(i)
12 (Γ̂0 − Γ̂3)

]
φ+ (Γ̂0 + Γ̂3)φ̇+ iRφ = 0,

(26) −[(Γ̂0 + Γ̂3)Ŝ(i)
03 + (Ŝ(i)

01 + Ŝ
(i)
31 )Γ̂1 + (Ŝ(i)

02 + Ŝ
(i)
32 )Γ̂2]φ+

+ [(Γ̂0 + Γ̂3)ω + (Γ̂0 − Γ̂3)]φ̇+ iRφ = 0.

(4.4)

Enumerations (1)–(26) in (4.4) correspond to those of the ansätze in table 1; the
dot denotes differentiation with respect to the corresponding ω and R = F (φ̄φ, φ̄Mφ).

Below we obtain some solutions of reduces ODEs (4.4) in the case of a non-
standard representation of AP (1, 3) realized by matrices Ŝ(2)

µν = Ŝ
(1)
µν + Q̂µν (see (3.4),

(3.10) and (3.11)). The cases with Ŝ(1)
µν are analogous to those considered in [3, 4, 5,

6].
First of all we note that the condition of compatability for equations (3), (12)–(14),

(19) and (22) in (4.4) results in R ≡ F (φ̄φ, φ̄Mφ) = 0 and therefore such cases are
rather trivial.

Consider equation (5) in (4.4), choosing

R = λρ1/2k, ρ ≡ φ̄φ, (4.5)

where λ, k 
= 0 are arbitrary real constants. From equation (5) we find as a corollary
(or condition of compatibility)

d2ρ

dω2
= 4λρ1/2k

(
2λk

1 + 2k
ρ1+1/2k + c0

)
, k 
= −1

2
, (4.6)

c0 is an arbitrary real constant. A particular solution of (4.6) is

ρ(ω) =
(
c− 2λ

1 + 2k
ω

)−2k

, (4.7)
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c is an arbitrary real constant. Let us go back to equation (5) in (4.4). Using (4.7)
we obtain a linear ODE and its general solution has the form

φ = exp
[
− i(1 − 2k)

2
Γ̂2 ln

(
c− 2λω

1 + 2k

)]
exp

{
−1 + 2k

4λ
(Γ̂0 + Γ̂3)Ŝ03 ×

×
[
Γ̂2

(
[c− 2λω/(1 + 2k)]2k+2

2k + 2
− [c− 2λω/(1 + 2k)]−2k

2k

)
×

+ i

(
[c− 2λω/(1 + 2k)]2k+2

2k + 2
+

1
2k[c− 2λω/(1 + 2k)]2k

)]}
χ,

(4.8)

where χ is an arbitrary 16-component constant column satisfying the conditions

χ̄χ = 0, χ̄(Γ̂0 + Γ̂3)Q̂03Γ̂2χ = −iχ̄(Γ̂0 + Γ̂3), χ̄Q̂03χ =
2λk

1 + 2k
. (4.9)

Let us write down the general solution of equation (5) in (4.4) in the case of the
spinor representation (i = 1). It can be found without difficulty and has the form

φ = exp
{
ωΓ̂2

[
1
2
(Γ̂0 + Γ̂3) + iλ(χ̄χ)1/2k

]}
χ, (4.10)

where χ is an arbitrary 16-component column.
Consider equation (15) in (4.4). In this case, by analogy with (5) in (4.4) consi-

dered above, we find

d2ρ

dω2
= λρ1/2k

(
2λk

1 + 2k
ρ1+1/2k + c0

)
, k 
= −1

2

and then

φ(ω) = exp[iΓ̂1β(ω)] exp
[
1
2
Γ̂1(Q̂01 + Q̂31)(Γ0 + Γ3) ×

×
(∫ ω

coshβ(y)dy + iΓ̂1

∫ ω

sinhβ(y)dy
)]

χ,

(4.11)

where

χ̄χ = 0,

χ̄Γ̂1(Q̂01 + Q̂31)(Γ̂0 + Γ̂3)χ = iχ̄(Q̂01 + Q̂31)(Γ̂0 + Γ̂3)χ =
2λk

1 + 2k
,

β(ω) = −(1 + 2k) ln
(
c− λω

1 + 2k

)
.

Analogously, in the case of equation (16) in (4.4) we have

d2ρ

dω2
=

λ

1 + α2
ρ1/2k

(
2λk

1 + 2k
ρ1+1/2k + c

)
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and

φ(ω) = exp
(

iβ(ω)
2(1 + α2)

(Γ̂2 − αΓ̂1)
)
×

× exp
[

1
2(1 + α2)

(Q̂01 + Q̂31)(Γ̂0 + Γ̂3) ×
(

(Γ̂1 − αΓ̂2)
∫ ω

cosh
β(y)√
1 + α2

dy + i
√

1 + α2

∫ ω

sinh
β(y)√
1 + α2

dy

)]
χ,

(4.12)

where

β(ω) = −(1 + 2k) ln
(
c− λω

(1 + 2k)
√

1 + α2

)
,

χ̄χ = 0,

χ̄(Q̂03 + Q̂31)(Γ̂0 + Γ̂3)(Γ̂1 − αΓ̂2)χ =

= i
√

1 + α2χ̄(Q̂01 + Q̂31)(Γ̂0 + Γ̂3)χ =
2kλ(1 + α2)

1 + 2k
.

Now consider an example of obtaining an exact solution of the standard Dirac
equation with non-zero mass

(iγ∂ −m)Ψ− = 0 (4.13)

using symmetry AP (2)(1, 3) (3.10) of system (3.2) (or, to be more exact, of the
equivalent system (3.6). Let us take a two-dimensional subalgebra 〈Ĵ (2)

23 , P0 − P1〉 of
AP (2)(1, 3). The corresponding ansatz for (3.5) has the form

Ψ̂(x) = exp
(
Ŝ

(2)
23 tan−1 x2

x3

)
φ(ω),

ω = {ω1, ω2}, ω1 = x0 + x1, ω2 = (x2
2 + x2

2)
1/2.

(4.14)

Taking into account the identities

Ŝ
(2)
23 = Ŝ

(1)
23 + Q̂23, [Ŝ(1)

23 , Q23] = 0

we find from (4.14) the ansatz for Ψ−:

Ψ−(x) =
1
2

(
1 +

1
ω2

(x3 − γ2γ3x2)
)
ϕ−(ω) −

− i

2

(
γ2 +

1
ω2

(γ3x2 − γ2x3)
)
γ1ϕ+(ω).

(4.15)

Further, it is convenient to introduce the notation

Z(ω) =
1

2ω2
ϕ− +

i

2ω2
γ2γ1ϕ+, H(ω) =

1
2
(ϕ− − iγ2γ1ϕ+). (4.16)

By means of (4.16) we rewrite (4.15) as

ψ− = (x3 − γ2γ3x2)Z +H. (4.17)
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After substitution of (4.17) into (4.13) we get the following system of reduced equa-
tions

2γ3Z + (γ0 + γ1)
∂H

∂ω1
+ γ3ω2

∂Z

∂ω2
= −imH,

(γ0 + γ1)ω2
2

∂Z

∂ω1
+ γ3ω2

∂H

∂ω2
= −imω2

2Z.

(4.18)

We shall look for solutions of this system in the form

Z = ω−2
2 A(ω2) exp[i(γ0 + γ1)f(ω1)],

H = B(ω2) exp[i(γ0 + γ1)f(ω1)],

where A and B are some 4 × 4 matrices and f is an arbitrary differentiable function.
Now one can easy solve (4.18) and write down the solution of (4.13),

ψ−(x) =
[

1
ω2

(γ2x2 + γ3x3)J1(imω2)
]

exp[i(γ0 + γ1)f(ω1)]x, (4.19)

where J1 and J0 are Bessel functions and χ is a four-component constant.
It is noteworthy that ansatz (4.15) has, due to its construction, a vector rather

than spinor nature and therefore solution (4.19) of the Dirac equation (4.13) cannot be
obtained within the framework of local symmetry of (4.13). Indeed, ansatz (4.15) (and
therefore solution (4.19)) is invariant with respect to operators P0 − P3 and J2

23 + 1
4 ,

(J23 = x2P3 − x3P2 − 1
2γ2γ3), the latter being a non-Lie one (differentional oprator of

second order).
In conclusion, let use note that there is a simple connection between P (2)(1, 3)-

invariant ansätze and P (1)(1, 3) invariant ones. Since

Ŝ(2)
µν = Ŝ(1)

µν + Q̂µν

(see (3.4), (3.10) and (3.11)), we can write

Ψ̂(2)(x) = exp(f(x)Q)Ψ(1)(x), (4.20)

where f(x) is some smooth function, Q is an element of six-dimensional Pauli–
Touschek algebra (3.11). It is natural to consider relation (4.20) as a conection
between bosonic and fermionic fields.
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