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Reduction and exact solutions
of the Navier–Stokes equations
W.I. FUSHCHYCH, W.M. SHTELEN, S.L. SLAVUTSKY

We construct a complete set of G̃(1, 3)-inequivalent ansätze of codimension 1 for the
Navier–Stokes (NS) field which reduce the ns equations to systems of ordinary di-
fferential equations (ODE). Having solved these ODEs we thereby obtain solutions of
the NS equations. Formulae of group multiplication of solutions are given. Several non-
Lie ansätze are discussed.

1. Introduction
The NS equations

∂u

∂t
+ (u · ∇)u − ∆u + ∇p = 0, div u = 0, (1.1)

where u = u(x) = {u1, u2, u3} is the velocity field of a fluid, p = p(x) is the
pressure, x = {t,x} ∈ R(4), ∇ = {∂/∂xa}, a = 1, 2, 3, ∆ is Laplacian, are basic
equations of hydrodynamics which describe motion of an incompressible viscous fluid.
The problem of finding exact solutions of nonlinear equations (1.1) is an important but
rather complicated one. Considerable progress in solving this problem can be achieved
by making use of a symmetry approach. Equations (1.1) have non-trivial symmetry
properties; it is well known (see, e.g. Birkhoff [3]) that they are invariant under the
extended Galilei group G̃(1, 3) generated by operators

∂t ≡ ∂

∂t
, ∂a ≡ ∂

∂xa
, Ga = t∂a + ∂ua ,

Jab = xa∂b − xb∂a + ua∂ub − ub∂ua , D = 2t∂t + xa∂a − ua∂ua − 2p∂p,

(1.2)

where ∂ua ≡ ∂/∂ua, ∂p ≡ ∂/∂p. Recently it was shown (Ovsyannikov [12], Lloyd [11])
that the maximal, in the sense of Lie invariance algebra, of the NS equations (1.1)
is the direct sum of eleven-dimensional AG̃(1, 3) (1.2) and infinite-dimensional algeb-
ra A∞ with basis elements

Q = fa∂a + ḟa∂ua − xaf̈a∂p, R = g∂p, (1.3)

where fa = fa(t) and g = g(t) are arbitrary differentiable functions of t; dot means
differentiation with respect to t.

In this paper we systematically use symmetry properties of (1.1) to find their exact
solutions. In section 2 we describe the complete set of G̃(1, 3)-inequivalent ansätze of
codimension 1

ua(t,x) = fab(x)ϕb(ω) + ga(x), p(x) = F (x)ϕ(ω), (1.4)

where the functions fab, ga and F , and new variable ω = ω(x) are determined by
means of operators of three-dimensional subalgebras of AG̃(1, 3) (1.2). We consider
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three-dimensional subalgebras of AG̃(1, 3) because an ansatz of the form (1.4), inva-
riant under such a subalgebra, reduces (1.1) to a system of ODE immediately. As
a rule reduced systems of ode can be solved by a standard method. (In most cases we
find the general solutions of these reduced systems of ODE). Ansätze of the type (1.4),
which are obtained by means of Lie symmetry operators, we shall call Lie ansätze.
The method of finding exact solutions of PDE used here is based on Lie’s ideas of
invariant solutions and it is described in full detail in Fushchych et al [9].

Starting from solutions of the reduced systems of ODE (which are, of course,
solutions of the NS equations) one can construct multiparameter families of solutions
for the NS equations. To do this one has to use formulae of group multiplication of
solutions which are given at the end of section 2.

In section 3 we consider some non-Lie ansätze for the NS field. These ansätze
cannot be obtained within the framework of the local Lie approach used in section 2.

2. G̃(1, 3)-inequivalent ansätze of codimension 1 for the NS field
and exact solutions of the NS equations (1.1)

Let 〈Qj〉 ≡ 〈Q1, Q2, Q3〉 be a three-dimensional subalgebra of AG̃(1, 3) (1.2). It
follows from (1.2) that the general form of operator Qj is

Qj = ξν
j (x)∂ν + ηa

j (u)∂ua + η̃j(p)∂p, (2.1)

where ν = 0, 3, ∂0 ≡ ∂/∂t; ξν
j , ηa

j , η̃j are linear functions of x, u, p. The explicit form
of an ansatz (1.4) is determined as the solution of the following equations

ξν
j (x)∂νω(x) = 0,

Qj [ua − fab(x)ϕb(ω) − ga(x)] = 0,

Qj [p − F (x)ϕ(ω)] = 0.

(2.2)

Equations (2.2) can be solved rather easily. All three-dimensional G̃(1, 3)-inequivalent
subalgebras of AG̃(1, 3) are found in Fushchych et al [6] and Barannik and Fush-
chych [1] with the help of the method developed by Patera et al [13]. In table 1 we
list these three-dimensional subalgebras and give corresponding invariant ansätze of
the form (1.4) obtained as solutions of equations (2.2).

In this table f , g, h, ϕ are differentiable functions of corresponding invariant
variable ω; α �= 0 is an arbitrary constant.

Let us substitute ansätze from table 1 into the ns equations (1.1). As a result we
obtain the following systems of ODE:

1◦. ḟ = 0, ġ = 0, ḣ = 0.

2◦. hḟ − f̈ = 0, hġ − g̈ = 0, hḣ − ḧ + ϕ̇ = 0, ḣ = 0.

3◦. g + hḟ − f̈ = 0, hġ − g̈ = 0, hḣ − ḧ + ϕ̇ = 0, ḣ = 0.

4◦. ḟh + 2f̈ = 0, ġh + 2g̈ = 0, 1 − 2hḣ − 4ḧ − 2ϕ̇ = 0, ḣ = 0.

5◦. 1 + hḟ − f̈ = 0, gḣ − g̈ = 0, hḣ − ḧ + ϕ̇ = 0, ḣ = 0.

6◦. g − 2hḟ − 4f̈ = 0, hġ + 2g̈ = 0, 1 − 2hḣ − 4ḧ − 2ϕ̇ = 0, ḣ = 0.

7◦. (αf − h)ḟ − 2(α2 + 1)f̈ + αϕ̇ = 0, (αf − h)ġ − 2(α2 + 1)g̈ = 0,

(αf − h)ḣ − 2(α2 + 1)ḧ − ϕ̇ + 1
2 = 0, αḟ − ḣ = 0.

8◦. −ḟ(h − αg) + g − (α2 + 1)f̈ = 0, −ġ(h − αg) + αϕ̇ − (α2 + 1)g̈ = 0,

1 − ḣ(h − αg) − ϕ̇ − (α2 + 1)ḧ = 0, ḣ − αġ = 0.



308 W.I. Fushchych, W.M. Shtelen, S.L. Slavutsky

Table 1. G̃(1, 3)-inequivalent ansätze of codimension 1 for the NS field

N Algebra
Invariant
variable ω

Anzatz

1 ∂1, ∂2, ∂3 t u1 = f(ω), u2 = g(ω), u3 = h(ω), p = ϕ(ω)

2 ∂t, ∂1, ∂2 x3 u1 = f(ω), u2 = g(ω), u3 = h(ω), p = ϕ(ω)

3 ∂t, ∂1, G1 + G2 x3 u1 = x2 + f(ω), u2 = g(ω), u3 = h(ω),
p = ϕ(ω)

4 ∂1, ∂2, ∂t + G3 t2 − 2x3 u1 = f(ω), u2 = g(ω), u3 = t + h(ω), p = ϕ(ω)

5 ∂1, ∂2, ∂t + G1 x3 u1 = t + f(ω), u2 = g(ω), u3 = h(ω), p = ϕ(ω)

6 ∂1, ∂2 + G1, t2 − 2x3 u1 = x2 + f(ω), u2 = g(ω), u3 = t + h(ω),
∂t + G3 p = ϕ(ω)

7 ∂1 + α∂3, ∂2, t2 + 2αx1 − 2x3 u1 = f(ω), u2 = g(ω), u3 = t + h(ω), p = ϕ(ω)
∂t + G3

8 ∂1, ∂t + G3, αx2− x3+ (t2/2) u1 = x2 + f(ω), u2 = g(ω), u3 = t + h(ω),
G1 + ∂2 + α∂3 p = ϕ(ω)

9 ∂t, ∂3, J12 (x2
1 + x2

2)
1/2 u1 = x1f(ω) − x2g(ω), u2 = x1g(ω) + x2f(ω),

u3 = h(ω), p = ϕ(ω)

10 ∂t + G3, ∂3, J12 (x2
1 + x2

2)
1/2 u1 = x1f(ω) − x2g(ω), u2 = x1g(ω) + x2f(ω),

u3 = t + h(ω), p = ϕ(ω)

11 ∂t, ∂3, D x1/x2 u1 = (1/x2)f(ω), u2 = (1/x2)g(ω),
u3 = (1/x2)h(ω), p = (1/x2

2)ϕ(ω)

12 ∂t, ∂3, J12 + αD ln(x2
1 + x2

2)+ u1 = (x2
1 + x2

2)
−1(x1f(ω) − x2g(ω)),

2α tan−1(x1/x2) u2 = (x2
1 + x2

2)
−1(x1g(ω) + x2f(ω)),

u3 = (x2
1 + x2

2)
−1/2h(ω), p = (x2

1 + x2
2)

−1ϕ(ω)

13 ∂t, J12, D (x2
1 + x2

2)
1/2/x3 u1 = (x2

1 + x2
2)

−1(x1f(ω) − x2g(ω)),
u2 = (x2

1 + x2
2)

−1(x1g(ω) + x2f(ω)),
u3 = (x2

1 + x2
2)

−1/2h(ω), p = (x2
1 + x2

2)
−1ϕ(ω)

14 ∂3, J12, D (x2
1 + x2

2)
1/2/t u1 = (1/t)(x1f(ω) − x2g(ω)),

u2 = (1/t)(x1g(ω) + x2f(ω)),
u3 = (1/

√
t)h(ω), p = (1/t)ϕ(ω)

15 G3, J12, D (x2
1 + x2

2)
1/2/t u1 = (1/t)(x1f(ω) − x2g(ω)),

u2 = (1/t)(x1g(ω) + x2f(ω)),
u3 = (1/

√
t)h(ω) + (x3/t), p = (1/t)ϕ(ω)

16 ∂t, ∂2, D x3/
√

t u1 = (1/
√

t)f(ω), u2 = (1/
√

t)g(ω),
u3 = (1/

√
t)h(ω), p = (1/t)ϕ(ω)

17 ∂t, D, G2 + αG1 x3/
√

t u1 = (1/
√

t)f(ω) + (αx2/t),
u2 = (1/

√
t)g(ω) + (x2/t),

u3 = (1/
√

t)h(ω), p = (1/t)ϕ(ω)

18 G1, G2, D x3/
√

t u1 = (1/
√

t)f(ω) + (x1/t),
u2 = (1/

√
t)g(ω) + (x2/t),

u3 = (1/
√

t)h(ω), p = (1/t)ϕ(ω)

19 ∂1, G2, D x3/
√

t u1 = (1/
√

t)f(ω), u2 = (1/
√

t)g(ω) + (x2/t),
u3 = (1/

√
t)h(ω), p = (1/t)ϕ(ω)
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9◦. f2 − g2 + ωfḟ +
1
ω

ϕ̇ =
3
ω

ḟ + f̈ , 2fg + ωfġ =
3
ω

ġ + g̈,

ωfḣ = ḧ +
1
ω

ḣ, 2f + ωḟ = 0.

10◦. f2 − g2 + ωfḟ +
1
ω

ϕ̇ =
3
ω

ḟ + f̈ , 2fg + ωfġ =
3
ω

ġ + g̈,

1 + ωfḣ = ḧ +
1
ω

ḣ, 2f + ωḟ = 0.

11◦. f ḟ − g(f + ωḟ) + ϕ̇ = 2(1 + ω)f + ω(2ḟ + ωf̈),
f ġ − g(g + ωġ) − ωϕ̇ = 2(1 + ω)g + ω(2ġ + ωg̈),

f ḣ − g(h + ωḣ) = 2(1 + ω)h + ω(2ḣ + ωḧ), ḟ − (g + ωġ) = 0.

12◦. − 1
2 (f2 + g2) + (f − αg)ḟ − ϕ + ϕ̇ = 2(−f − ḟ + αġ + (α2 + 1)f̈),

−(f − αg)ġ + αϕ̇ = 2[g + ġ + αḟ − (α2 + 1)g̈],

−fh + 2(f − αg)ḣ = h − 4ḣ + 4(α2 + 1)ḧ, ḟ − αġ = 0.

13◦. −f2 − g2 + ωfḟ − ω2hḟ − 2ϕ + ωϕ̇ = ω(−f + ωf̈) + ω3(2ḟ + ωf̈),
f ġ − ω2hġ = ω(−g + ωg̈) + ω3(2ġ + ωg̈),

f(−h + ωḣ) − ω2hḣ − ω2ϕ̇ = h − ωḣ + ω2ḧ + ω3(2ḣ + ωḧ),

ḟ − ωḣ = 0.

14◦. f2 − g2 + 2ωfḟ + 2ϕ̇ = 4(2ḟ + ωf̈),
g + ωġ − 2f(g + ωġ) = −(2ġ + ωg̈),

−
(

1
2h + ωḣ

)
+ 2ωfḣ = 4(ḣ + ωḧ), f + ωḟ = 0.

15◦. f2 − g2 + 2ωfḟ + 2ϕ̇ = 4(2ḟ + ωf̈),
g + ωġ − 2f(g + ωġ) = −4(2ġ + ωg̈),

−
(

1
2h + ωḣ

)
+ 2ωfḣ + h = 4(ḣ + ωḧ), f + ωḟ + 1

2 = 0.

16◦. − 1
2 (f + ωḟ) + hḟ = f̈ , − 1

2 (g + ωġ) + hġ = g̈,

− 1
2 (h + ωḣ) + hḣ + ϕ̇ = ḧ, ḣ = 0.

17◦. − 1
2 (f + ωḟ) + hḟ + αg = f̈ , − 1

2 (g + ωġ) + hġ + g = g̈,

− 1
2 (h + ωḣ) + hḣ + ϕ̇ = ḧ, ḣ + 1 = 0.

18◦. 1
2 (f − ωḟ) + hḟ = f̈ , 1

2 (g − ωġ) + hġ = g̈,

− 1
2 (h + ωḣ) + hḣ = ḧ, ḣ + 2 = 0.

19◦. − 1
2 (f + ωḟ) + hḟ = f̈ , 1

2 (g − ωġ) + hġ = g̈,

− 1
2 (h + ωḣ) + hḣ + ϕ̇ = ḧ, ḣ + 1 = 0.

(2.3)

Equations 1◦–19◦ in (2.3) correspond to that of ansatze in table 1; dot means diffe-
rentiation with respect to corresponding ω.

Equations 1◦–10◦ (2.3) can easily be solved and their general solutions are as
follows:

1◦. f = c1, g = c2, h = c3, ϕ = ϕ(ω)

(here and in what follows, c with a subscript denotes an arbitrary constant; ϕ = ϕ(ω)
means that ϕ is an arbitrary differentiable function of ω).
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2◦. f =




c1

c3
ec3ω + c2, c3 �= 0,

c1ω + c2, c3 = 0,

g =




c4

c3
ec3ω + c5, c3 �= 0,

c4ω + c5, c3 = 0,

h = c3, ϕ = c6.

3◦. f =




c1 + c2e
c3ω +

c4

c2
3

(
ω − 1

c3

)
ec3ω − c5

c3
ω, c3 �= 0,

c1 + c2ω +
1
6
c4ω

3 +
1
2
c5ω

2, c3 = 0,

g =




c4

c3
ec3ω + c5, c3 �= 0,

c4ω + c5, c3 = 0,

h = c3, ϕ = c6.

4◦. f =




c1

c3
exp

(
−1

2
c3ω

)
+ c2, c3 �= 0,

c1 + c2ω, c3 = 0,

g =




c4

c3
exp

(
−1

2
c3ω

)
+ c5, c3 �= 0,

c4ω + c5, c3 = 0,

h = c3, ϕ =
1
2
ω + c6.

5◦. f =



− 1

c3
ω +

c1

c2
3

ec3ω + c2, c3 �= 0,

1
2
ω2 + c1ω + c2, c3 = 0,

g =




c4

c3
ec3ω + c5, c3 �= 0,

c4ω + c5, c3 = 0,

h = c3, ϕ = c6.

6◦. f =




c1 + c2 exp
(
−1

2
c3ω

)
+

c5

2c3
ω −

− c4

c2
3

(
ω

2
+

1
c3

)
exp

(
−1

2
c3ω

)
, c3 �= 0,

1
4

(
c1 + c2ω +

1
2
c5ω

2 +
1
6
c4ω

3

)
, c3 = 0,

g =




c4

c3
exp

(
−1

2
c3ω

)
+ c5, c3 �= 0,

c4ω + c5, c3 = 0,

h = c3, ϕ =
1
2
ω + c6.

(2.4)
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7◦. f =




c1 exp
(

cω

2(α2 + 1)

)
+ c2 − αω

2(α2 + 1)c
, c �= 0,

αω2

2[2(α2 + 1)]2
+ c1ω + c2, c = 0,

g =


c3 exp

(
cω

2(α2 + 1)

)
+ c4, c �= 0,

c3ω + c4, c = 0,

h = αf − c, ϕ =
ω

2(α2 + 1)
+ c5.

8◦. f =




αω2

2c2(α2 + 1)
+

ω

c

( α

c2
− c4

)
+
[
c3

c

(
ω − α2 + 1

c

)
+ c1

]
×

× exp
(

cω

α2 + 1

)
+ c2, c �= 0,

(α2 + 1)−1

(
αω4

24(α2 + 1)2
+

c3

6
ω3 +

c4

2
ω2 + c1ω + c2

)
, c = 0,

g =




−αω

c(α2 + 1)
+ c3 exp

(
cω

α2 + 1

)
+ c4, c �= 0,

α

2(α2 + 1)
ω2 + c3ω + c4, c = 0,

h = αg − c, ϕ =
ω

α2 + 1
+ c6.

9◦. f =
c

ω2
, = c1ω

c +
c2

ω2
, h = c3ω

c + c4,

ϕ =




c2
1

2(c + 1)
ω2(c+1) +

2c1c2

c
ωc − c2 + c2

2

2ω2
+ c5, c �= −1, 0,

c2
1 ln ω − 2c1c2

ω
− c2

2 + 1
2ω2

+ c5, c = −1,

1
2
c2
1ω

2 + 2c1c2 ln ω − c2
2

2ω2
+ c5, c = 0.

10◦. f , g and ϕ are the same as in the previous case 9◦,

h =




ω2

2(2 − c)
+ c3ω

c + c4, c �= 2, 0,

ω

4
− c3 ln ω + c4, c = 0,

ω2

2
ln ω − ω2

4
+ c3ω

2 + c4, c = 2.

For 11◦ (2.3) we did not find solutions. A particular solution of 12◦ (2.3) is

12◦. f = c, g = 0, ϕ = 2c − c2

2
,

h =




c1e
λ1ω + c2e

λ2ω,
c2

4
> α2(1 + c),

eλω(c1 + c2ω),
c2

4
= α2(1 + c),

eλω(c1 cos βω + c2 sin βω),
c2

4
< α2(1 + c),
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λ1,2 =
1 + (c/2) ±√(c2/4) − α2(1 + c)

2(1 + α2)
, λ =

1 + (c/2)
2(1 + α2)

,

β =

√
α2(1 + c) − (c2/4)

2(1 + α2)
.

A particular solution of 13◦ (2.3) is

13◦. f = c1, g = c2, h = 0, ϕ = −1
2
(c2

1 + c2
2). (2.4)

Consider system 14◦ (2.3). The last equation of 14◦ (2.3) immediately gives

f = c/ω (2.5)

(as before, c is an arbitrary constant). Substituting (2.5) into the remaining equations
of 14◦ (2.3) we get

4
d2

dω2
(ωg) +

(
1 − 2c

ω

)
d

dω
(ωg) = 0 (2.6)

and

4ωḧ + (ω + 4 − 2c)ḣ +
1
2
h = 0. (2.7)

Equation (2.6) can be easily integrated and the result is

g(ω) =
c1

ω

∫ ω

xc/2e−x/4dx +
c2

ω
. (2.8)

In particular, when c = 0, the general solution of equation (2.6) takes the form

g(ω) =
c1

ω
e−ω/4 +

c2

ω
. (2.9)

Equation (2.7) is in itself an equation for a degenerate hypergeometric function and it
can be rewritten in standard Whittaker form

4x2ẅ − (x2 − 4kx + 4m2 − 1)w = 0, (2.10)

where w = w(k,m, x); k, m are parameters, by the substitution

h(ω) = ω(c−2)/4e−ω/8w
( c

4
,− c

4
,
ω

4

)
. (2.11)

When c = 0, the substitution

h(ω) = e−τ Z̃0(τ), τ =
ω

8
(2.12)

reduces (2.7) to the modified Bessel equation of null order, that is

τ ¨̃Z0 + ˙̃Z0 − τZ̃0 = 0. (2.13)
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Summarizing results (2.5)–(2.12) we can write down the general solution of 14◦ (2.3)
as follows

14◦. f =
c

ω
, g =

c1

ω

∫ ω

xc/2e−x/4dx +
c2

ω
,

h = ω(c−2)/4e−ω/8w
( c

4
,− c

4
,
ω

4

)
, ϕ = − c2

2ω
+

1
2

∫ ω

g2(y)dy + c3.

(2.4)

(We continue to numerate solutions of reduced NS equations 1◦–19◦ (2.3) as n◦ (2.4),
where n◦ = 1◦–19◦ indicates the corresponding ansatz of table 1.) When c = 0 we get
from 14◦ (2.4) the following particular solution of 14◦ (2.3)

14◦◦. f = 0, g =
c1

ω
e−ω/4 +

c2

ω
, h = e−ω/8Z̃0(ω/8),

ϕ = − c2
2

2ω
+

c2
1

2

∫ ω e−y/2

y2
dy + c1c2

∫ ω e−y/2

y2
dy + c3,

(2.4)

where Z̃0 is modified Bessel function satisfying equation (2.12).
Consider system 15◦ (2.3). The last equation in it gives

f =
c

ω
− 1

2
. (2.13)

The rest equations of 15◦ (2.3) take the form

2
d2

dω2
(ωg) +

(
1 − c

ω

) d

dω
(ωg) = 0, (2.14)

2ϕ̇ =
( c

ω

)2

+ g2 − 1
4
, (2.15)

ωḧ +
(

1
2
ω + 1 − c

2

)
ḣ − 1

8
h = 0. (2.16)

Equations (2.14), (2.15) can be easily integrated and the result is as follows

g =
c1

ω

∫ ω

xc/2e−x/2dx +
c2

ω
, (2.17)

ϕ =
1
2

∫ ω

g2(y)dy − c2

2ω
− 1

8
ω. (2.18)

Equation (2.16) is reduced to the Whittaker equation (2.10) by the substitution

h(ω) = ω(c−2)/4e−ω/4w

(
c − 3

4
,− c

4
,
ω

2

)
. (2.19)

Note, when c = 3, function w
(
0,− 3

4 , ω
2

)
is reduced to the modified Bessel function

Z̃−3/4(ω/4). The general relation is (Bateman and Erdelyi [2])

w(0,m, x) =
√

xZ̃m(x/2). (2.20)
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So, we can write down the general solution of reduced ns equations 15◦ (2.3) in the
form

15◦. f =
c

ω
− 1

2
, g =

c1

ω

∫ ω

xc/2e−x/2dx +
c2

ω
,

h = ω(c−2)/4e−ω/4w

(
c − 3

4
,− c

4
,
ω

2

)
, ϕ =

1
2

∫ ω

g2(y)dy − c2

2ω
− 1

8
ω,

(2.4)

where w satisfies the Whittaker equation (2.10).
Consider system 16◦ (2.3). The two last equations of it give rise to

h = c, ϕ =
cω

2
+ c1. (2.21)

Taking into account (2.21) we can rewrite the rest equations of system 16◦ (2.3) as
follows

f̈ +
(

1
2
ω − c

)
ḟ +

1
2
f = 0, (2.22)

g̈ +
(

1
2
ω − c

)
ġ +

1
2
g = 0. (2.23)

By substituting

f(ω) = F (τ), τ =
1
2
ω − c (2.24)

into (2.22), we obtain the following equation:

d2F

dτ2
+ 2τ

dF

dτ
+ 2F = 0. (2.25)

The general solution of (2.25) is

F (τ) = e−τ2
(

c2 + c3

∫ τ

ey2
dy

)
. (2.26)

Summarizing results (2.21)–(2.26) we write down the general solution of equations
16◦ (2.3):

16◦. f = exp
[
−
(ω

2
− c
)2
](

c2 + c3

∫ (ω/2)−c

ey2
dy

)
,

g = exp
[
−
(ω

2
− c
)2
](

c4 + c5

∫ (ω/2)−c

ey2
dy

)
,

h = c, ϕ =
cω

2
+ c1.

(2.4)



Reduction and exact solutions of the Navier–Stokes equations 315

In the same way we find solutions of reduced equations 17◦–19◦ (2.3). The soluti-
ons are as follows

17◦. α = 1,

f = g =
(

3
2
ω − c

)−1/2

exp

[
−1

6

(
3
2
ω − c

)2
]
×

× w

[
− 5

12
,
1
4
,
1
3

(
3
2
ω − c

)2
]

,

h = ω + c, ϕ =
3
2
cω − ω2 + c1,

(2.4)

where w(·, ·, ·) is solution of the Whittaker equation (2.10). The above solution 17◦

(2.4) is a particular solution of equations 17◦ (2.3) with α = 1. When α is an arbitrary
constant, the general solution of 17◦ (2.3) has the form

17◦◦. g =
(

3
2
ω − c

)−1/2

exp

[
−1

6

(
3
2
ω − c

)2
]
×

× w

[
− 5

12
,
1
4
,
1
3

(
3
2
ω − c

)2
]

,

h = ω + c, ϕ =
3
2
cω − ω2 + c1

(2.4)

and f satisfies the ODE

f̈ +
(

3
2
ω − c

)
ḟ +

1
2
f − αg = 0.

The general solution of 18◦ (2.3) is

18◦. f = g =
(

5
2
ω − c

)−1/2

exp

[
− 1

10

(
5
2
ω − c

)2
]
×

× w

[
−27

20
,
1
4
,
1
5

(
5
2
ω − c

)2
]

,

h = −2ω + c, ϕ =
5
2
cω − 3ω2 + c1.

(2.4)

The general solution of 19◦ (2.3) is

19◦. f = g =
(

3
2
ω − c

)−1/2

exp

[
−1

6

(
3
2
ω − c

)2
]
×

× w

[
− 1

12
,
1
4
,
1
3

(
3
2
ω − c

)2
]

,

h = −ω + c, ϕ =
3
2
cω − ω2 + c1.

(2.4)

In 17◦–19◦ (2.4) w(·, ·, ·) is an arbitrary solution of the Whittaker equation (2.10).
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Remark 1. The solutions of reduced ns equations 1◦–19◦ (2.3) given in 1◦–19◦ (2.4)
should be considered together with the corresponding ansatze of table 1; then one
gets solutions of the NS equations (1.1).

The solutions of the ns equations (1.1) obtained above can be used in a basic way
to construct multiparameter families of solutions. A procedure for generating new
solutions from a known one is based on the well known fact of Lie theory according
to which symmetry transformations transform any solution of a given differential
equation into another solution. For example, if transformations

xµ → x′
µ = fµ(x, θ), (µ = 0, n − 1 ),

u(x) → u′(x′) = R(x, θ)u(x) + B(x, θ),

where the θ are parameters, u = column (u1, u2, . . . , uk), R(x, θ) is a non-singular
matrix k × k, R(x, 0) = I, fµ, B (column) are some smooth functions, fµ(x, 0) = xµ,
B(x, 0) = 0 leave considered PDEs invariant, then the function

uII(x) = R−1(x, θ)[uI(x′) − B(x, θ)] (2.27)

will be a new solution of the equation provided uI(x) is any given solution. Formulae
like (2.27) we call formulae of group multiplication of solutions (GMS) (Fushchych et
al [9]). So, to construct the formulae of GMS for the NS equations one has to find,
first of all, the final transformations generated by symmetry operators (1.2), (1.3) and
then, according to (2.27), construct the formulae. The results of this is given in the
table 2.

Note that in 1–11 p′(x′) = p(x) and therefore pII = pI(x′). In this table δ0, δa,
αa, θa, β, ε, κ are arbitrary constants, α = (α2

1 + α2
2 + α2

3)
1/2; f and g are arbitrary

differentiable functions of t. The formulae of GMS stated above allow to construct
new solutions uII(x) of the NS equations (1.1) starting from a known one uI(x).

Table 2. Final symmetry transformations and the corresponding formulae
of GMS for the NS equations (1.1)

Final transformations

N Operator x → x′ u(x) → u′(x′) Formulas of GMS

1 ∂t t′ = t + δ0 x′ = x u′(x′) = u(x) uII(x) = uI(x
′)

2–4 ∂a t′ = t x′
a = xa + δa u′(x′) = u(x) uII(x) = uI(x

′)

5–7 Jab t′ = t x′ = xcos α + u′a(x′) =

(
δab cos α + ua

II(x) =

(
δab cos α +

+ (x× α) sin α
α

+ +εabcαc
sin α

α
+ +εabcαc

sin α
α

+

+ α(α · x) 1−cos α
α2 + αaαb

1−cos α
α2

)
ub(x) + αaαb

1−cos α
α2

)
ub
I (x

′)

8–10 Ga t′ = t x′ = x + θt u′(x′) = u(x) + θ uII(x) = uI(x
′) − θ

11 D t′ = e2βt x′ = eβx u′(x′) = e−βu(x) uII(x) = eβuI(x
′)

p′(x′) = e−2βp(x) pII(x) = e2βpI(x)

12 Q t′ = t x′ = x + εf(t) u′(x′) = u(x) + εḟ(t) uII(x) = uI(x
′) − εḟ(t)

p′(x′) = p(x) − εx · f̈(t) p′II(x) = pI(x
′) + εx · f̈(t)

13 R t′ = t x′ = x u′(x′) = u(x) uII(x) = uI(x
′)

p′(x′) = p(x) + κg(t) p′II(x) = pI(x
′) − κg(t)
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Remark 2. It will be noted that operator Q given in (1.3) generates transformations
(N 12 in table 2) which can be considered as an invariant transition to a frame of
reference which is moved arbitrarily: xref = εf(t).

Let us give some examples of the application of formulae of GMS. Having applied
formulae 5–7 of table 2 to solution 16◦ (2.4) we get a new multiparameter solution
for the NS equations (1.1)

u(x) =
1√
t

{
e−τ2

[
a

(
α1 + α2

∫ τ

es2
ds

)
+ b

(
α3 + α4

∫ τ

es2
ds

)]
+ c

}
,

τ =
c · x
2
√

t
− 1, p(x) =

1
t

(
c · x
2
√

t
+ α5

)
,

(2.28)

where α1, . . . , α5 are arbitrary constants, a, b, c are arbitrary orthonormal constant
vectors

a2 = b2 = c2 = 1, a · b = a · c = b · c = 0. (2.29)

Further application of the formulae of GMS N 8–10 to (2.28) gives rise to the
following solution of the NS equations

u(x) =
1√
t

{
e−y2

[
a

(
α1 + α2

∫ y

es2
ds

)
+ b

(
α3 + α4

∫ y

es2
ds

)]
+ c

}
− θ,

y =
c · (x + θt)

2
√

t
− 1, p(x) =

1
t

(
c · (x + θt)

2
√

t
+ α5

)
,

(2.30)

where the θ are arbitrary constants, the rest are the same as in (2.28).
The procedure of generating solutions by means of symmetry transformations can

be continued until one gets an ungenerative family of solutions, that is the family
which is invariant (up to transformation of constant parameters) with respect to the
total GMS procedure. Without doubt, the reader can carry out this procedure by
analogy with the above examples, for any solution 1◦–19◦ (2.4) of the NS equations.

3. Examples of non-Lie ansätze for the NS field
Ansätze collected in table 1, of course, do not exhaust all possible ansätze which

reduce the NS equations. Here we consider several examples of ansätze which do not
have the form (1.4). More complete consideration of this question will be given in our
next paper.

Because all ansätze obtained within the framework of the Lie approach have form
(1.4), it is natural to call other ansätze non-Lie. Our first example of this is the well
known ansatz

u = ∇ϕ, (3.1)

where ϕ = ϕ(x) is a scalar function. If satisfies the Hamilton–Jacobi and Laplace
equations

ϕt + (∇ϕ)2 + p = 0, ∆ϕ = 0 (3.2)

then the function u (3.1) automatically satisfies the NS equations (1.1). It is an
example of non-local component reduction.
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Ansatz

u = aϕ(t, b · x, c · x), (3.3)

where a, b, c are constant vectors satisfying (2.29), reduces (1.1) to the two-dimen-
sional heat equation

ϕt − ∆2ϕ = 0, ∆2 ≡ ∂2

∂ω2
1

+
∂2

∂ω2
2

, ω1 = b · x, ω2 = c · x, (3.4)

Ansatz

u = xϕ(x), p = p(x) (3.5)

reduces equations (1.1) to the system of pde for two scalar functions ϕ and p

x(ϕt + ∆ϕ) + ∇(ϕ + p) = 0, ϕ + (x · ∇)ϕ = 0. (3.6)

New ansätze and solutions of the NS equations (1.1) obtained within the framework
of conditional symmetry will be given in our next paper. The concept and the term
conditional invariance was firstly introduced by Fushchych [5] (see also Fushchych
and Nikitin [7]). Further development and applications of this concept are contained
in Fushchych et at [9], Fushchych and Serov [8], Levi and Winternitz [10].

Let us make some concluding remarks. It will be noted that the question of what
spin is carried by the NS field has a rather strange answer (Fushchych [4]): the NS
field carries not only spin 1 but all possible integer spins s = 0, 1, 2, . . .. It is due to
the fact that the space of solutions of the ns equations can be decomposed into an
infinite direct sum of subspaces invariant under operators Sab = ua∂ub − ub∂ua from
algebra AO(3), and these subspaces are not invariant under operators Ga from (1.2)
because of the unboundedness of operators ∂ua .

In hydrodynamics the linearized NS equations are sometimes used

ut − ∆u = 0, div u = 0. (3.7)

The maximal invariance algebra of (3.7) is the seven-dimensional Lie algebra with
basis elements

∂t, ∂a, D = 2t∂t + xa∂a, I = ua∂ua ,

Jab = xa∂b − xb∂a + ua∂ub − ub∂ua .
(3.8)

It should be pointed out that (3.7) are not Galilei invariant and therefore they fail in
adequately describing real hydrodynamics processes.
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