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On superalgebras of symmetry operators
of relativistic wave equations

W.I. FUSHCHYCH, A.G. NIKITIN

It is well known that the classical Lie approach does not make it possible to
describe completely the symmetry of systems of partial differential equations. Actually
it gives the possibility of finding only such symmetry operators which are the first
order differential operators.

Using the non-Lie approach, in which the invariance group generators may be
differential operators of any order and even integro-differential operators, the new
invariance groups of a number of relativistic wave equations have been found [1, 2].
It turns out that even such well studied equations as the Dirac and the Maxwell ones
have more extensive symmetry then the relativistic and the conformal invariance [3].
A numerous examples of non-Lie symmetries had been collected in our book [4].

In this communication we give the description of any order symmetry operators
for some class of relativistic wave equations (including the Dirac and the Kemmer–
Duffin–Petiau equations) and determine superalgebraic structure of sets of symmetry
operators of the Dirac and of the Maxwell equations.

Let us write an arbitrary linear system of partial differential equations in the
following symbolic form

Lψ = 0, (1)

where L is a linear differential operator defined on H, ψ ∈ H.
Let Q be a linear operator defined on H. We say that Q is the symmetry operator

of the equation (1), if

L(Qψ) = 0 (2)

for any ψ satisfying (1).
Below we consider the symmetry operators of relativistic wave equations, the most

famous of which is the Dirac one:

Lψ ≡ (γµp
µ −m)ψ = 0, pµ = i

∂

∂xµ
, µ = 0, 1, 2, 3. (3)

Using the equation (3) as an example we shall give the definition of the first
(Q(1)), the second (Q(2)), the third (Q(3)), . . . , order symmetry operator as a linear
differential operator which satisfies (2) and has the form

Q(1) = aµPµ +B, Q(2) = aµνpµpν +Bµpµ +B,

Q(3) = aµνλpµpνpλ +Bµνpµpν +Bµpµ +B,
(4)
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where B,Bµ, Bµν , . . . are matrices depending on x = (x0, x1, x2, x3), aµ, aµν , aµνλ, . . .
are functions on x. For the Dirac equation all matrices, are 4 × 4 dimensional,
in general the matrices dimension is determined by the number of components of
wavefunction ψ.

It is well known that the complete set of first order symmetry operators of the
Dirac equation is exhausted by the Poincaré group generators Pµ, Jµν

Pµ = pµ, Jµν = xµpν − xνpµ +
i

4
[γµ, γν ], (5)

which satisfy the commutation relations

[Pµ, Pν ] = 0, [Pµ, Jνλ] = i(gµνPλ − gµλPν),
[Jµν , Jλσ] = i(gµσJνλ + gνλJµσ − gµλJνσ − gνσJµλ).

(6)

It means that the Poincaré invariance is the most extensive symmetry of the Dirac
equation in the Lie sense [5, 6].

Using higher order symmetry operators it is possible to extend the symmetry
group of the Dirac equation to the 16-parametrical Lie group which includes the
Poincaré group as a subgroup [4]. Higher-order symmetry operators are useful in
construction of coordinate systems in which the solutions in separated variables exist
[7 ,8]. These operators may be considered also as the generators of Lie–Bäcklund
groups [9].

Below we present some our general results connecting with the symmetry opera-
tors of relativistic wave equations for any spin particles.

Definition. Equation (1) is Poincaré-invariant and describes a particle of mass m and
spin s, if it has 10 symmetry operators Pµ, Jµν which satisfy the algebra (6), and any
solution ψ satisfies the conditions

PµP
µψ = m2ψ, WµW

µψ = −m2s(s+ 1)ψ, (7)

where Wµ = 1
2εµνρσJ

νρP σ is the Lubanski–Pauli vector.
Besides the Dirac equation the well known examples of relativistic wave equations

satisfying given definition are the Kemmer–Duffin–Petiau equations for particles of
spin 0 and 1 and the Rarita–Schwinger equation for a particle of spin 3

2 .

Theorem 1. Any Poincaré-invariant equation for a particle of mass m and spin
s = 0 is invariant under the algebra ASL(2, C) [10].
Proof. Let Pµ, Jµν be the symmetry operators of the equation (1), satisfying the
commutation relations (6). Then by the definition (2) the following combinations

Q±
µν =

1
m2

[εµνρσW
ρP σ ± i(PµWν − PνWµ)] (8)

are also the symmetry operators of this equation.
Using (6), (7) and the relations [Wµ,Wν ] = iεµνρσP

ρW σ , [Pµ,Wν ] = 0 can make
sure that the operators (8) satisfy the conditions

[Q±
µν , Q

±
ρσ] = i(gµσQ

±
νρ + gνρQ

±
µσ − gµρQ

±
νσ − gνσQ

±
µρ),

Q±
µνQ

±µνψ = 2(l20 − l21 − 1)ψ,
1
4
εµνρσQ

±µνQ± ρσψ = il0l1ψ,

l0 = s, l1 = ±(s+ 1),
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and so form the basis of the finite dimensional irreducible representation D(s,±(s+1))
of the algebra ASL(2, C). Thus the theorem is proved.

We see that any relativistic wave equation for a particle of nonzero spin and mass
is automatically invariant under the algebra ASL(2, C) basis elements of which belong
to the enveloping algebra of the Lie algebra of the Poincaré group. The operators (8)
form the basis of the 16-dimensional Lie algebra together with Pµ and Jµν . For the
Dirac equation they take the form [4]

Q±
µν =

i

4
[γµ, γν ] +

i

m
(γµpν − γνpµ)(1 ± iγ4). (9)

The operators (5), (9) generate the 16-parametrical invariance group of the Dirac
equation. The corresponding finite transformations mix ψ and ∂ψ/∂xµ and can be
easily calculated using the relation (Q±

µν)2 = 1/4 [4].
The following statement gives the basis of any order symmetry operators for

a class of relativistic wave equations of a type

(βµp
µ −m)ψ = 0 (10)

where βµ are numerical matrices, β0 is diagonalizable.
Theorem 2. Any finite order symmetry operator of Poincaré-invariant equation for
a particle of mass m �= 0 and spin s (10) belongs to the enveloping algebra of the
algebra AP (1, 3).

The proof can be carried out using the Theorem 1 and bearing in mind that the
necessary conditions for the symmetry operators of the equation (10) is to be the
symmetry operators of the equation (7).

Let us note that relativistic wave equations (10) also possess such additional
invariance algebras which belong to the class of integro-differential operators [4] and
generally speaking are not membered among the enveloping algebra of the algebra
AP (1, 3).

In contrast to the first order symmetry operators the higherorder ones in general
do not form the basis of the Lie algebra. But as a rool the higher order symmetry
operators have the structure of superalgebra. We shall demonstrated it for the Dirac
and for the Maxwell equations.

Let us consider the complete set of the second order symmetry operators of the
equation (3) commuting with Pµ. Using the Theorem 2 it is not difficult to find such
a set in the form

I, Pµ, λµν = pµpν , Wµ =
i

4
γ4(γµm− pµ), Wµν = γ4(γµpν − γνpµ), (11)

where I is the unit matrix.
Direct verification can make sure that the operators (11) do not form the basis of

the Lie algebra. But these operators together with Jµν (5) form the Lie superalgebra
with the basis elements (12)

{Wµ,Wµν ; Jµν , Pλ, λµν , I}. (12)

The operators Wµ, Wµν satisfy the anticommutation relations

[Wµ,Wν ]+ = WµWν +WνWµ =
1
2
(λµν − gµνI),

[Wµ,Wλσ]+ = i(gµνPλ − gµλPν),
[Wµν ,Wρλ]+ = 2(gµλλνσ + gνσλµλ − gµσλνλ − gνλλµσ),
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the commutation relations Wµ, Wµν with Pµ, Jµν , λµν , I and between Pµ, Jµν , λµν ,
I are obvious.

So the Dirac equation is invariant under the 27-dimensional Lie superalgebra which
contains the subalgebra AP (1, 3). Basis elements of this superalgebra are second order
symmetry operators.

Consider the Maxwell equations with currents and charges

∂ �E

∂t
= �∇× �H +�j,

∂ �H

∂t
= −�∇× �E, �∇ · �E = j0, �∇ · �H = 0. (13)

The symmetry superalgebra of the equations (13) is formed by the set of the operators

{Qab; Pµ, Jµν , ηab = ∇a∇bD, ηabcd = ∇a∇b∇c∇d}
where Pµ, Jµν are the Poincaré group generators, a, b, c, d = 1, 2, 3, and Qab, D are
the additional symmetry operators of the Maxwell equations [11] which act on Ea,
Ha ja and j0 as follows

Qab : Ec → qab
cdEd, Hc → −qab

cdHd,

jc → qab
cdjd, j0 → (δab∆ −∇a∇b)j0;

D : Ec → ∇c∇dEd, Hc → ∇c∇dHd,

jc → ∇c∇djd, j0 → ∆j0,

where

qab
cd = fab

cd + f ba
cd + fab

dc + f ba
dc ;

fab
cd = δad∇b∇c +

1
4
δcd(δab∆ −∇a∇b) − 1

2
δacδbd − 1

2
δab∇c∇d.

The operators Qab satisfy the anticommutation relations

[Qab, Qa′b′ ]+ = faba′b′
klnm ηklnm + gaba′b′

kl ηkl,

where

faba′b′
klnm = 2(δaa′δkl − δakδa′l)(δbb′δnm − δbnδb′m)−

−(δabδkl − δakδbl)(δa′b′δnm − δa′nδb′m) + (a↔ b),

gaba′b′
kl = 2(δaa′δbkδb′l − δa′b′δakδbl)

+(δabδa′b′ − δab′δa′b)δkl + (a↔ b) + (a′ ↔ b′) + (a↔ b, a′ ↔ b′).

The remaining commutation relations for the operators (14) can be easily calculated.
It is interesting to note that the symmetry operators Qab do not belong to the

enveloping algebra of the Lie algebra of the conformal group. These and other prob-
lems connecting with the symmetry of relativistic and nonrelativistic wave equations,
the description of classes of equations with given symmetry, the exact solutions of
linear and nonlinear wave equations are discussed in our book [11] which will be
published this year.
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