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On vector and pseudovector Lagrangians
for electromagnetic field

W.I. FUSHCHYCH, I.Yu. KRIVSKY, V.M. SIMULIK

A Lagrange function in terms of electromagnetic field strengths is constructed which is
a 4-vector with respect to the total Poincaré group P̃ (1, 3) and whose Euler–Lagrange
equivalent to the Maxwell equations. The advantages of the known pseudovector with
respect to the P̃ (1, 3) group Lagrange function are shown. The conservation quantities
on the basis of hte corresponding generalization of Noether theorem are found.

A development of Lagrange approach (L-approach) to electrodynamics in terms
of field strength tensor F = (Fµν) = (E,H) of the elcectromagnetik field, without
using the potentials Aµ, was discussed in [1–4]. It is easy to show that in terms
of (E,H) there is no scalar, with respect to the Poincaré group P (1, 3), Lagrange
function, for which the Euler–Lagrange (EL) equations coincide with the Maxwell
equations.

The aim of this paper is a construction of a P̃ (1, 3) vector Lagrangian in terms
of (E,H), i.e. a Lagrange function Lµ which is the vector with respect to the total
Poincaré group P̃ (1, 3) (including both P (1, 3) and the spase-time reflections) and for
which the EL equations are exactly equivalent to the original Maxwell equations. In
what follows such a Lagrangian Lµ will be called a Lagrange vector.

Let us represent the Maxwell equations

∂0E = curlH − j, div E = ρ, ∂0H = −curlE, div H = 0 (1)

in a manifestly covariant form

Qµ = jµ, Rµ = 0, µ = 0, 3 ≡ 0, 1, 2, 3. (2)

Here

Qµ ≡ Fµν
,ν = ∂νFµν(x), Rµ ≡ εFµν

,ν , εFµν ≡ 1
2
εµνρσFρσ, (3)

F = (Fµν) is the field strength tensor:

F = (Fµν) = (E,H) : F 0i = Ei, F ij = εijkHk, Fµν = −F νµ, (4)

j is a current density:

j ≡ (jµ) = (ρ, j), j0 = ρ, j = (ji), i = 1, 2, 3, (5)

εµνρσ is the completely antisymmetric unit tensor, ε0123 = 1, and

x = (xµ) ≡ (x0, x1, x2, x3), ∂µ ≡ ∂/∂xµ. (6)
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The componets Qµ, Rµ of the vectors Q ≡ (Qµ) and R ≡ (Rµ) are connected with
the field strengths E ≡ (Ei) and H ≡ (Hi) as

Q0 = div E, Qi = (−∂0E + curlH)i ≡ −∂0E
i + εijk∂jH

k, (7)

R0 = div H, Ri = (−∂0H − curlE)i ≡ −∂0H
i − εijk∂jE

k. (8)

Now consider the 3rd-rank tensor Tµρσ and pseudotensor T ′
µρσ (with respect to

the P̃ (1, 3) group), which are constructed with the help of the 4-vectors Qµ, Rµ (3):

Tµρσ ≡ a[gµρ(Qσ − jσ) − gµσ(Qρ − jρ)] + bεµνρσRν , (9)

T ′
µρσ ≡ a′(gµρRσ − gµσRρ) + b′εµνρσ(Qν − jν), (10)

where a, b, a′, b′ are arbitrary constants.

Theorem 1. For any a, b, a′, b′ �= 0 each of the sets of equations

Tµρσ = 0, (11)

T ′
µρσ = 0 (12)

is equivalent to the original Maxwell equations (2).
One can easily verify the validity of this assertion by rewriting the components of

tensors T , T ′ (11), (12) in the explicit form.
Just the P̃ -tensor set of equations (11) and P̃ -pseudotensor set of equation (12)

will be used in this work for the construction of P̃ -vector L-approach to the electro-
magnetic field F = (E,H).

Let us introduce in addition to the Lagrange variable for tensor eletromagnetic
field the new Lagrange variables F̄ , F̄ ,µ which are dually conjugated to F , F ,µ (on
the manifold Φ0 of the solutions of Maxwell’s equations F̄ = εF , see (3)). The general
form of P̃ -vector Lagrangian

Lµ = Lµ(F, F ,ν , F̄ , F̄ ,ν), Lµ : R60 → R1 (13)

up to a total 4-divergence terms is the following:

Lµ = a1FµνQν + a2FµνR̄ν + a3εFµνRν + a4εFµνQ̄ν + a5F̄µνQ̄ν +
+ a6F̄µνRν + a7εF̄µνR̄ν + a8εF̄µνQν + (q1Fµν + q2εF̄µν)jν .

(14)

Here we have used also notations

Q̄µ ≡ F̄µν
,ν , R̄µ ≡ F̄µν

,ν , εF̄µν ≡ 1
2
εµνρσF̄ρσ. (15)

Theorem 2. The EL equations for P̃ -vector L = (Lµ) are equivalent to the Maxwell
equations if and only if the coefficients in (14) obey the conditions

a8 − a2 = a = −b′ = −q1 ≡ −q = 0,

a6 − a4 = a′ = −b �= 0, a1 − a3 − a6 − a8 = a2 + a4 + a5 − a7 = 0.
(16)

Proof. The straightforward calculations of Lagrange derivatives for the Lagrangian
Lµ (14) lead to the result

δLµ/δFρσ = Tµρσ = 0, δLµ/δF̄ρσ = T ′
µρσ = 0, (17)

if and only if conditions (16) are fulfilled.
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The four components of the Lagrange vector (14) generate four actions

Wµ(F, F̄ ) =
∫

d3xLµ(F (x), F̄ (x), ∂νF (x), ∂ν F̄ (x)), F, F̄ ∈ Φ, (18)

where F , F̄ belong to the set Φ of twice differentiable functions, and Φµ
0 defines the

set of extremals of the action (18) with a fixed µ.

Theorem 3. The intersection Φ0 = ∩
µ
Φµ

0 of the sets Φµ
0 of extremals of four actions

(18), given by the Lagrangian Lµ (14) whose coefficients obey conditions (16) coin-
cides with the set of solutions of Maxwell equations (1).
Proof. The validity of this assertion follows from the derivation of the explicit form
of EL equations for (14), i.e. from (17) and the Theorem 1 about the equivalence of
the set of eqs. (11) or (12) and the Maxwell equations (2), i.e. (1).

The P̃ -vector Lagrangian (14), proposed here, has several advantages in compa-
rison with the P̃ -pseudovector Lagrangian from [3], which in our notations has the
form

Lµ = Lµ(F, F ,ν) = FµνRν − εFµν(Qν − jν). (19)

Firstly, Lagrangian (19) leads only to the pseudotensor system of eqs. (12), i.e. it
gives rise to the pseudotensor system of eqs. (12) in favour of the tensor system of eqs.
(11). That is a direct consequence of the pseudovector character of Lagrangian (19).
Let us note that without appealing to the additional Lagrange variable F̄ ≡ (F̄µν) it
is impossible to construct a P̃ -vector Lagrangian: the demand of function Lµ(F, F ,ν)
being a P̃ -vector leads to the expression

Lµ = Lµ(F, F ,ν) = FµνQν + εFµνRν , (20)

for which the EL equations are the identities.
Secondly, as is seen from the terms with the current in (19), the interaction

Lagrangian in [3] also is a P̃ -pseudovector one:

Lµ
I = εFµνjν , L0

I = j · H, Li
I = (j × E − ρH)i. (21)

A physical unsatisfactoriness of such an infraction is evident already from the fact that
the density of electric charge in (21) is connected not with the electric-field stengths
E but with the magnetic-field strength H.

Finally, the calculation of conserved quantities on the basis of Lagrangian (19)
gives the result that a P̃ -tensor generator of the Poincaré group is corresponded by
P̃ -pseudotensor conserved currents. This defect, together with the above-mentioned
ones, is eliminated by using the P̃ -vector Lagrangian (14).

Derivation or conserved quantities in the framework of the L-approach formulated
here demands a generalization of Noether theorem for the case of vector Lagrangian.

Theorem 4. Let

q̂ : F (x) → F ′(x) = q̂F (x) (22)

be an arbitrary invariance transformation of eqs. (2) with j = 0. Then the conserved
current θµ

ν , constructed on the basis of the P̃ -vector Lagrangian Lµ (14) (of course
with j = 0) with the help of the formula

q̂ → θµ
ν

df=
(

∂Lν

∂F ρσ
,µ

F ′ρσ +
∂Lν

∂F ρσ
,µ

F̄ ′ρσ

)
, F ′ ≡ q̂F, F̄ ′ ≡ q̂F̄ = εq̂F, (23)
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is symmetric and its divergence vanishes for any solutions of eqs. (2) whith j = 0:

∂µθµ
ν = 0. (24)

Proof. Derivation of currents (23) for Lµ (14) with j = 0 leads to the result

q̂ → θµ
ν = A

(
FµαF ′

αν + F ′µαFαν +
1
2
δµ
ν FαβF ′

αβ

)
,

A = a1 − a2 + a7 − a8 = a3 + a4 + a5 + a6.

(25)

Summetry of tensor (25) is evident and eq. (24) is a consequence of the Maxwell
equations (2) with j = 0.

Note that in the vector L-approach the correspond (according to the Noether
theorem) to one generator of invariance transformation.

Let us give a short discussions of conserved quantities which are the concequences
of (25). We obtain, taking A = 1, that generators of 4-translations ∂µ according to
the formula (25) give the trivial current

∂µ → θµν(q̂ = ∂ρ) = (∂ρ)µν ≡ ∂ρT
µν , (26)

where Tµν is standard energv-momentum tensor for the field F = (E,H):

Tµ
ν = FµαTαν +

1
4
δµ
ν FαβFαβ , T 0

µ = Lµ, (27)

L0 ≡ 1
2
(E2 + H2), Lj ≡ (E × H)j . (28)

For the analysis of integral conserved quantities

θ̄µ =
∫

d3x θ0µ(x) = const, θ0µ(x) = θ0µ(q̂) ≡ (q̂0µ) (29)

it is sufficient to write down the densities θ0µ, omitting the terms with spacelike
derivatives, which are not contributed in integral θ̄µ. We obtain from formula (25) for
the densities θ0µ, corresponding to the rest of generators of conformal algebra C(1, 3)
(for the definition of algebra C(1, 3) see, for example, [5]), the following expressions:

Ĵρσ → J0µ
ρσ = δµ

ρLσ − δµ
σLρ, d̂ → D0µ = Lµ, (30)

K̂ρ → K0µ
ρ = 2(δα

ρ D + Jρσgσµ), (31)

where

D ≡ xµLµ, Jρσ ≡ xρLσ − xσLρ. (32)

As one can see from (30)–(32), the C(1, 3)-generators q̂ = (∂̂, ĵ, d̂, k̂) lead here
to the conserved quantities, which are expressed in terms of well-known series of
main conserved quantities for the electromagnetic field F = (E,H), found by Bessel-
Hagen [6] on the basis of the L-approach for vector field A = (Aµ) of potentials,
namely

Pρ =
∫

d3xLρ(x), Jρσ =
∫

d3x (xρLσ(x) − xσLρ(x)),

D =
∫

d3xD(x), Kρ =
∫

d3x (2xρD(x) − x2Lρ(x)).
(33)
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It is interesting to note that formula (25) gives the identical zero for the generator
q̂ = ε of duality transformations. In order to obtain nontrivial conservation laws with
the help of ε let us remind ref. [1], where new invariance algebra A32 ⊃ C(1, 3) of
free Maxwell’s equations was found. A subset of the generators of the algebra A32

has the form of composition q̂ = εq̂ of C(1, 3) generators q̂ = (∂̂, ĵ, d̂, k̂) and the
generator ε. Formula (25) gives nontrivial conservation laws just for the generators
q̂′ = (ε∂̂, εĵ, εd̂, εk̂). The corresponding integral conservation laws expressed in terms
of series

Zµ
ρ =

∫
d3xZµ

ρ (x), Zµ
ρσ =

∫
d3x (xρZµ

σ − xσZµ
ρ ),

Zµ =
∫

d3xxνZµ
ν (x),

c

Z
µ
ρ =

∫
d3x (2xρx

σZµ
σ − x2Zµ

ρ )
(34)

of conserved quantities having polarization nature. In (34) the densities Z of con-
served quantities are expressed in the terms of Lipkin’s Zilch tensor [7] (in Kibble’s
notation [8])

Zµ
ρ ≡ Z0|µ

ρ , Z0|µ
ρ = F ναεF ,µ

αρ − εF ναF ,µ
αρ . (35)

The conservation laws (34) were found in [4–10] without using the L-approach and
Noether theorem (except in ref. [10], where a parameter-dependent Lagrangian in
terms of potentials was used).
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