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Computer algebra application
for determining Lie and Lie–Bäcklund
symmetries of differential equations
W.I. FUSHCHYCH, V.V. KORNYAK

The application of computer algebra for determining Lie and Lie–Bäcklund (LB)
symmetries of differential equations is considered. Algorithms for calculating the
symmetries are developed and implemented on the basis of computer algebra systems
REDUCE, AMP and FORMAC. The most effective and advanced program is written
in FORMAC. It finds LB symmetries completely automatically. In many cases the
program yields the full algebra of symmetries. If the program fails in full integration of
the determining system, it reduces the remaining determining equations to the system
in involution.

1. Introduction
The determination of point and contact Lie symmetries and Lie–Bäcklund sym-

metries of differential equations is one of the central problems in applied mathematics
and mathematical physics. The mathematical theory is rather well developed [10, 8],
but computing of the symmetries of certain systems of differential equations requires
extremely tedious symbolic manipulations. In many cases the only possibility to cope
with the task is the application of computer algebra. There are several programs and
packages for solving the problems in this field. The REDUCE package for obtaini-
ng determining systems of point symmetries was suggested by Schwarz [11]. This
package includes several programs for different kinds of differential equations and
systems. This work was developed by adding programs for solving the determining
systems [12], and the resulting package was successfully applied to many problems
in mathematical physics. In [1] the universal REDUCE program was suggested for
computing determining systems of point and contact symmetries of arbitrary systems
of differential equations. To obtain determining equations of LB symmetries the
FORMAC and REDUCE programs have been developed [2, 3]. We have also wri-
tten an analogous AMP program. It is very difficult or impossible to handle the
LB determining systems by hand, because generally they contain several hundreds
of equations (though linear and overdetermined). We should mention, also, a recent
FORMAC package CRACKSTAR [13], which is closely related with the subject consi-
dered. This package is intended for investigation of Lie-symmetries of pde’s and
dynamical symmetries of ode’s as well as other analytic properties.

Comparing different computer algebra systems (REDUCE 2, REDUCE 3.∅, AMP
6.4 and PL/I-FORMAC) we came to a conclusion that FORMAC is the most suitable
system for our purposes. Of course, it is out of date to some extent but much more
effective than REDUCE and AMP. We developed the FORMAC program LBF for
determining Lie–Bäcklund symmetries of arbitrary systems of differential equations.
The program creates the LB determining system, integrates it as far as possible and,
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if some part of the determining system remains, it reduces this part to the system in
involution, i.e. to system with all integrability conditions being explicit [4].

In this paper our consideration is given mostly to the general case of LB symmet-
ries, because point and contact symmetries are only special cases of LB ones. Readers
interested in the details of algorithms and programs concerning point and contact
symmetries are referred to papers mentioned above.

2. Mathematical background
We shall consider a system of s partial differential equations of kth order for m

functions uα in the n independent variables xi

F ν(xi, uα, uα
i1···il

) = 0,
ν = 1, . . . , s; α = 1, . . . ,m; i, i1, . . . , il = 1, . . . , n; l = 1 . . . , k,

(1)

where uα
i1···il

are jet bundle coordinates corresponding to the partial derivatives of uα

with respect to xi1 , . . . , xil .
The LB group is defined as the tangent transformation group of infinite order. In

the terms of infinitesimal generators it means that coordinates of Lie-algebra depend
on the unlimited number of derivatives. The Lie-algebra vector called the LB operator
has the form

X = ξi ∂

∂xi
+ ηα ∂

∂uα
+

∑
l≥1

ζα
i1···il

∂

∂uα
i1···il

. (2)

Summation over twice occurring indices is always understood, ξi, ηα, ζα
i1···il

depend
on variables xi, uα, uα

i1···il
, and ζα

i1···il
are generated recursively by

ζα
i = Di(ηα) − uα

j Di(ξj), ζα
i1···il

= Dil
(ζα

i1···il−1
) − uα

ji1···il
Dil

(ξj). (3)

Di is the operator of total differentiation with respect to xi

Di =
∂

∂xi
+ uα

i

∂

∂uα
+

∑
l≥1

uα
ii1···ul

∂

∂uα
i1···il

. (4)

System (1) with all the differential consequences is called a differential manifold

[F ] : F ν = 0, Di(F ν) = 0, . . . , Di1Di2 · · ·Dil
(F ν) = 0, . . . . (5)

According to the definition systems, (1) is invariant with respect to LB group, if the
differential manifold [F ] is invariant, i.e.

X[F ]
∣∣
[F ]

= 0. (6)

There is a theorem staling that condition (6) is equivalent to

XF |[F ] = 0, (7)

i.e. it is sufficient to apply the X operator only to initial equations (1), but to consider
the differential consequences when transferring to the manifold.

It is easy to check that LB operators of the form

X∗ = ξi
∗Di, (8)
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where ξi
∗ are arbitrary functions of the xi, uα, uα

i1···il
variables, and to leave the

artibrary differential manifold invariant, i.e. they do not contribute to the invariance
condition. These operators form the ideal in the Lie-algebra of all the LB operators.
Therefore, it is possible to consider, without loss of generality, the factor-algebra
of the complete Lie-algebra with respect to the above ideal. Each operator (2) is
equivalent in the factor-algebra to some operator with vanished ξi, viz.

X ∼ Y = X − ξiDi = (ηα − ξiuα
i )

∂

∂uα
+ · · · .

Thus the elements of factor-algebra may be represented in the form

X = ηα ∂

∂uα
+

∑
l≥1

ζα
i1···il

∂

∂uα
i1···il

. (9)

Operators (9) are called “canonical operators”. Transition to canonical operators es-
sentially simplifies the calculations, since now it is sufficient to consider m functions
ηα instead of n + m functions ξi and ηα. Moreover, extension formulae (3) take a
simple form

ζα
i = Di(ηα), ζα

i1···il
= Dil

(ζα
i1···il−1

). (10)

In terms of canonical operators the invariance conditions, i.e. the determining equa-
tions, take the form(

ηα ∂F
ν

∂uα
+Di(ηα)

∂F ν

∂uα
i

+Di2(Di1(η
α))

∂F ν

∂uα
i1i2

+ · · ·
) ∣∣∣

[F ]
= 0. (11)

This is a system of equations with respect to ηα. The solutions of the determining
equations depending on the derivatives of no more than kth order are called kth order
solutions. This definition allows the overdetermined system to be obtained, because
we can split the left part of (11) with respect to “free derivatives”, i.e. uα

i1···il
for l > k.

If the 1st order derivatives are not expressed by derivatives of a higher order in the
process of transition to manifold [F ], then the 1st order solutions contain point and
contact Lie symmetries. In particular, point symmetries are corresponding to the 1st
order solutions of the form

ηα
point = ηα(xi, uβ) − ξj(xi, uβ)uα

j , (12)

where α, β = 1, . . . ,m; i, j = 1, . . . , n; ξj and ηα are usual coordinates of the Lie-
algebra of point transformations. Note that the point transformation groups obtained
from the solutions of LB determining equations may be wider than the classical ones.
This may occur if some equations of the system under consideration are of an order
less than the maximum one of the system, because, when transferring to the manifold,
the LB symmetries imply the use of differential consequences, i.e. relations

F ν = 0, Di(F ν) = 0, . . . , Di1 · · ·Dil
(F ν), . . . ,

whereas the classical definition of point symmetries uses relations F ν = 0 only [8].
There are non-trivial LB symmetries of the 1st order, i.e. non-equivalent to point or
contact ones. It occurs, for example, for Dirac equations [14].
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3. Description of the program and algorithms
The LBF program is a single program acting completely automatically. Its text

contains 37 internal procedures besides the main one. The total length of the program
is now 1362 lines of PL/1-FORMAC code. We shall describe the program and its
algorithms illustrating some steps by the simple example of determining 1st order LB
symmetries for one-dimensional linear heat equation. To be more concrete, let us give
the full input and output for this task with the comments on the right side.

Input:

‘HEAT EQUATION’ — comment
1 — symmetry order
‘X, T ; U ’ — independent and dependent variables
‘UT − UXX’ — heat equation UT − UXX = 0.

(13)

To simplify the input and output expressions, the derivatives are represented by
concatenation of dependent and independent variables. Thus, if one uses multicharac-
ter symbols for variables one has to choose them so as to avoid ambiguities. If one
considers the system of equations, the corresponding character strings separated by
blanks must be added.

Output:

HEAT EQUATION
INDEPENDENT AND DEPENDENT VARIABLES:
X, T ; U
SYSTEM OF EQUATIONS:
1). UT − UXX = 0
GENERATORS OF LIE–BÄCKLUND SYMMETRIES OF THE 1ST ORDER:
1).
U �== C1 UX + C2 (1/2 UX + T UX) + C3 (UX X + 2 T UT ) + C4

(T UX X + T 2 UT + U (1/2 T + 1/4 X2)) + C5 UT + C6 U + F1
DEPENDENCES OF FUNCTIONS:
F1 = F1(X,T )
REMAINING EQUATIONS:
1).
0 = F1.(T ) − F1.(X,X) — equation F 1

T − F 1
XX = 0 (14)

The designations Ci and Fi mean constants Ci and functions F i, U# means
∗
U ≡ η1. Taking into account formula (12) we see that the 1st order LB symmetries
appear to be point ones. Considering the coefficients at Ci and using (12) it is easy
to obtain the symmetry operators

e1 = ∂X , e2 =
1
2
XU∂U − T∂X , e3 = X∂X + 2T∂T ,

e4 = U

(
1
2
T +

1
4
X2

)
∂U −XT∂X − T 2∂T , e5 = ∂T , e6 = U∂U .

As is the case for every linear partial differential equation, there is also infinite-
dimensional subalgebra e∞ = F 1(X,T )∂U , where F 1 is an arbitrary solution of
equation (14). This example takes 47 seconds of CPU time and 260 Kbytes memory
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on the ES 1045 computer (under the OS/VS) with the internal performance of about
700 000 op/sec.

The LBF program consists of two main parts; the computation of determining
system, and the solution of that system. The 1st part is the improved and generalised
version of the program described in [2].

We use the sequencing of uα
i1···il

and derivatives of functions F i, included in
symmetry generators, in the following way: sets of lower indices are ordered lexico-
graphically; after that the items are ordered in accordance with their upper indices.
The position of the item in such a row we shall call “ordinal”. This ordering permits to
perform the considerable part of calculations using the fast and non-wasting memory
of PL/I integer arithmetic only.

The program executes sequentially the following steps.

(1) Reading the input data and transforming them into internal form introducing
the ordering mentioned above.

(2) Computation of the differential consequences up to the required order and elimi-
nation of dependences thereof. The program tries to solve the system together
with differential consequences with respect to derivatives of the highest ordi-
nals which are included linearly in relations. To do this, the program uses the
Gauss excluding method. Note that differential consequences depend on the hi-
ghest order derivatives only linearly. Some equations may not contain linearly
included derivatives. The program marks such equations.

If the problem of classification is considered, then the system of equations
contains arbitrary parameters or functions. Some combinations of these items
may be used as denominators during the excluding process. Everywhere in the
program in similar situations such different denominators are memorised to be
printed at the end of program execution. It is necessary to consider separately
the cases when such combinations are zeros.

(3) The determination of symmetry variables, i.e. variables which the generators
depend on. (The generators do not depend on derivatives of an order higher than
the symmetry order and on derivatives excluded in the previous step.)

(4) Computation of canonical LB operator (9) and the result of its action on system
(1), i.e. computation of invariance conditions.

(5) Transition to manifold. The program eliminates the derivatives, excluded in step
(2), in the invariance conditions. If there are equations unresolved in step (2) the
program adds them to invariance conditions (11) having preliminarily multiplied
them by indefinite factors.

(6) Separation of the determining system with respect to free variables, i.e. deriva-
tives of an order higher than the symmetry order. The program separates the
equations not only with respect to different powers of the free variables but also
with respect to arbitrary different independent functions of such variables. It is
possible that the functions independent in general may be dependent in some
particular cases. For example, if uxx is a free variable, then from A sin(uxx) +
B cos(uxx) = 0 it follows that A = 0 and B = 0, but from Au2

xx + Buk
xx = 0

it follows that A = 0 and B = 0 if k �= 0, but A + B = 0 otherwise. Another
obvious example Af(uxx)+Bf ′(uxx) = 0 requires to consider the particular case
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f = euxx . For subsequent consideration of similar particular cases the program
memorises all different separation factors containing arbitrary functions and
parameters. For the sake of economy of memory, during the separation process,
zeros are deleted immediately, i.e. when a one-term determining equation arises,
it and its differential consequences are substituted at once into all remaining
expressions.

(7) Exclusion of indefinite factors. Using the Gauss method the program excludes
indefinite factors if they were introduced at step (5).

At the end of the first part of the program the state of the determining
system (i.e. expressions for generators, dependences of functions, equations)
considered is for the example:

∗
u = F 1; F 1 = F 1(x, t, u, ux, ut);
F 1

t − F 1
xx − 2utuxF

1
uux

− 2utF
1
xux

− 2uxF
1
xu − u2

tF
1
uxux

− u2
xF

1
uu = 0,

F 1
xut

+ utF
1
uxut

+ uxF
1
uut

= 0, F 1
utut

= 0.

(8) Simplification of the determining system. The fragment of the program respon-
sible for this step is

BC = ‘1’B;

DO WHILE(BC);

BB = ‘1’B;

DO WHILE(BB);

BA = ‘1’B;

DO WHILE (BA);

CALL REDSYS(1); CALL ORTSYS(∅); BA = SMONINT;

END;

BB = INVOL;

END;

BC = RESTINT;

END;

Here, BA, BB, BC are the control variables. The very inner loop contains
the calls of the most efficient procedures. The REDSYS procedure is auxiliary.
It reduces the determining system to some canonical form. Argument “1” means
that the reduction begins from the first equation. (There are calls of REDSYS
from other procedures with different values of argument.) The call of the
ORTSYS(K) procedure reduces the determining system to the orthonomic form
[4], i.e. the derivatives of the highest ordinals (leading derivatives) are singled
out and substituted (with theirs differential consequences of the order up to K),
equations are ordered in accordance with the increase of ordinals of leading deri-
vatives. ORTSYS deletes the equations not containing derivatives after having
performed the corresponding substitutions. The SMONINT procedure integrates
the systems of monomial equations, i.e. systems of the form {F j

i1···ik
= 0}. Here,
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the lower index il means the differentiation with respect to the ilth symmetry
variable. The procedure yields the expression for F j simultaneously consideri-
ng all monomials for the given j. It allows the number of iterations to be
reduced. SMONINT substitutes also F j and its derivatives in other expressi-
ons and separates the determining system after that. If there are no monomial
equations in the determining system, then BA takes the value ‘∅’B and the loop
is completed.

After this loop the state of the determining system for the heat equation is

∗
u = F 3 + F 4u+ F 2ux + F 1ut;
F 1 = F 1(t), F 2 = F 2(x, t), F 3 = F 3(x, t), F 4 = F 4(x, t);
2F 2

x − F 1
t = 0, 2F 4

x − F 2
t + F 2

xx = 0, F 3
t − F 3

xx = 0, F 4
t − F 4

xx = 0.

The INVOL procedure performs the further integrations or reduces the
remaining part of the determining system to the system in involution by Riquier–
Janet method [4]. The method consists in calculating differential consequences
of equations and in excluding dependences out of them. INVOL tries to separate
and integrate the relations arising during this process. If it fails in integration,
then the system is reduced to the one in involution, and BB takes the value
‘∅’B; if otherwise, BB = ‘1’B, and the whole process is repeated. The INVOL
procedure integrates the monomials and often arising equations of the form
F j

i1···ik
= P , where P is the polynomial of the variables of differentiations.

As a rule, the combination of the above-mentioned operations is sufficient to
reveal the major part of dependences of the symmetry generators, because these
dependences are often polynomial. For instance, our example is completed by
the INVOL procedure. In some cases it is possible to go further in integration of
the remaining part of the determining system. This is effected by the RESTINT
procedure. In gaining experience, it is possible to add in this procedure some
particular and rare methods of integration. Now RESTINT contains the pro-
cedure for solving the ordinary differential equations or systems with constant
(with respect to differentiation variable) coefficients up to the 4th order, and the
procedure for solving differential equations of the 1st order with variable coeffi-
cients. The last procedure yields in non-polynomial cases the formal expressions
for indefinite integrals. BC takes the value ‘1’B if further simplification after
RESTINT is possible, and ‘∅’B, if otherwise.

(9) The last step of the LBF program is output. The internal designations are
replaced by more expressive ones. The expressions for generators are reduced to
some form simplifying the extraction of different one-dimensional subalgebras,
as in the example above. The program removes also superfluous functions or
constants if they arise during integration. For example, if F 1(X,Y ) and F 2(X)
are arbitrary functions, then F 1(X,Y ) + F 2(X) is equivalent to F 1(X,Y ). In
general, the output may contain two more items, in addition to those presented
in the example: the list of different denominators containing arbitrary functions
or parameters, and the analogous list of separation factors.
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Let us demonstrate the result of the program application in obtaining the 1st order
symmetries of a more complicated non-linear equation [5]

∂u

∂τ
− �u− λu

∂u

∂xµ

∂u

∂xµ
= 0, (15)

where

� =
∂2

∂ϕ2
t

− ∂2

∂x2
− ∂2

∂y2
− ∂2

∂z2
,

∂u

∂xµ

∂u

∂xµ
= u2

ϕt
− u2

x − u2
y − u2

z.

The LBF program gives the general solution having in terms of operators the form:

e1 = ∂x, e2 = ∂y, e3 = ∂z, e4 = ∂ϕt
, e5 = ∂x + x∂ϕt

,

e6 = ϕt∂y + y∂ϕt
, e7 = ϕt∂z + z∂ϕt

, e8 = y∂x − x∂y, e9 = x∂z − z∂x,

e10 = z∂y − y∂z, e11 = ϕ(u)∂u, e12 = ∂τ ,

e13 = x∂x + y∂y + z∂z + t∂t + 2τ∂τ ,

e14 = xτ∂x + yτ∂y + zτ∂z + tτ∂ϕt
+ τ2∂τ +

(
x2 + y2 + z2 − t2

4
− 2τ

)
ϕ(u)∂u,

e15 = τ∂x +
x

2
ϕ(u)∂u, e16 = τ∂y +

y

2
ϕ(u)∂u, e17 = τ∂z +

z

2
ϕ(u)∂u,

e18 = τ∂ϕt
− t

2
ϕ(u)∂u, e∞ = ψ(x, y, z, t, τ) exp

(
−λu

2

2

)
∂u,

where

ϕ(u) = exp
(
−λu

2

2

) ∫
exp

(
λu2

2

)
du,

ψ(x, y, z, t, τ) is an arbitrary solution of equation

∂ψ

∂τ
− �u = 0. (16)

This example takes 5 min 18 s and 320 Kbytes on ES 1045. Generators e1–e10 create
the Poincaré algebra. As it follows from the above operators, equation (15) turned
out to be automorphic, i.e. all its solutions lie on one group orbit. It allows to reduce
non-linear equation (15) to linear one (16) using standard techniques of symmetry
analysis.

4. Conclusion
There are some problems in connection with the considered one where the com-

puter algebra may be successfully applied. For example, to complete the symmetry
analysis of the system of differential equations it is important to learn the subgroup
structure of the symmetry group, i.e. to classify the subalgebras of Lie-algebra of
symmetries into conjugacy classes. This problem is also important in many other
fields. In [9] the algorithm for classification of subalgebras of finite-dimensional Lie-
algebras and its computer implementation were described.

Modern development of symmetry analysis includes several approaches considering
non-local symmetries, i.e. symmetries depending on integrals or even more general
operators acting in the functional space of the dependent functions [7]. Some class of
such symmetries and corresponding algorithms and programs were considered in [6].
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