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Symmetry and exact solutions
of nonlinear spinor equations

W.I. FUSHCHYCH, R.Z. ZHDANOV

This review is devoted to the application of algebraic-theoretical methods to the problem
of constructing exact solutions of the many-dimensional nonlinear systems of partial di-
fferential equations for spinor, vector and scalar fields widely used in quantum field
theory. Large classes of nonlinear spinor equations invariant under the Poincaré group
P (1, 3), Weyl group (i.e. Poincaré group supplemented by a group of scale transformati-
ons), and the conformal group C(1, 3) are described. Ansätze invariant under the
Poincaré and the Weyl groups are constructed. Using these we reduce the Poincaré-
invariant nonlinear Dirac equations to systems of ordinary differential equations and
construct large families of exact solutions of the nonlinear Dirac–Heisenberg equation
depending on arbitrary parameters and functions. In a similar way we have obtained
new families of exact solutions of the nonlinear Maxwell–Dirac and Klein–Gordon–Dirac
equations. The obtained solutions can be used for quantization of nonlinear equations.

1. Introduction
The Maxwell equations for the electromagnetic field and the Dirac equation for

the spinor field,

(γµpµ −m)ψ = 0, (1.1)

discovered 60 years ago, are the fundament of modern physics. In eq. (1.1) ψ = ψ(x)
is a four-component complex-valued function, x = (x0 ≡ t, x1, x2, x3) ∈ R(1, 3), four-
dimensional Minkowski space, γµ are 4 × 4 matrices satisfying the Clifford–Dirac
algebra

γµγν + γνγµ = 2gµν , (1.2)

where gµν = diag (1,−1,−1,−1), m is the particle mass. We use two equivalent
representations of the γ-matrices,

γ0 =
(

0 I
I 0

)
, γa =

(
0 σa

−σa 0

)
, (1.2a)

or

γ0 =
(
I 0
0 −I

)
, γa =

(
0 σa

−σa 0

)
, a = 1, 2, 3, (1.2b)

σa are the 2 × 2 Pauli matrices.
Fifteen years ago D. lvanenko [1] made an attempt to obtain a nonlinear generali-

zation of the Dirac equation, and suggested the following equation:

[γµpµ −m+ λ(ψ̄ψ)]ψ(x) = 0, ψ̄ = ψ+γ0. (1.3)
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In the early fifties W. Heisenberg [2–5] put forward a vast program to construct
a unified field theory based on the nonlinear spinor equation

[γµpµ + λ(ψ̄γµγ4ψ)γµγ4]ψ(x) = 0. (1.4)

Heisenberg and his collaborators [2–5] did their best to construct the quantum field
theory, to establish the quantization rules, and to calculate the mass spectrum of the
elementary particles.

In two papers by R. Finkelstein and collaborators [6, 7] published in the early
fifties, nonlinear spinor fields were investigated from the classical point of view,
i.e., approximate and exact solutions of partial differential equations (PDE) were
studied. From the classical point of view scalar field was studied by L. Schiff [8] and
B. Malenka [9].

Like the general theory of relativity nonlinear spinor field theory is a mathematical
model of physical reality based on a complicated multi-dimensional nonlinear system
of PDE.

Up to now there exists a vast literature on exact solutions of the equations for
the gravitational field. It is well-known which important role has been played in
gravitation theory by Schwarzschild’s, Friedman’s and Kerr’s exact solutions. So far
many of the obtained solutions have no adequate physical interpretation. Nevertheless
the number of exact solutions of the Einstein equations grows rapidly.

Nothing of the kind takes place in nonlinear field theory. There are few enough
classical solutions of nonlinear spinor equations [10–18] although these equations are
essentially simpler than those of gravitation theory. This surprising situation seems
to be explained by the fact that many investigators underestimate the importance of
exact solutions in the theory of quantized fields and expect the great successes in
other domains of quantum field theory.

We think that a thorough investigation of nonlinear spinor equations and a con-
struction of exact solutions for them sooner or later will lead to important physical
results and to new physical ideas and methods. Let us recall that in this way the
theory of solitons was created.

We will not adduce a concrete physical interpretation to the solutions of nonlinear
spinor equations because we think that they speak for themselves. Nevertheless we
will show how to construct nonlinear scalar fields (equations) using exact solutions
of nonlinear spinor equations. In other words, we have a dynamical realization of de
Broglie’s idea to construct an arbitrary field by using a field with spin s = 1

2 [19]. The
kinematical realization of this idea is well known. It is reduced to a decomposition
of a direct product of linear irreducible representations of the Lorentz and Poincare
groups (with spin s = 1

2 ).
It will be shown that the interaction of spinor and scalar fields gives rise to some

mass spectrum (section 4). It is of interest that discrete relations connecting the
masses of spinor and scalar fields are determined by the geometry of the solutions.

Exact solutions obtained by us can be used as a pattern to check the already
known approximate methods and to create new ones. For example, solutions which
depend on the coupling constant A in a singular way cannot be obtained by standard
methods of perturbation theory.

Solutions (classes of solutions) with the same symmetry as the initial equation
of motion seem to be of particular importance. These solutions (not the equation)
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can be used in the quantization procedure. From the set of solutions one can pick
out ones that do not lead to an indefinite metric. This review is based on our papers
[20–30], and the symmetry properties of PDE are used extensively. That is, we apply
the classical ideas and methods of S. Lie to nonlinear spinor equations. The symmetry
properties of nonlinear field equations make it possible to reduce multi-dimensional
spinor equations to systems of ordinary differential equations (ODE). Integration of
these ODE gives rise to exact solutions of the initial equation. Let us note that all
the exact solutions of the nonlinear Dirac equation known to us are included in the
set of solutions obtained in such a way.

The structure and content of the review are as follows. In section 2 we investigate
the symmetry of the nonlinear Dirac equation

[γµpµ + F (ψ̄, ψ)]ψ(x) = 0, (1.5)

where F (ψ̄, ψ) is an arbitrary four-component matrix depending on eight field va-
riables ψ̄, ψ. All the matrices F (ψ̄, ψ) ensuring invariance of eq. (1.5) under the
Poincaré group P (1, 3), extended Poincaré group P̃ (1, 3) and conformal group C(1, 3)
are described.

In section 3 we take the ansatz

ψ(x) = A(x)ϕ(ω), (1.6)

suggested in ref. [30] and described systematically in refs. [23, 24, 29], which reduces
the system of equations (1.5) to systems of equations for the four functions ϕ0, ϕ1,
ϕ2, ϕ3 depending on three new invariant variables ω = {ω1(x), ω2(x), ω3(x)}. In
(1.6) A(x) is a variable nonsingular 4 × 4 matrix, whose explicit form is given in
section 3. If ϕ depends on one independent variable then ansatz (1.6) reduces eq.
(1.5) to a system of ODE. Most of them prove to be integrable. Integrating these and
substituting the obtained results into the ansatz (1.6) one obtains particular solutions
of eq. (1.5). Using this approach we have constructed large classes of exact solutions
of the nonlinear Dirac–Heisenberg equation (DHE) for a spinor field.

In sections 4 and 5 multi-parameter families of exact solutions of the Dirac–Klein–
Gordon and the Maxwell–Dirac systems, describing the interaction of a spinor field
with scalar and electromagnetic fields are constructed.

2. Nonlinear spinor equations invariant under the Poincaré group P (1, 3)
and its extensions, the groups P̃ (1, 3) and C(1, 3)

It is clear that arbitrary equations of the form (1.5) can not be taken as a physically
acceptable generalization of the linear Dirac equation. A natural restriction of the
form of the nonlinearity F (ψ̄, ψ) is imposed by demanding relativistic invariance.
This condition ensures independence of the physical processes described by eq. (1.5)
of the choice of inertial reference system (i.e., the nonlinear equation in question has
to satisfy the Poincaré–Einstein relativity principle). It is common knowledge that
the Dirac equation with zero mass admits the conformal group C(1, 3) (see e.g. ref.
[31] and the literature cited there). Therefore it is of interest to choose from the set
of Poincaré-invariant equations of the form (1.5) equations that are invariant under
the conformal group.

In this section we describe all equations of the form (1.5) that are invariant under
the Poincaré group P (1, 3) and its extensions, the group P̃ (1, 3) and the conformal
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group C(1, 3). Let us recall that the extended Poincaré group P̃ (1, 3) (or Weyl group)
is an 11-parameter group of transformations {P (1, 3),D(1)}, where D(1) is a one-
parameter group of scale transformations,

x′µ = eθxµ, ψ′(x′) = e−kθψ(x), k, θ = const. (2.1)

The 15-parameter conformal group C(1, 3) consists of the group P̃ (1, 3) and the four-
parameter group of special conformal transformations

x′µ = (xµ − θµx · x)σ−1(x), ψ′(x′) = σ(x)[1 − (γ · θ)(γ · x)]ψ(x), (2.2)

where σ(x) = 1 − 2θ · x+ (θ · θ)(x · x), θµ are parameters of the group, µ = 0, 1, 2, 3.
Hereafter we use the following notation for the scalar product in Minkowski space
R(1, 3):

a · b ≡ aµb
µ ≡ gµνaµbν , µ, ν = 0, 1, 2, 3,

where gµν = diag (1,−1,−1,−1) is the metric tensor of Minkowski space.

Theorem 1. Equation (1.5) is Poincaré invariant iff

F (ψ̄, ψ) = F1 + F2γ4, (2.3)

where ψ̄ = ψ+γ0, γ4 = γ0γ1γ2γ3, F1 and F2 are arbitrary scalar functions of ψ̄ψ
and ψ̄γ4ψ.

We give only a sketch of the proof, which is based on the infinitesimal Lie method
[32–34]. Expanding the matrix F (ψ̄, ψ) in a linear combination of γ-matrices, the
coefficients of the expansion depending ψ̄ and ψ,

F = aI + bµγ
µ + cµνSµν + dµγ4γµ + eγ4, Sµν =

1
4
i(γµγν − γνγµ), (2.4)

and using the invariance criterion, one obtains the following necessary and sufficient
conditions for the Poincaré invariance of eq. (1.5):

Q0ka = 0, Q0ke = 0,
Q0kbµ + bα(gα0gµk − gαkgµ0) = 0, Q0kdµ + dα(gα0gµk − gαkgµ0) = 0,
Q0kcµν + cαβ(gαkδ

µν
β0 + gβ0δ

µν
αk − gα0δ

µν
βk − gβkδ

µν
α0) = 0,

(2.5)

where

iQ0k = −(S0kψ)α∂/∂ψα + (ψ̄S0k)α∂/∂ψ̄α, k = 1, 2, 3,
δµναβ = δµαδ

ν
β − δµβδ

ν
α, α, β, µ, ν = 0, 1, 2, 3,

and δαβ is the Kronecker symbol.
After some cumbersome calculations we obtain the following general solution of

the system of PDE (2.5):

a = A, e = E, bµ = B1ψ̄γµψ +B2ψ̄γµγ4ψ,

cµν = C1ψ̄Sµνψ + C2ψ̄γ4Sµνψ, dµ = D1ψ̄γµψ +D2ψ̄γ4γµψ,
(2.6)

where A,B1, . . . , E are arbitrary smooth functions of ψ̄ψ and ψ̄γ4ψ.
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Substituting the above formulae into (2.4) one obtains the following expression for
the nonlinear term F (ψ̄, ψ)ψ:

F (ψ̄, ψ)ψ ={AI + [B1ψ̄γµψ +B2ψ̄γ4γµψ]γµ + [C1ψ̄Sµνψ + C2ψ̄γ4Sµνψ]Sµν+
+ [D1ψ̄γµψ +D2ψ̄γ4γµψ]γ4γ

µ + Eγ4}ψ.
This formula can be essentially simplified with the help of the identity [35]

(ψ̄1γµψ2)γµψ2 = (ψ̄1ψ2)ψ2 + (ψ̄1γ4ψ2)γ4ψ2,

where ψ1 and ψ2 are arbitrary four-component spinors, and as a result the nonlinearity
F (ψ̄, ψ) takes the form (2.3). This completes the proof.

Note. In the same way one can prove that the second-order spinor equation

pµp
µψ = F (ψ̄, ψ)ψ (2.7)

is invariant under the Poincaré group iff F (ψ̄, ψ) has the form (2.3).

Theorem 2 [29]. Equation (1.5) is invariant under the Weyl group P̃ (1, 3) iff
F (ψ̄, ψ) has the form (2.3), Fi being determined by the formulae

Fi = (ψ̄ψ)1/2kF̃i, i = 1, 2, (2.8)

where F̃1, F̃2 are arbitrary functions of ψ̄ψ/ψ̄γ4ψ.
Theorem 3 [29]. Equation (1.5) is invariant under the conformal group C(1, 3) iff
F (ψ̄, ψ) has the form (2.3), (2.8) with k = 3/2.

The proof of the last two statements is obtained with the help of the Lie method
[32–34]; it is omitted here. Let us note that the sufficiency in theorem 3 can be
established by direct verification. To do this we denote by G the following expression:

G(ψ̄, ψ) = γµp
µψ + (F̃1 + F̃2γ4)(ψ̄ψ)1/3ψ.

One can verify that the following identities hold:

G(ψ̄′, ψ′) = e−5θ/2G(ψ̄, ψ),

if ψ̄′, ψ′ have the form (2.1) with k = 3/2,

G(ψ̄′, ψ′) = σ2(x)[1 − (γ · θ)(γ · x)]G(ψ̄, ψ),

if ψ̄′, ψ′ have the form (2.2). Consequently, the equation G = 0 is invariant under the
groups of transformations (2.1), (2.2).

Note 1. Unlike eq. (1.5), the class of equations (2.7) does not include conformally
invariant ones. Therefore it seems reasonable to consider as an equation of motion for
a spinor field the following second-order equation:

pµp
µψ = Φ(ψ̄, ψ, ψ̄1, ψ1),

ψ1 = {∂ψ/∂xµ, µ = 0, 1, 2, 3}, ψ̄1 = {∂ψ̄/∂xµ, µ = 0, 1, 2, 3}. (2.9)

The problem of a complete group-theoretical classification of eqs. (2.9) will be
considered in a future paper. Here we restrict ourselves to an example of a conformally
invariant equation of the form (2.9),

pµp
µψ − (3ψ̄ψ)−1γµ[pµ(ψ̄ψ)]γνpνψ = 0. (2.10)
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It is worth noting that each solution of the nonlinear Dirac–Gürsey equation [36]
satisfies the PDE (2.10).

Note 2. There exist Poincaré-invariant first-order equations which differ principally
from the Dirac equation. An example is [29, 37]

(ψ̄γµψ)pµψ = 0. (2.11)

On the set of solutions of the system (2.11) a representation of an infinite-dimensional
Lie algebra is realized. This fact enables us to construct the general solution of eq.
(2.11) in implicit form,

fα(xµ(j · j) − jµ(j · x), ψ̄, ψ) = 0, α = 0, 1, 2, 3,

where jµ = ψ̄γµψ, fα : R × C
8 → C

1 are arbitrary smooth functions.

3. Exact solutions of the nonlinear Dirac equation
According to refs. [23, 24, 37] a solution of eq. (1.5) is looked for as a solution of

the following overdetermined system of PDE:

γµp
µψ + F (ψ̄, ψ)ψ = 0,

ξµaψxµ
+ ηa(x, ψ̄, ψ)ψ = 0, a = 1, 2, 3,

(3.1)

where ηa(x, ψ̄, ψ) are arbitrary 4 × 4 matrices, ξµa (x, ψ̄, ψ) are scalar functions sati-
sfying the condition

rank {ξµa (x, ψ̄, ψ)} = 3. (3.2)

The PDE (3.1) is a system of sixteen equations for four functions ψ0, ψ1, ψ2, ψ3.
Therefore one has to investigate its compatibility (see also refs. [31, 39, 40]).

Theorem 4. System (3.1) is compatible iff it is invariant under the one-parameter
Lie groups generated by the operators

Qa = ξµa∂/∂xµ − (ηaψ)α∂/∂ψα, a = 1, 2, 3.

The main steps of the proof are as follows. Firstly, using condition (3.2) one
reduces the system (3.1) to the equivalent system (to simplify the calculations we
suppose that ∂ξaµ/∂ψ

α = ∂ηαβa /∂ψµ = 0)

γµp
µψ + F (ψ̄, ψ)ψ = 0,

Q̃aψ ≡ (∂/∂xa + ξα∂/∂x0 + η̃a)ψ = 0.
(3.1′)

It is not difficult to verify that system (3.1′) admits groups generated by the operators
Q̃a iff the initial system admits groups generated by the operators Qa, while the
following relations hold:

[Q̃a, Q̃b] = 0, a, b = 1, 2, 3. (3.3)

It follows from the general theory of Lie groups that there exists the change of
variables

Ψ(z) = η(x)ψ(x), zµ = fµ(x), µ = 0, 1, 2, 3
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which reduces the operators Q̃a satisfying conditions (3.3) to the form

Q̃a → ˜̃Qa = ∂/∂za. (3.4)

System (3.1′) is rewritten in the following way:

∂Ψ/∂z0 = F1(z, Ψ̄,Ψ)Ψ,
∂Ψ/∂za = 0.

(3.1′′)

The necessary and sufficient conditions for the compatibility of the system (3.1′′)
are as follows:

∂2Ψ/∂zµ∂zν = ∂2Ψ/∂zν∂zµ. (3.5)

Applying these conditions to (3.1′′) one has

∂F1/∂za = 0, a = 1, 2, 3, (3.6)

whence the invariance of system (3.1′′) under the operators ˜̃Qa = ∂/∂za follows.
The reverse statement is also true — if system (3.1′′) is invariant under the groups

generated by the operators ˜̃Qa, then conditions (3.6) hold. Consequently, the initial
system is invariant under the operators Qa. The theorem is proved.

Consequence. Substitution of the ansatz

ψ(x) = A(x)ϕ(ω), (3.7)

where the 4× 4 matrix A(x) and the scalar function ω(x) satisfy the system of PDE

ξµa∂ω/∂xµ = 0, (3.8)

QaA(x) = [ξµa∂/∂xµ + ηa(x)]A(x) = 0, (3.9)

into eq. (1.5) gives rise to a system of ODE for ϕ = ϕ(ω).

Proof. Integration of the last three equations of (3.1′′) yields

Ψ = Ψ(z0).

Returning to the original variables x and ψ(x), one has

ψ(x) = [η(x)]−1Ψ(z0).

Choosing A(x) = [η(x)]−1, ω = z0(x), one obtains the statement required, the ODE
for ϕ(ω) having the form

dϕ/dω = F1(ω, ϕ̄, ϕ)ϕ.

Note. If (Q1, Q2, Q3) is a three-dimensional invariance algebra of PDE (1.5), then the
conditions of theorem 4 are evidently satisfied. Therefore the classical result on the
reduction of PDE to ODE via Qa-invariant solutions [32–34, 41] follows from theorem
4 as a particular case. If Qa are not the symmetry operators then the reduction is
done via conditionally Qa-invariant solutions [31, 39, 40, 42].
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3.1. Ansätze for the spinor field. In the following we shall consider spinor equati-
ons (1.5) with the nonlinearity (2.3), i.e. Poincaré-invariant systems of the form

γµp
µψ = Φ(ψ̄, ψ) = (F1 + F2γ4)ψ. (3.10)

On the set of solutions of system (3.10) the following representation of the Poincaré
algebra AP (1, 3) is realized:

Pµ = pµ, Jµν = xµpν − xνpµ + Sµν . (3.11)

Using theorem 4 and the group-theoretical properties of eq. (3.10) one can for-
mulate the following algorithm for the reduction of the PDE (3.10) to systems of
ODE.

At the first step one has to describe (to classify) all inequivalent three-dimensional
algebras which are subalgebras of the Poincaré algebra (3.11). As a result we obtain
a set of triplets of operators (Q1, Q2, Q3), each of which determines an ansatz of the
form (3.7).

At the second step the system of equations (3.8), (3.9) is integrated. According
to the consequence of theorem 4 substitution of the obtained ansatze into the initial
equation yields systems of ODE for the unknown function ϕ = ϕ(ω).

The efficiency of group-theoretical methods is ensured, first of all, by the fact
that intermediate problems to be solved are linear. At the first step linear systems of
algebraic equations are solved [43], at the second step systems of linear PDE having
the same principal part.

The problem of classification of all inequivalent subalgebras of the Poincaré algebra
P (, 3) was solved in refs. [43–45]. Integration of the PDE (3.8), (3.9) is carried out
by standard methods but the calculations are rather cumbersome. We give here the
final result in table 1.

As an example we consider the case Q1 = J03, Q2 = P1, Q3 = P2, i.e.,

(x0p3 − x3p0)ω = 0, p1ω = p2ω = 0; (3.12)(
x0p3 − x3p0 +

1
2
iγ0γ3

)
A(x) = 0, p1A(x) = p2A(x) = 0. (3.13)

From the last two equations of the system (3.12) it follows that ω = ω(x0, x3).
Substituting this result into the first equation one obtains that ω(x0, x3) is a first
integral of the Euler–Lagrange system

dx0

x3
=
dx3

x0
,

which can be chosen in the form ω = x2
0 − x2

3.
A solution of the system (3.13) is looked for in the form

A(x) = exp[γ0γ3f(x)]

whence it follows that the scalar function f(x) satisfies the following equation:

x0fx3 + x3fx0 =
1
2
,

whose particular solution has the form

f(x) =
1
2

ln(x0 + x3).
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Table 1. P (1, 3)-invariant anzätze for the spinor field

No. Algebra A(x) ω(x)

1 P0, P1, P2 I x3

2 P1, P2, P3 I x0

3 P0 + P3, P1, P2 I x0 + x3

4 J03, P1, P2 exp
[

1
2
γ0γ3 ln(x0 + x3)

]
x2

0 − x2
3

5 J03, P0 + P3, P1 exp
[

1
2
γ0γ3 ln(x0 + x3)

]
x2

6 J03 + αP2, P0, P3 exp
[

x2
2α

γ0γ3

]
x1

7 J03 + αP2, P0 + P3, P1 exp
[

x2
2α

γ0γ3

]
α ln(x0 + x3) − x2

8 J12, P0, P3 exp
[
− 1

2
γ1γ2 arctg x1

x2

]
x2

1 + x2
2

9 J12 + αP0, P1, P2 exp
[− x0

2α
γ1γ2

]
x3

10 J12 + αP3, P1, P2 exp
[

x3
2α

γ1γ2

]
x0

11 J12 + P0 + P3, P1, P2 exp
[

1
4
(x3 − x0)γ1γ2

]
x0 + x3

12 G1, P0 + P3, P2 exp
(

x1
2(x0+x3)

(γ0 + γ3)γ1

)
x0 + x3

13 G1, P0 + P3, P1 + αP2 exp
(

αx1−x2
2α(x0+x3)

(γ0 + γ3)γ1

)
x0 + x3

14 G1 + P2, P0 + P3, P1 exp
[

x2
2

(γ0 + γ3)γ1

]
x0 + x3

15 G1 + P0, P0 + P3, P2 exp
[− 1

2
(x0 + x3)(γ0 + γ3)γ1

]
2x1 + (x0 + x3)

2

16 G1 + P0, P1 + αP2, exp
[− 1

2
(x0 + x3)(γ0 + γ3)γ1

]
2(x2 − αx1) −

P0 + P3 − α(x0 + x3)
2

17 J03 + αJ12, P0, P3 exp
(
− 1

2α
(γ0γ3 + αγ1γ2) arctg x1

x2

)
x2

1 + x2
2

18 J03 + αJ12, P1, P2 exp
[

1
2
(γ0γ3 + αγ1γ2) ln(x0 + x3)

]
x2

0 − x2
3

19 G1, G2, P0 + P3 exp
(

γ0+γ3
2(x0+x3)

(γ1x1 + γ2x2)
)

x0 + x3

20 G1 + P2, exp
(

γ0+γ3
2[(x0+x3)(x0+x3+β)−α]

× x0 + x3

G2 + αP1 + βP2, × {γ1[(x0 + x3 + β)x1 − αx2] +

P0 + P3 + γ2[(x0 + x3)x2 − x1]}
)

21 G1, G2 + P1 + βP2, exp
(

x1
2(x0+x3)

(γ0 + γ3)γ1 + x0 + x3

P0 + P3 + x2
2(x0+x3)(x0+x3+β)

×
× (γ0 + γ3)[γ2(x0 + x3) − γ1]

)
22 G1, G2 + P2, exp

[
(γ0 + γ3)

(
x1

2(x0+x3)
γ1 + x0 + x3

P0 + P3 + x2
2(x0+x3+1)

γ2

)]
23 G1, J03, P2 exp

(
x1

2(x0+x3)
(γ0 + γ3)γ1

)
× x2

0 − x2
1 − x2

3

× exp
[

1
2
γ0γ3 ln(x0 + x3)

]
24 J03 + αP1 + βP2, exp

(
x1−α ln(x0+x3)

2(x0+x3)
(γ0 + γ3)γ1

)
× x2 − β ln(x0 + x3)

G1, P0 + P3 × exp
[

1
2
γ0γ3 ln(x0 + x3)

]
25 J12 + P0 + P3, G1, G2 exp

(
γ0+γ3

2(x0+x3)
(γ1x1 + γ2x2)

)
× x0 + x3

× exp
(
− x·x

4(x0+x3)
γ1γ2

)
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Table 1 (Continued)

No. Algebra A(x) ω(x)

26 J03 + αJ12, G1, G2 exp
(

γ0+γ3
2(x0+x3)

(γ1x1 + γ2x2)
)
× x · x

× exp
[

1
2
(γ0γ3 + αγ1γ2) ln(x0 + x3)

]
Notation:

Gk = J0k + J3k ≡ (x0 + x3)pk − xk(p0 + p3) + 1
2
i(γ0 + γ3)γk, exp{R} ≡ I +

∞∑
n=1

1
n!

Rn,

I is the 4 × 4 matrix, α, β ∈ R
1.

Finally one has

ω(x) = x0 − x2
3, A(x) = exp

[
1
2
γ0γ3 ln(x0 + x3)

]
.

Other triplets Q1, Q2, Q3 from table 1 are treated in an analogous way (we show
in table 1 only algebras 〈Q1, Q2, Q3〉 giving nontrivial ansätze (3.7)).

It is important to note that the ansätze listed in the table 1 do not exhaust all
possible substitutions of the form (3.7) reducing the PDE (3.10) to ODE. Principally
different ansätze are obtained when the conditions of theorem 4 are valid and some
operators Qa are not symmetry operators of eq. (3.10) (conditional invariance).

To investigate the conditional invariance of a differential equation one can also
apply the infinitesimal Lie algorithm [32–34]. However, the determining equations
to be solved are nonlinear (see refs. [39, 40]). To avoid this difficulty the following
method was suggested [24, 30]: firstly, the dimension of the PDE is decreased by
one using its group-theoretical properties and then the maximal symmetry of the
reduced equations is investigated. Under certain circumstances this procedure yields
such operators Qa that the initial equation is conditionally invariant under Qa.

We realize the above scheme for the PDE (1.5) invariant under the group P̃ (1, 3),
i.e. for equations of the form

γµp
µψ = Φ2(ψ̄, ψ) ≡ [(F̃1 + F̃2γ4)(ψ̄ψ)1/2k]ψ. (3.14)

P̃ (1, 3)-invariant ansätze for the spinor field reducing (3.14) to three-dimensional
PDE were constructed in refs. [24,29]. The general form is

ψ(x) = A(x)ϕ(ω1, ω2, ω3), (3.15)

where ϕ is a new unknown spinor; the 4 × 4 matrix A(x) and the scalar functi-
ons ωi(x) are determined from table 2 (each ansatz in table 2 corresponds to some
one-dimensional subalgebra of the algebra AP (1, 3); for more detail see ref. [24]).
Substitution of the ansätze (3.15), with A(x) and ω(x) as listed in the table 2, into
the PDE (3.14) results in a reduction by one of the number of independent variables,
i.e., the equations obtained depend on the three independent variables ω1, ω2, ω3

only. Omitting intermediate calculations we write down the reduced equations for
ϕ(ω1, ω2, ω3).

(1) k(γ2 − γ0)ϕ+ [(γ0 − γ2)(ω1 + a−2ω2
2ω

2
3) + (γ0 + γ2)ω2

2 − 2a−1γ1ω3ω
2
2 −

− 2γ3ω1ω2]ϕω1 + [(γ0 − γ2)ω2 − γ3ω
2
2 ]ϕω2 +

+ [aγ1 + (γ2 − γ0)(ω3 + 1)]ϕω3 = −iΦ2(ϕ̄, ϕ);
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(2)
1
2
ω−1

1 (γ0 − γ2)ϕ+ (γ0 − γ2)ϕω1 + γ3ϕω2 +

+ [(γ0 + γ2)ω1 + (γ0 − γ2)ω3ω
−1
1 ]ϕω3 = −iΦ2(ϕ̄, ϕ);

(3) [γ3 + β(γ0 − γ2)]ϕω1 + 2γ1ϕω2 +
3
2
(2γ2 + (γ0 − γ2)ω2)ϕω3 = −iΦ2(ϕ̄, ϕ);

(4)
1
2
β−1γ4(γ0 − γ2)ϕ+ (γ0 − γ2)ϕω1 + [(γ0 + γ2)ω1 − 2β−1ω3γ1 +

+ (γ0 − γ2)(β−2ω2
3 + ω2)ω−1

1 ]ϕω2 + (βγ1 − γ3ω1)ϕω3 = −iΦ2(ϕ̄, ϕ);

(5)
1
2
(1 − 2k)γ3ϕ+ (ω1ω3)1/2(γ0 − γ1ω1)ϕω1 + 2(γ3 + aγ2)ϕω2 +

+ [2γ3 − (γ0 + γ1ω1)ω
1/2
3 ω

−1/2
1 ]ω3ϕω3 = −iΦ2(ϕ̄, ϕ);

(6)
[
− k(γ0 cosh lnω1/2(a+1)

1 − γ1 sinh lnω1/2(a+1)
1 ) +

+
1

2(a+ 1)
(γ0 + γ1)ω

−1/2(a+1)
1 +

1
2
γ3ω

1/2
2

]
ϕ−

− 2(a+ 1)(γ0 cosh lnω1/2(a+1)
1 − γ1 sinh lnω1/2(a+1)

1 )ω1ϕω1 +

+ 2[ω2(γ0 cosh lnω1/2(a+1)
1 − γ1 sinh lnω1/2(a+1)

1 ) − ω
3/2
2 γ3]ϕω2 +

+ 2(aγ2 + bγ3)ω
1/2
2 ϕω3 = −iΦ2(ϕ̄, ϕ);

(7)
[
−k(γ0 cosh lnω1/2

1 − γ1 sinh lnω1/2
1 ) +

1
4
(γ0 − γ1)ω

1/2
1 +

1
2
γ3ω

1/2
2

]
ϕ+

+ (γ0 + γ1)ω
1/2
1 ϕω1 + 2ω2(γ0 cosh lnω1/2

1 − γ1 sinh lnω1/2
1 − γ3ω

1/2
2 )ϕω2 +

+ 2ω1/2
2 (bγ3 − γ2)ϕω3 = −iΦ2(ϕ̄, ϕ);

(8)
1
2
(γ0 + γ1 + γ3ω

−1/2
3 )ϕ+ [ω1(γ0 + γ1) + γ0 − γ1)ϕω1 + 2γ3ω

−1/2
2 ϕω2 +

+ [b(γ0 + γ1) + γ2ω
−1/2
2 ]ϕω3 = −iΦ2(ϕ̄, ϕ);

(9)
1
2
[(1 − 2k)(γ0 + γ1) + γ3ω

1/2
2 ]ϕ+ 2β−1ω1[β(γ0 + γ1) − γ0 + γ1]ϕω1 +

+ 2ω2(γ0 + γ1 − γ3ω
1/2
2 )ϕω2 + 2ω1/2

2 (γ2 + bγ3)ϕω3 = −iΦ2(ϕ̄, ϕ);

(10)
1
2
(γ0 + γ1)ϕ+ [ω1(γ0 + γ1) + γ0 − γ1]ϕω1 +

+ (γ0 + γ1 − γ2)ϕω2 + γ3ϕω3 = −iΦ2(ϕ̄, ϕ);

(11)
1
2
γ3ω

−1/2
1 ϕ+ 2γ3ω

1/2
1 ϕω1 + (β1γ0 + β2γ1 + γ2ω

−1/2
1 )ϕω2 +

+ (α2γ0 + α1γ1)ϕω3 = −iΦ2(ϕ̄, ϕ);
(12) −kγ0ϕ+ (γa − γ0ωa)ϕωa

= −iΦ2(ϕ̄, ϕ);
(13) (γ0 + γ3)ϕω1 + γ1ϕω2 + γ2ϕω3 = −iΦ2(ϕ̄, ϕ);
(14) γ1ϕω1 + γ2ϕω2 + γ3ϕω3 = −iΦ2(ϕ̄, ϕ);
(15) γ0ϕω1 + γ1ϕω2 + γ2ϕω3 = −iΦ2(ϕ̄, ϕ),

(3.16)

where ϕωa
≡ ∂ϕ/∂ωa, a = 1, 2, 3,

Φ2 ≡ [(F̃1 + F̃2γ4)(ϕ̄ϕ)1/2k]ϕ, F̃i = F̃i(ϕ̄ϕ/ϕ̄γ4ϕ).

The group-theoretical properties of eqs. (3.16) were investigated in ref. [29]. We



Symmetry and exact solutions of nonlinear spinor equations 589

consider in more detail the PDE (3) and (13)–(15) of (3.16). Using the Lie method
[32–34] one can prove the following statements.

Proposition 1. PDE (13) of (3.16) is invariant under the infinite-parameter Lie
group, its generators being of the form

k = 1:

Q1 = φ1(ω1)∂ω2 + φ2(ω1)∂ω3 +
1
2
[φ̇1(ω1)γ1 + φ̇2(ω1)γ2](γ0 + γ3),

Q2 = −ω2∂ω3 + ω3∂ω2 +
1
2
γ1γ2,

Q3 = φ0(ω1)∂ω1 + φ̇0(ω1)(ω2∂ω2 + ω3∂ω3) + φ̇0(ω1) +

+
1
2
φ̈0(ω1)(γ1ω2 + γ2ω3)(γ0 + γ3),

Q4 = φ3(ω1)γ4(γ0 + γ3);

(3.17)

k �= 1:

Q1 = ∂ω1 , Q2 = −ω2∂ω3 + ω3∂ω2 +
1
2
γ1γ2,

Q3 = φ1(ω1)∂ω2 + φ2(ω1)∂ω3 +
1
2
[φ̇1(ω1)γ1 + φ̇2(ω1)γ2](γ0 + γ3),

Q4 = ω1∂ω1 + ω2∂ω2 + ω3∂ω3 + k, Q5 = φ3(ω1)γ4(γ0 + γ3),

where φ0, . . . , φ3 are arbitrary smooth functions, a dot means differentiation with
respect to ω1.
Proposition 2. For k = 1 PDE (14) and (15) of (3.16) are invariant under the
conformal groups C(3) and C(1, 2), respectively.

It is important to note that for k �= 3/2 the initial equation (3.14) is not con-
formally invariant. The same statement holds for the infinite-parameter group with
generators (3.17). Consequently for k = 1 the PDE (3.14) is conditionally invariant
under the algebras (3.17), AC(3) and AC(1, 2). Using this fact we have constructed
ansatze which are principally different from ones listed in table 1:

k = 1:

ψ(x) = φ−1
0 exp

{
φ3γ4(γ0 + γ3) − 1

2
(φ̇1γ1 + φ̇2γ2)(γ0 + γ3) −

− 1
2
φ̇0φ

−1
0 [γ1(x1 + φ1) + γ2(x2 + φ2)](γ0 + γ3)

}
×

×



ϕ1((x1 + φ1)/φ0),

exp
(
−1

2
γ1γ2 arctg

x1 + φ1

x2 + φ2

)
ϕ2([(x1 + φ1)2 + (x2 + φ2)2]/φ2

0),

(3.18)

ψ(x) =
γ0x0 − γ1x1 − γ2x2

(x2
0 − x2

1 − x2
2)3/2

×

×




ϕ3(x0/(x2
0 − x2

1 − x2
2)),

ϕ4(x1/(x2
0 − x2

1 − x2
2)),

exp
[
−1

2
γ1γ2 arctg

x1

x2

]
ϕ5((x2

1 + x2
2)/(x

2
0 − x2

1 − x2
2)

2),

(3.19)
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ψ(x) =
γ · x

(x2)3/2
×



ϕ6(x1(x2)−1),

exp
[
−1

2
γ1γ2 arctg

x1

x2

]
ϕ7((x2

1 + x2
2)/(x

2)2),
(3.20)

k �= 1:

ψ(x) = exp
[
φ3γ4(γ0 + γ3) − 1

2
(φ̇1γ1 + φ̇2γ2)(γ0 + γ3)

]
×

×



ϕ8(x1 + φ1),

exp
(
−1

2
γ1γ2 arctg

x1 + φ1

x2 + φ2

)
ϕ9((x1 + φ1)2 + (x2 + φ2)2),

(3.21)

In eqs. (3.18)–(3.21) φ0, . . . , φ3 are arbitrary smooth functions of x0 + x3, ϕ1, . . . , ϕ9

are new unknown spinors. While obtaining formulae (3.19)–(3.21) we essentially used
the conformally invariant ansatz suggested in refs. [20, 21] and the results of refs.
[24, 29].

Let us turn now to eq. (3) of (3.16). If one chooses ϕ = ϕ(ω1, ω2) and introduces
the notations

Γ1 = γ3 + β(γ0 − γ2), Γ2 = γ1, z1 = ω1, z2 =
1
2
ω2,

then one obtains the following PDE:

Γ1ϕz1 + Γ2ϕz2 = −Φ2(ϕ̄, ϕ), (3.22)

where Γ2
1 = Γ2

2 = −1, Γ1Γ2 + Γ2Γ1 = 0.
With the aid of the Lie method [32–34] it is possible to prove that eq. (3.22) is

invariant under the conformal group C(2) if k = 1/2 [consequently, for k = 1/2 the
initial PDE (3.14) is conditionally invariant under the conformal group C(2)]. Using
this fact we have constructed the ansatz that reduces (3.14) to a system of ODE [24]:

ψ(x) = ρ−1 exp
[
1
2
γ1(γ0 − γ2)(x0 − x2)

]
×

×
{

[γ3 + β(γ0 − γ2)][x3 + β(x0 − x2)] +
1
2
γ1(2x1 + (x0 − x2)2)

}
ϕ(ω),

(3.23)

where

ω =
{
β1[x3 + β(x0 − x2)] +

1
2
β2[2x1 + (x0 − x2)2]

}
ρ−1,

ρ = [x3 + β(x0 − x2)]2 +
1
4
[2x1 + (x0 − x2)2]2,

β, β1, β2 are constants.

3.2. Reduction of the nonlinear Dirac equation to systems of ODE. To reduce
the nonlinear Dirac equation (3.10) via ansatze from table 1 one has to make rather
cumbersome calculations. Therefore we give the final result, systems of ODE for
ϕ(ω), omitting intermediate calculations.
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(1) iγ2ϕ̇ = Φ1,

(2) iγ0ϕ̇ = Φ1,

(3) i(γ0 + γ3)ϕ̇ = Φ1,

(4)
1
2
i(γ0 + γ3)ϕ+ i[ω(γ0 + γ3) + γ0 − γ3]ϕ̇ = Φ1,

(5)
1
2
i(γ0 + γ3)ϕ+ iγ2ϕ̇ = Φ1,

(6) − i

2α
γ1γ4ϕ+ iγ1ϕ̇ = Φ1,

(7) − i

2α
γ1γ4ϕ+ i[α(γ0 + γ3)e−ω/α − γ2]ϕ̇ = Φ1,

(8)
1
2
iω−1/2γ2ϕ+ 2iω1/2γ2ϕ̇ = Φ1,

(9) − i

2α
γ3γ4ϕ+ iγ3ϕ̇ = Φ1,

(10)
i

2α
γ0γ4ϕ+ iγ0ϕ̇ = Φ1,

(11)
1
4
i(γ0 − γ3)γ4ϕ+ i(γ0 + γ3)ϕ̇ = Φ1,

(12)
1
2
iω−1(γ0 + γ3)ϕ+ i(γ0 + γ3)ϕ̇ = Φ1,

(13)
i

2α
ω−1(α+ γ4)(γ0 + γ3)ϕ+ i(γ0 + γ3)ϕ̇ = Φ1,

(14)
1
2
i(γ0 + γ3)γ4ϕ+ i(γ0 + γ3)ϕ̇ = Φ1,

(15) 2iγ1ϕ̇ = Φ1,

(16) 2i(γ2 − αγ1)ϕ̇ = Φ1,

(17)
i

2α
ω−1/2γ2(α− γ4)ϕ+ 2iω1/2γ2ϕ̇ = Φ1,

(18)
1
2
i(γ0 + γ3)(1 + αγ4)ϕ+ i[ω(γ0 + γ3) + γ0 − γ3]ϕ̇ = Φ1,

(19) iω−1(γ0 + γ3)ϕ+ i(γ0 + γ3)ϕ̇ = Φ1,

(20)
1
2
i[ω(ω + β) − α]−1(γ0 + γ3){[2ω(ω + β) − α− 1]γ4 − 2ω − β}ϕ+

+ i(γ0 + γ3)ϕ̇ = Φ1,

(21)
1
2
i[ω(ω + β)]−1(γ0 + γ3)(2ω + β − γ4)ϕ+ i(γ0 + γ3)ϕ̇ = Φ1,

(22)
1
2
i[ω(ω + 1)]−1(2ω + 1)(γ0 + γ3)ϕ+ i(γ0 + γ3)ϕ̇ = Φ1,

(23) i(γ0 + γ3)ϕ+ i[ω(γ0 + γ3) + γ0 − γ3]ϕ̇ = Φ1,

(24) i(γ0 + γ3)ϕ+ i[γ2 − β(γ0 + γ3)]ϕ̇ = Φ1,

(25) i(γ0 + γ3)ϕ̇+ i

[
(γ0 + γ3)ω−1 +

1
4
(γ0 − γ3)γ4

]
ϕ = Φ1,

(26)
1
2
i(γ0 + γ3)(3 + αγ4)ϕ+ i[(γ0 + γ3)ω + γ0 − γ3]ϕ̇ = Φ1,

(3.24)
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where

Φ1 ≡ (F1 + F2γ4)ϕ, Fi = Fi(ϕ̄ϕ, ϕ̄γ4ϕ), ϕ̇ ≡ dϕ/dω.

To integrate eqs. (3.24) one can again apply group-theoretical methods. In ref.
[29] it was pointed out how to obtain some information about the symmetry of the
reduced PDE by purely algebraic methods (without application of the infinitesimal Lie
method). It is based on the following statement:

Let G be a Lie group of transformations, H be a normal divisor in G. And let
there be a PDE invariant under the group G.
Theorem 5. The equation obtained via reduction with the help of H-invariant solu-
tions admits the factor group G/H.

A proof can be found in ref. [33].
We use the equivalent formulation of this theorem in terms of Lie algebras: If

there is a PDE with the symmetry algebra AG and subalgebra Q which is an ideal in
AG, then the equation obtained via reduction with the help of Q-invariant solutions
admits the Lie algebra AG/Q.

Straightforward application of the above theorem to the three-dimensional algebras
listed in the table 1 is impossible because these algebras are not, in general, ideals in
AP (1, 3). Therefore there arises the intermediate problem of constructing the maximal
subalgebras A1, . . . , A26 of the algebra AP (1, 3) having the algebras of the table 1 as
ideals.

It is known from the theory of Lie algebras [33] that the algebra 〈Q1, Q2, Q3〉 is
the ideal in the Lie algebra 〈Σ1,Σ2, . . . ,Σs〉 iff

[Qi,Σj ] = λkijQk, λkij = const,

where [Qi,Σj ] is the commutator, and summation over repeated indices is understood.
Consequently, the operator θµνk Jµν + θµkPµ belongs to the algebra Ak iff

[Qi, θ
µν
k Jµν + θµkPµ] = λjikQj , i = 1, 2, 3, k = 1, . . . , 26. (3.25)

Here θµνk , θµk and λjik are constants; Q1, Q2, Q3 is the triplet of operators in table 1
under number k.

When one calculates the commutators on the left-hand sides of equalities (3.25)
and equates the coefficients to zero at linearly independent operators Jµν and Pµ, one
obtains a system of algebraic equations for θµνi and θµi . The solution of these equations
gives the explicit expression for the basis operators of the algebras A1 to A26.

The next step is the calculation of the factor algebras {Ai/Qi, i = 1, . . . , 26},
which generate the invariance groups of the reduced equations (3.24). We shall realize
the above scheme for the algebra 〈P0, P1, P2〉, the remaining algebras being treated in
the same way. To do this one needs the commutation relations of the algebra AP (1, 3)
[31],

[Jµν , Jαβ ] = i(gµβJνα + gναJµβ − gµαJνβ − gνβJµα),
[Pµ, Jαβ ] = i(gµαPβ − gµβPα), [Pµ, Pν ] = 0.

(3.26)

Relations (3.25) are rewritten for Q1 = P0, Q2 = P1, Q3 = P2 in the following way:

[P0, θ
µν
1 Jµν + θµ1Pµ] = λ1

11P0 + λ2
11P1 + λ3

11P2,

[P1, θ
µν
1 Jµν + θµ1Pµ] = λ1

21P0 + λ2
21P1 + λ3

21P2,

[P2, θ
µν
1 Jµν + θµ1Pµ] = λ1

31P0 + λ2
31P1 + λ3

31P2.

(3.27)
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Taking into account relations (3.26) one obtains the following equalities:

2iθ0µ1 Pµ = λ1
11P0 + λ2

11P1 + λ3
11P2,

−2iθ1µ1 Pµ = λ1
21P0 + λ2

21P1 + λ3
21P2,

−2iθ2µ1 Pµ = λ1
31P0 + λ2

31P1 + λ3
31P2,

(3.28)

whence it follows that θ031 = θ131 = θ231 = 0, θ011 , θ021 , θ121 , θµ1 are arbitrary real
parameters. Consequently, the set of linearly independent solutions of the system
(3.27) is exhausted by the operators

〈J01, J02, J12, P0, P1, P2, P3〉 = A1,

whence one obtains

A1/〈P0, P1, P2〉 = 〈J01, J02, J12, P3〉. (3.29)

To construct the invariance algebra of eq. (1) of (3.24) it is necessary to rewrite
the operators (3.29) in the new variables ω, ϕ. As a result one has

(1) 〈γ0γ1, γ0γ2, γ1γ2, ∂ω〉.

The invariance algebras of the other equations of (3.24) are as follows:

(2) 〈γ1γ2, γ2γ3, γ1γ3, ∂ω〉;
(3) 〈γ1(γ0 + γ3), γ2(γ0 + γ3), γ1γ2, ω∂ω − 1

2
γ0γ3, ∂ω〉;

(4) 〈γ1γ2〉;
(5) 〈∂ω〉;
(6) 〈γ0γ3, ∂ω〉;
(7) 〈2α∂ω − γ0γ3〉;
(8) 〈γ0γ3〉;
(9) 〈∂ω, γ1γ2〉;

(10) 〈∂ω, γ1γ2〉;
(11) 〈∂ω, γ1γ2〉;
(12) 〈γ2(γ0 + γ3), ω−1γ1(γ0 + γ3), ω∂ω − 1

2
γ0γ3〉;

(13) 〈(γ1 + αγ2)(γ0 + γ3), ω−1γ1(γ0 + γ3), ω∂ω − 1
2
γ0γ3〉;

(14) 〈γ1(γ0 + γ3), γ2(γ0 + γ3), ∂ω〉;
(15) 〈∂ω, γ2(γ0 + γ3)〉;
(16) 〈∂ω〉;
(17) 〈γ0γ3〉;
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(18) 〈γ1γ2〉;
(19) 〈ω∂ω − 1

2
γ0γ3, ω

−1γ1(γ0 + γ3), ω−2γ2(γ0 + γ3), γ1γ2〉;
(20) 〈[ω(ω + β) − α]−1(γ0 + γ3)[(ω + β)γ1 − γ2],

[ω(ω + β) − α]−1(γ0 + γ3)(ωγ2 − αγ1), γ1γ2〉;
(21) 〈ω−1γ1(γ0 + γ3), [ω(ω + β)](γ0 + γ3)(ωγ2 − γ1)〉;
(22) 〈ω−1γ1(γ0 + γ3), (ω + 1)−1(γ0 + γ3)γ2〉;
(23) 〈γ1γ2〉;
(24) 〈∂ω, γ1(γ0 + γ3)〉;
(25) 〈γ1γ2〉;
(26) 〈γ1γ2〉.

(3.30)

Here 〈Q1, . . ., Qs〉 denotes the set of all linear combinations of the operators Q1, . . ., Qs.
Let us note that the Lie algebras (3.30) are not, in general, the maximal invariance

algebras of the equations of (3.24). As an example we shall consider eq. (3). By direct
verification one can check that this equation is invariant under the infinite-parameter
group of the form

ω′ = ω, ϕ′ = exp{[f1(ω)γ1 + f2(ω)γ2](γ0 + γ3)}ϕ, (3.31)

where fi(ω) are arbitrary smooth functions; the Lie group generated by the operators
γ1(γ0 +γ3), γ2(γ0 +γ3) in line (3) of (3.30) is a two-parameter subgroup of the group
(3.31).

Nevertheless, the information obtained about the symmetry of the ODE (3.24)
proves to be very useful while constructing their particular solutions. Besides if an
ODE has a lagrangian then one can construct its first integrals using Noether’s
theorem.

Let us also stress that an arbitrary Poincaré-invariant equation for a spinor field,
after being reduced to systems of ODE with the help of the ansatze of table 1,
possesses the symmetry (3.30).

Let us turn to the system (3.14). Substitution of the ansätze (3.18)–(3.21) into
(3.14) gives rise to the following systems of equations for the spinors ϕ1, . . . , ϕ9:

k = 1:

(1) iγ1ϕ̇1 = Φ2(ϕ̄1, ϕ1);

(2)
1
2
iz

−1/2
2 γ2ϕ2 + 2iγ2z

1/2
2 ϕ̇2 = Φ2(ϕ̄2, ϕ2);

(3) −iγ0ϕ̇3 = Φ2(ϕ̄3, ϕ3);
(4) −iγ1ϕ̇4 = Φ2(ϕ̄4, ϕ4);

(5)
1
2
iz

−1/2
5 γ2ϕ5 + 2iz1/2

5 γ2ϕ̇5 = −Φ2(ϕ̄5, ϕ5);

(6) −iγ1ϕ̇6 = Φ2(ϕ̄6, ϕ6);

(7)
1
2
iz

−1/2
7 γ2ϕ7 + 2iz1/2

7 γ2ϕ̇7 = −Φ2(ϕ̄7, ϕ7);

(3.32)

k ∈ R
1:

(8) iγ1ϕ̇8 = Φ2(ϕ̄8, ϕ8);
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(9)
1
2
iz

−1/2
9 γ2ϕ9 + 2iz1/2

9 γ2ϕ̇9 = Φ2(ϕ̄9, ϕ9),

where ϕl = ϕl(zl), zl being determined by formulae (3.18)–(3.21).
Following ref. [24] we obtain via direct reduction of (3.16) to ODE equations of the

form (the number of PDE from which the ODE is obtained is given in parentheses)

(1)
1
2
(1 − 2k)γ3ϕ+ 2(γ3 + aγ2)ϕω2 = −iΦ2(ϕ̄, ϕ) (5);

(2)
1
2
(γ0 + γ1 + γ3ω

−1/2
2 )ϕ+ 2γ3ω

1/2
2 ϕω2 = −iΦ2(ϕ̄, ϕ) (8);

(3)
1
2
[(1 − 2k)(γ0 + γ1) + γ3ω2]ϕ+

+ 2ω1/2
2 (γ0 + γ1 − γ3ω

1/2
2 )ϕω2 = −iΦ2(ϕ̄, ϕ) (9);

(4) −kγ0ϕ+ (γ1 − ω1γ0)ϕω1 = −iΦ2(ϕ̄, ϕ) (12).

(3.33)

So we have constructed systems of ODE whose solutions, when substituted into
corresponding ansatze, give rise to exact solutions of the initial nonlinear Dirac equati-
on.

3.3. Exact solutions of the nonlinear Dirac–Heisenberg equation. To integrate
eqs. (3.24), (3.32) and (3.33) one can apply various methods. We restrict ourselves to
those ODE which can be integrated in quadrature. Let us put Φ1 ≡ Φ2 ≡ λ(ψ̄ψ)1/2kψ,
λ and k const. Then the PDE (3.10) and (3.14) take the form

[γµpµ − λ(ψ̄ψ)1/2k]ψ(x) = 0. (3.34)

The PDE (3.34) was suggested by W. Heisenberg [4, 36] as a possible basic equation
for the unified field theory. According to theorems 2 and 3 it is invariant under the
extended Poincaré group P (1, 3). In the case k = 3/2, eq. (3.34) admits the conformal
group C(1, 3). Therefore, to reduce the PDE (3.34) one can apply both the ansätze of
table 1 and of table 2. As a result we obtain eqs. (3.24), (3.22) and (3.33), where

Φ1(ϕ̄, ϕ) ≡ Φ2(ϕ̄, ϕ) ≡ λ(ϕ̄, ϕ)1/2kϕ.

If one multiplies ODE (3) of (3.24) by γ0 +γ3 and uses the identity (γ0 +γ3)2 = 0,
then the following compatibility condition of eq. (3) of (3.24) appears:

(γ0 + γ3)ϕ = 0,

whence it easily follows that ϕ̄ϕ = 0. So ψ̄ψ = ϕ̄ϕ = 0, i.e., the factor (ψ̄ψ)1/2k

determining the nonlinear character of the PDE (3.34) vanishes. Analogous results
hold for eqs. (12)–(14) and (19)–(22) of (3.24). Such solutions are not considered.

ODE (1), (2), (15), (16) and (24) of (3.24) are trivially integrated if one notes
that the condition ϕ̄ϕ = const holds. Let us consider, for example, eq. (1). After
multiplying it by iγ2 one obtains

ϕ̇ = iλ(ϕ̄ϕ)1/2kγ2ϕ. (3.35)

The conjugate spinor satisfies the following equation:

˙̄ϕ = −iλ(ϕ̄ϕ)1/2kϕ̄γ2. (3.36)
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Multiplying (3.35) by ϕ̄ and (3.36) by ϕ we come to the equality

(d/dω)(ϕ̄ϕ) ≡ ˙̄ϕϕ+ ϕ̄ϕ̇ = 0,

whence it follows that ϕ̄ϕ = const. Consequently, the ODE (3.35) is equivalent to a
linear one,

ϕ̇ = iλC1/2kγ2ϕ, ϕ̄ϕ = C,

whose general solution has the form ϕ(ω) = exp(iλC1/2kγ2ω)χ. Since ϕ̄(ω) =
χ̄ exp(−iλC1/2kγ2ω), then ϕ̄ϕ = χ̄χ or χ̄χ = C. Finally, the general solution of
(3.35) takes the form

ϕ(ω) = exp[iλ(χ̄χ)1/2kγ2ω]χ. (3.37)

Hereafter χ is an arbitrary constant spinor. Let us note that, taking into account the
identity (iγ2)2 = 1, expression (3.37) can be rewritten in the following way:

ϕ(ω) = {cosh[λ(χ̄χ)1/2kω] + iγ2 sinh[λ(χ̄χ)1/2kω]}χ.
The general solutions of eqs. (2), (15), (16) and (24) of (3.24) are constructed in

the same way. Omitting intermediate calculations we write down the final result,

ϕ(ω) = exp[−iλ(χ̄χ)1/2kγ0ω]χ,

ϕ(ω) = exp
[
1
2
iλ(χ̄χ)1/2kγ1ω

]
χ,

ϕ(ω) = exp
(

iλ

2(1 + α2)
(χ̄χ)1/2k(γ2 − αγ1)ω

)
χ,

ϕ(ω) = exp{[γ2(γ0 + γ3) + iλ(χ̄χ)1/2k(γ2 − β(γ0 + γ3))]ω}χ.

(3.38)

To construct the solution of ODE (6) of (3.24) we use its symmetry properties. Above
it was established that this equation is invariant under the Lie algebra 〈∂ω, γ0γ3〉. We
look for the solution which is invariant under the group generated by the operator
Q = ∂ω − θγ0γ3, θ = const, i.e., ϕ(ω) has to satisfy the additional constraint

Qϕ ≡ (∂ω − θγ0γ3)ϕ = 0.

The general solution of the above equation is given by the formula

ϕ(ω) = exp(θγ0γ3ω)χ1,

where χ1 is an arbitrary constant spinor. Substituting this expression into the initial
ODE one has(

θγ1γ0γ3 − 1
2α
γ1γ4

)
exp(θγ0γ3ω)χ1 = −iλτ exp(θγ0γ3ω)χ1,

where τ = (χ̄1χ1)1/2k. Multiplying this equality by exp(−θγ0γ3) we come to the
system of linear algebraic equations for χ1,(

θγ2 − 1
2α
γ1

)
γ4χ1 = −iλτχ1. (3.39)
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The system (3.39) is diagonalized by the following substitution:

χ1 =
[(
θγ2 − 1

2α
γ1

)
γ4 − iλτ

]
χ,

whence it follows that(
−θ2 − 1

4α2
+ λ2τ2

)
χ = 0.

Consequently

θ = ε(4α2τ2λ2 − 1)1/2/2α, ε = ±1. (3.40)

Imposing on τ the condition τ = (χ̄1χ1)1/2k one obtains a nonlinear algebraic equation
for τ ,

τ2k = 2λ2τ2(χ̄χ) + 2iλτθ(χ̄γ2γ4χ) − iλτα−1(χ̄γ1γ4χ). (3.41)

Finally, the particular solution of ODE (6) of (3.34) takes the form

ϕ(ω) = exp(θγ0γ3ω)
[(
θγ2 − 1

2α
γ1

)
γ4 − iλτ

]
χ, (3.42)

θ and τ being determined by formulae (3.40) and (3.41).
An analogous method can be applied to construct solutions of equations (9–11),

the result being

ϕ(ω) = exp(θγ1γ2ω)
[(
θγ0 − 1

2α
γ3

)
γ4 − iλτ

]
χ, (3.43)

θ and τ being determined by the formulae

θ = ε(1 − 4α2λ2τ2)1/2/2α,
τ2k = 2λ2τ2(χ̄χ) − iλτα−1(χ̄γ3γ4χ) + 2iλτθ(χ̄γ0γ4χ);

(3.44)

ϕ(ω) = exp(θγ1γ2ω)
[(
θγ3 +

1
2α
γ0

)
γ4 − iλτ

]
χ, (3.45)

θ and τ being determined by the formulae

θ = ε(4α2λ2τ2 + 1)1/2/2α,
τ2k = 2λ2τ2(χ̄χ) + 2iλτθ(χ̄γ3γ4χ) + iλτα−1(χ̄γ0γ4χ);

(3.46)

ϕ(ω) = exp(θγ1γ2ω)[4θ(γ0 + γ3)γ4 + (γ0 − γ3)γ4 − 4iλτ ]χ, (3.47)

θ and τ being determined by the formulae

θ = −λ2τ2,

τ2k = 32λ2τ2(χ̄χ) + 8iλτ [χ̄(γ0 − γ3)γ4χ] − 32iλ3τ3[χ̄(γ0 + γ3)γ4χ].
(3.48)

Eq. (8) of (3.24) is, via the change of variables

ϕ(ω) = ω−1/4φ(ω),
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reduced to the following ODE:

2iω1/2γ2φ̇ = λω−1/4k(φ̄φ)1/2kφ.

Multiplying it by 1
2 iγ2ω

−1/2 we come to an equation of the form

φ̇ =
1
2
iλω−(1+2k)/4k(φ̄φ)1/2kφ,

whose general solution is given by the formulae

k �= 1/2 : φ(ω) = exp
(

2iλk
1 − 2k

(χ̄χ)1/2kγ2ω
(2k−1)/4k

)
χ,

k = 1/2 : φ(ω) = exp
[
1
2
iλ(χ̄χ)γ2 lnω

]
χ.

So the general solution of ODE (8) has the form

k �= 1/2 : ϕ(ω) = ω−1/4 exp
(

2iλk
1 − 2k

(χ̄χ)1/2kγ2ω
(2k−1)/4k

)
χ,

k = 1/2 : ϕ(ω) = ω−1/4 exp
[

1
2 iλ(χ̄χ)γ2 lnω

]
χ.

(3.49)

Besides we have succeeded in integrating eqs. (4), (23) and (26) of (3.24) (for
α = 0). These ODE can be written in the following way:

1
2
m(γ0 + γ3)ϕ+ [ω(γ0 + γ3) + γ0 − γ3]ϕ̇ = −iλ(ϕ̄ϕ)1/2kϕ,

where for m = 1, 2, 3 eqs. (4), (23), (26) of (3.24) are obtained. Multiplying both
parts of the equality by ω(γ0 + γ3) + γ0 − γ3, comes to the ODE

4ωϕ̇ = −{m(1 + γ0γ3) + iλ(ϕ̄ϕ)1/2k[ω(γ0 + γ3) + γ0 − γ3]}ϕ, (3.50)

and the equation for the conjugate spinor has the form

4ω ˙̄ϕ = −ϕ̄{m(1 − γ0γ3) − iλ(ϕ̄ϕ)1/2k[ω(γ0 + γ3) + γ0 − γ3]}.
Multiplying the first equation by ϕ̄ and the second by ϕ one obtains the following
relation:

4( ˙̄ϕϕ+ ϕ̄ϕ̇) = −2mϕ̄ϕ,

whence it follows that ϕ̄ϕ = cω−m/2, C = const. Substitution of the above result into
(3.50) gives rise to a linear equation for ϕ(ω),

4ϕ̇ = −{m(γ0γ3 + 1) + iτω−m/4k[ω(γ0 + γ3) + γ0 − γ3]}ϕ,
where τ = −λC1/2k. Writing this equality in components we obtain a system of ODE
of the form

2ωϕ̇0 = iτωα+1ϕ2, 2ωϕ̇1 = −mϕ1 + iτωαϕ3,

2ωϕ̇2 = −mϕ2 + iτωαϕ0, 2ωϕ̇3 = iτωα+1ϕ1, α = −m/4k. (3.51)



Symmetry and exact solutions of nonlinear spinor equations 599

It is not difficult to convince oneself that (3.51) is equivalent to the following system
of ODE:

ω2ϕ̈0 +
1
2
(m− 2α)ωϕ̇0 +

1
4
τ2ω2α+1ϕ0 = 0,

ω2ϕ̈3 +
1
2
(m− 2α)ωϕ̇3 +

1
4
τ2ω2α+1ϕ3 = 0,

ϕ2 = −2i
τ
ω−αϕ̇0, ϕ1 = −2i

τ
ω−αϕ̇3.

The first and the second equations of this system are Bessel-type equations.
For α �= −1/2 their general solutions are determined by the formulae

ϕ0 = ω(2+α−m)/4[χ0Jν(z) + χ2Yν(z)],

ϕ3 = ω(2+α−m)/4[χ3Jν(z) + χ1Yν(z)],
(3.52)

where Jν , Yν are Bessel functions, z = τω(2α+1)/2/(α+1), ν = (2α−m+2)/2(1+2α).
Consequently

ϕ2 = ω(2+2α−m)/4

[
i(m− 2α− 2)

2τ
ω−α−1[χ0Jν(z) + χ2Yν(z)] −

− iω−1/2

(
χ0 dJν(z)

dz
+ χ2 dYν(z)

dz

)]
,

ϕ1 = ω(2+2α−m)/4

[
i(m− 2α− 2)

2τ
ω−α−1[χ3Jν(z) + χ1Yν(z)] −

− iω−1/2

(
χ3 dJν(z)

dz
+ χ1 dYν(z)

dz

)]
,

(3.53)

where χµ = const, µ = 0, 1, 2, 3. Formulae (3.52), (3.53) determine the general soluti-
on of the initial nonlinear system (3.50) if the following condition holds:

ϕ̄ϕ ≡ ϕ0∗ϕ2 + ϕ2∗ϕ0 + ϕ3∗ϕ1 + ϕ1∗ϕ3 = Cω−m/2.

Substitution of (3.52), (3.53) into this formula yields the following equality:

2i(2α+ 1)
τπ

(χ0χ2∗ − χ2χ0∗ + χ3χ1∗ − χ1χ3∗)ω−m/2 = Cω−m/2,

where we used the well-known identity for Bessel functions

W [Jν , Yν ] ≡ Jν
dYν
dz

− Yν
dJν
dz

= 2/πz.

Comparing both sides of the equality one obtains

C =
2i(2α+ 1)

τπ
(χ0∗χ2 − χ2∗χ0 + χ3χ1∗ − χ1χ3∗),

whence it follows that

C =
(
− i(m− 2k)

πkλ
(χ0∗χ2 − χ0χ2∗ + χ3∗χ1 − χ1∗χ3)

)2k/(2k+1)

. (3.54)
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For α = −1/2 (k = m/2) one has to consider three cases,

(1) (m− 1)2 − 4τ2 �= 0, m = 2, 3;
(2) τ �= 0, m = 1;
(3) τ = ε(m− 1)/2, ε = ±1.

The general solution of the system (3.50) is given by the following formulae:

(1) ϕ0 = χ0ωθ+ + χ2ωθ− , ϕ1 = −2i
τ

(θ+χ3ωθ+ + θ−χ1ωθ−)ω−1/2,

ϕ2 = −2i
τ

(θ+χ0ωθ+ + θ−χ2ωθ−)ω−1/2, ϕ3 = χ3ωθ+ + χ1ωθ− ,
(3.55)

where

θ± =
1
4

(
1 −m±

√
(m− 1)2 − 4τ2

)
,

χ0, . . . , χ3 are arbitrary complex constants; τ satisfies the equality (−1)mi(χ0∗χ2 −
χ0χ2∗ + χ3∗χ1 − χ3χ1∗)[(m− 1)2 − 4τ2]1/2 = τm+1λ−m;

(2) ϕ0 = χ0 cos
(

1
2
τ lnω

)
+ χ2 sin

(
1
2
τ lnω

)
,

ϕ1 = −iω−1/2

[
χ1 cos

(
1
2
τ lnω

)
− χ3 sin

(
1
2
τ lnω

)]
,

ϕ2 = −iω−1/2

[
χ2 cos

(
1
2
τ lnω

)
− χ0 sin

(
1
2
τ lnω

)]
,

ϕ3 = χ3 cos
(

1
2
τ lnω

)
+ χ1 sin

(
1
2
τ lnω

)
,

(3.56)

where χ0, . . . , χ3 are constants; τ satisfies the equality τ = iλ(χ0χ2∗−χ2χ0∗+χ3χ1∗−
χ1χ3∗);

(3) ϕ0 = ω(1−m)/4(χ0 + χ2 lnω),

ϕ1 =
1
2τ
i(m− 1)ω−1/2ϕ3 +

4iε
1 −m

ω−(m+1)/4χ1,

ϕ2 =
1
2τ
i(m− 1)ω−1/2ϕ0 +

4iε
1 −m

ω−(m+1)/4χ2,

ϕ3 = ω(1−m)/4(χ3 + χ1 lnω), ε = ±1,

(3.57)

while the following equality holds:

2i(χ0χ2∗ − χ0∗χ2 + χ3χ1∗ − χ3∗χ1) = λ

(
m− 1
2ελ

)m+1

(−1)m.

So the general solution of the system (3.50) [and consequently, of the systems (4),
(23) and (26) of (3.24) (α = 0)] is given by formulae (3.52), (3.53), for k �= m/2 and
by formulae (3.55)–(3.57) for k = m/2.
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Let us turn now to eqs. (3.32). The systems of ODE (1), (3), (4), (6) and (8) are
integrated in the same way as eqs. (1) and (2) of (3.24). As a result one has

ϕ1 = exp[iλγ1(χ̄χ)1/2z1]χ; ϕ2 = exp[iλ(χ̄χ)1/2γ0z3]χ;

ϕj = exp[−iλ(χ̄χ)1/2γ1zj ]χ, j = 4, 6; ϕ8 = exp[iλ(χ̄χ)1/2kγ1z8]χ.
(3.58)

Equations (2), (5), (7) and (9) of (3.32) coincide with ODE (8) of (3.24) up to
the sign of the nonlinear term λ(ϕ̄ϕ)1/2kϕ. Using this fact one easily obtains their
general solutions,

ϕ2(z2) = z
−1/4
2 exp[−2iλ(χ̄χ)1/2γ2z

1/4
2 ]χ;

ϕj(zj) = z
−1/4
j exp[2iλ(χ̄χ)1/2γ2z

1/4
j ]χ, j = 5, 7;

ϕ9(z9) = z
−1/4
9 exp

(
2iλk

1 − 2k
(χ̄χ)1/2kγ2z

(2k−1)/2k
9

)
χ.

(3.59)

Besides we have succeeded in integrating ODE (1) of (3.33) (for k = 1/2) and (2)
of (3.33). The final result has the form

ϕ(ω2) = exp
(

iλ

2(1 + a2)
(χ̄χ)(γ3 + aγ2)ω2

)
χ,

ϕ(ω2) = ω
−1/4
2 [f1 + γ3f2 + (γ0 + γ1)f3 + γ3(γ0 + γ1)f4]χ,

where the functions fi(ω) are determined by the following equalities:
k �= 1/2:

f1 = cosh(τωα2 ), f2 = i sinh(τωα2 ),

f3 =
1
4
i

(
cosh(τωα2 )

∫ ω2

sinh(2τzα)dz − sinh(τωα2 )
∫ ω2

cosh(2τzα)dz
)
,

f4 =
1
4
i

(
− sinh(τωα2 )

∫ ω2

sinh(2τzα)dz + cosh(τωα2 )
∫ ω2

cosh(2τzα)dz
)
,

τ =
2λk(χ̄χ)1/2k

2k − 1
, α =

2k − 1
4k

;

(3.60)

k = 1/2:

f1 =
1
2
(2τωτ/22 + 2−τω−τ/2

2 ), f2 =
1
2
i(2τωτ/22 − 2−τω−τ/2

2 ),

f3 =
1
4
iω

1/2
2

(
2τωτ/22

2τ + 1
− 2−τω−τ/2

2

1 − 2τ

)
,

f4 =
1
4
ω

1/2
2

(
2τωτ/22

2τ + 1
+

2−τω−τ/2
2

1 − 2τ

)
, τ = λ(χ̄χ).

(3.61)

The possibility of integrating the nonlinear systems of ODE (3.24), (3.22) and
(3.33) in quadratures is closely connected with the nontrivial symmetry admitted by
these equations. And this property, in its turn, is connected with the large invariance
group admitted by the initial equation [in the present case the group P̃ (1, 3)]. That is
why, when the symmetry properties of the equations are better, the group-theoretical
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methods of constructing exact solutions are more effective. It is worth noting that
other classical methods of constructing particular solutions (separation of variables,
d’Alembert method and so on) use explicitly or implicitly the symmetry properties of
PDE [30].

Substitution of the above results into the corresponding ansätze in tables 1 and 2
or into the ansätze (3.18)–(3.21) yields the exact solutions of the nonlinear Dirac–
Heisenberg equation (3.34):

k ∈ R
1:

ψ1(x) = exp[iλ(χ̄χ)1/2kγ3x3]χ;

ψ2(x) = exp[−iλ(χ̄χ)1/2kγ0x0]χ;

ψ3(x) = exp
[
−1

2
(γ0 + γ3)γ1(x0 + x3)

]
×

× exp
{

1
2
iλ(χ̄χ)1/2kγ1[2x1 + (x0 + x3)2]

}
χ;

ψ4(x) = exp
[
−1

2
(γ0 + γ3)γ1(x0 + x3)

]
×

× exp
(

iλ

2(1 + α2)
(χ̄χ)1/2k(γ2 − αγ1)[2(x2 − αx1) − α(x0 + x3)2]

}
χ;

ψ5(x) = exp
(
x1 − α ln(x0 + x3)

2(x0 + x3)
(γ0 + γ3)γ1

)
exp
[
1
2
γ0γ3 ln(x0 + x3)

]
×

× exp
{

[γ2(γ0 + γ3) + iλ(χ̄χ)1/2k(γ2 − β(γ0 + γ3))][x2 − β ln(x0 + x3)]
}
χ;

ψ6(x) = exp
(
x2 + 2αθx1

2α
γ0γ3

)[(
θγ0 − 1

2α
γ1

)
γ4 − iλτ

]
χ,

where α ∈ R
1; θ and τ being determined by formulae (3.40) and (3.41);

ψ7(x) = exp
(

2αθx3 − x0

2α
γ1γ2

)[(
θγ0 − 1

2α
γ3

)
γ4 − iλτ

]
χ,

where α ∈ R
1; θ and τ being determined by formulae (3.44);

ψ8(x) = exp
(
x3 + 2αθx0

2α
γ1γ2

)[(
θγ3 +

1
2α
γ0

)
γ4 − iλτ

]
χ,

where α ∈ R
1; θ and τ being determined by formulae (3.46);

ψ9(x) = exp
{

1
4
[x3 − x0 + 4θ(x0 + x3)]γ1γ2

}
×

× [4θ(γ0 + γ3)γ4 + (γ0 − γ3)γ4 − 4iλτ ]χ,

θ and τ being determined by formulae (3.48);

ψ10(x) = exp
{[

−1
2
(φ̇1γ1 + φ̇2γ2) + φ3γ4

]
(γ0 + γ3)

}
×

× exp[iλ(χ̄χ)1/2kγ1(x1 + φ1)]χ,

where φ1, φ2, φ3 are arbitrary smooth functions of x0 + x3.
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k ∈ R
1, k �= 1/2:

ψ11(x) = exp
[
1
2
γ0γ3 ln(x0 + x3)

]
ϕ(x2

0 − x2
3),

ϕ(ω) being determined by formulae (3.52)–(3.54) with m = 1;

ψ12(x) = [(x1 + φ1)2 + (x2 + φ2)2]−1/4×
× exp

{[
−1

2
(φ̇1γ1 + φ̇2γ2) + φ3γ4

]
(γ0 + γ3)

}
×

× exp
(
−1

2
γ1γ2 arctg

x1 + φ1

x2 + φ2

)
×

× exp
(

2iλk
1 − 2k

(χ̄χ)1/2kγ2[(x1 + φ1)2 + (x2 + φ2)2](2k−1)/4k

)
χ,

where φ1, φ2, φ3 are arbitrary smooth functions of x0 + x3;

ψ13(x) = (x2
2 + x2

3)
−1/4 exp

[
−1

4
γ0γ1 ln(x0 − x1) − 1

2
γ2γ3 arctg

x2

x3

]
×

× [f1 + γ3f2 + (γ0 + γ1)f3 + γ3(γ0 + γ1)f4]χ,

where fi = fi(x2
2 + x2

3) are determined by formulae (3.60);
k ∈ R

1, k �= 1:

ψ14(x) = exp
(

x1

2(x0 + x3)
(γ0 + γ3)γ1

)
exp
[
1
2
γ0γ3 ln(x0 + x3)

]
ϕ(x2

0 − x2
1 − x2

3),

ϕ(ω) being given by formulae (3.52)–(3.54) with m = 2;
k ∈ R

1, k �= 3/2:

ψ15(x) = exp
(

γ0 + γ3

2(x0 + x3)
(γ1x1 + γ2x2)

)
exp
[
1
2
γ0γ3 ln(x0 + x3)

]
ϕ(x · x),

ϕ(ω) being given by formulae (3.52)–(3.54) with m = 3;
k = 1/2:

ϕ16(x) = exp
[
1
2
γ0γ3 ln(x0 + x3)

]
ϕ(x2

0 − x2
3),

ϕ(ω) being given by formulae (3.56);

ψ17(x) = (x2
2 + x2

3)
−1/4 exp

[
−1

2
γ2γ3 arctg

x2

x3

]
×

× exp
(

iλ

2(1 + a2)
(χ̄χ)(γ3 + aγ2)

[
ln(x2

2 + x2
3) + 2a arctg

x2

x3

]}
χ;

k = 1:

ψ18(x) = φ−1
0 exp

{[
−1

2
(φ̇1γ1 + φ̇2γ2) + φ3γ4 −

− 1
2
φ̇0φ

−1
0 (γ1(x1 + φ1) + γ2(x2 + φ2)

]
(γ0 + γ3)

}
×

× exp
(
iλ

φ0
(χ̄χ)1/2γ1(x1 + φ1)

)
χ;
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ψ19(x) = φ
−1/2
0 [(x1 + φ1)2 + (x2 + φ2)2]−1/4 exp

{[
−1

2
(φ̇1γ1 + φ̇2γ2) + φ3γ4 −

− 1
2
φ̇0φ

−1
0 (γ1(x1 + φ1) + γ2(x2 + φ2)

]
(γ0 + γ3)

}
×

× exp
(
−1

2
γ1γ2 arctg

x1 + φ1

x2 + φ2

)
×

× exp
{
−2iλ(χ̄χ)1/2γ2[(x1 + φ1)2 + (x2 + φ2)2]1/4φ

−1/2
0

}
χ;

where φ0, φ2, φ3 are arbitrary smooth functions x0 + x3;

ψ20(x) =
γ0x0 − γ1x1 − γ2x2

(x2
0 − x2

1 − x2
2)3/2

exp[iλ(χ̄χ)1/2γ0x0(x2
0 − x2

1 − x2
2)

−1]χ;

ψ21(x) =
γ0x0 − γ1x1 − γ2x2

(x2
0 − x2

1 − x2
2)3/2

exp[−iλ(χ̄χ)1/2γ1x1(x2
0 − x2

1 − x2
2)

−1]χ;

ψ22(x) =
γ0x0 − γ1x1 − γ2x2

x2
0 − x2

1 − x2
2

(x2
1 + x2

2)
−1/4 exp

[
−1

2
γ1γ2 arctg

x1

x2

]
×

× exp[2iλ(χ̄χ)1/2γ2(x2
1 + x2

2)
1/4(x2

0 − x2
1 − x2

2)
−1/2]χ;

ψ23(x) =
γ · x

(x2)3/2
exp[−iλ(χ̄χ)1/2γ1x1(x2)−1]χ;

ψ24(x) =
γ · x
x2

(x2
1 + x2

2)
−1/4 exp

[
−1

2
γ1γ2 arctg

x1

x2

]
×

× exp[2iλ(χ̄χ)1/2γ2(x2
1 + x2

2)
1/4(x2)−1/2]χ;

ψ25(x) = exp
(

x1

2(x0 + x3)
(γ0 + γ3)γ1

)
×

× exp
[
1
2
γ0γ3 ln(x0 + x3)

]
ϕ(x2

0 − x2
1 − x2

3),

ϕ(ω) being determined by formulae (3.55) or (3.57) with m = 2;

ψ26(x) = exp
[
1
2
γ0γ1 ln(x0 + x1) − 1

2
γ2γ3 arctg

x2

x3

]
×

× (x2
2 + x2

3)
−1/4[f1 + γ3f2 + (γ0 + γ1)f3 + γ3(γ0 + γ1)f4]χ,

fi = fi(x2
2 + x2

3) being given by formulae (3.61);
k = 3/2:

ψ27(x) = exp
(

1
2(x0 + x3)

(γ0 + γ3)(γ1x1 + γ2x2)
)
×

× exp
[
1
2
γ0γ3 ln(x0 + x3)

]
ϕ(x · x),

where ϕ(ω) is determined by formulae (3.55) or (3.57) with m = 3.
Besides, in ref. [24] two other classes of exact solutions were obtained, essentially

using ansatz (3.23) and the Heisenberg ansatz [14],
k < 0:

ψ28(x) = exp
[
1
2
γ1(γ0 − γ2)(x0 − x2)

]{[
(γ3 + β(γ0 − γ2))(x3 + β(x0 − x2)) +

+
1
2
γ1(2x1 + (x0 − x2)2)

]
f(ω) + ig(ω)

}
χ;
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k = 1/2:

ψ29(x) = exp
[
1
2
γ1(γ0 − γ2)(x0 − x2)

]
×

×
[
(γ3 + β(γ0 − γ2))(x3 + β(x0 − x2)) +

1
2
γ1(2x1 + (x0 − x2)2)

]
ω−1 ×

× exp
( iλ(χ̄χ)
β2

1 + β2
2

{β1[γ3 + β(γ0 − γ2)] + β2γ1} ×

×
{
β1[x3 + β(x0 − x2)] +

1
2
β2[2x1 + (x0 − x2)2]

}
ω−1
)
χ,

where

ω = [x3 + β(x0 − x2)]2 +
1
4
[2x1 + (x0 − x2)2]2,

f(ω) = |k|−1/2

(
∓ (1 − k)1/2

λ(χ̄χ)1/2k

)k
ω−(k+1)/2,

g(ω) = ±(1 − k)1/2
(
∓ (1 − k)1/2

λ(χ̄χ)1/2k

)k
ω−k/2,

β, β1 and β2 are arbitrary constants.
The existence of exact solutions depending on arbitrary functions is connected

with the fact that the additional constraint

(p0 + p3)ψ(x) = 0

selects the subset of solutions of the Dirac–Heisenberg equation admitting the infinite-
dimensional algebra (3.17). As established in ref. [29], the large class of Poincaré-
invariant equations (Bhabha-type equations)

[βµpµ +m]Ψ(x) = 0, m = const, (3.62)

possess such a property. In (3.62) Ψ = {Ψ1, . . . ,Ψn}, x = (x0, x1, x2, . . . , xl}, l ≥ 2,
βµ are n× n matrices satisfying the conditions

[βα, Sµν ] = i(gµαβν − gναβµ), Sµν = i(βµβν − βνβµ),
gµν = diag (1,−1, . . . ,−1,−1), α, µ, ν = 0, . . . , l.

(3.63)

It is well known that eq. (3.62) is invariant under the Poincaré algebra P (1, l) having
basis operators of the form [46]

Pµ = igµν∂/∂xν , Jµν = xµPν − xνPµ + Sµν .

We impose on Ψ(x) the additional constraint

(P0 + Pl)Ψ(x) = 0,

from which an equation for Ψ(ω) = Ψ(x0 + xl, x1, . . . , xl−1) follows,
i(β0 + βl)∂ω0 +

l−1∑
j=1

βj∂ωj
+m


Ψ(ω) = 0. (3.64)
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Proposition 3. Equation (3.64) is invariant under the infinite-dimensional Lie al-
gebra with the following basis operators:

Q1 = ∂ω0 , Q2 =
l−1∑
k=1

[
φk(ω0)∂ωk

+
1
2
iφ̇k(ω0)(Skl − S0k)

]
,

Qab = ωa∂ωb
− ωb∂ωa

+ iSab, a, b = 1, . . . , l − 1,

(3.65)

where ∂ωµ
= ∂/∂ωµ, µ = 0, . . . , l − 1, φ̇k = dφk/dω0, φk(ω) are arbitrary functions.

Proof. For linear equations the following statement holds [31]: An operator Q is the
symmetry operator of the linear equation

L(x)Ψ = 0

iff there exists a matrix R(x) such that

[Q,L] = R(x)L.

We shall prove that

[Q,L] = 0. (3.66)

If Q ∈ 〈Q1, Qab〉, then the statement is quite evident. Let us consider the case
Q = Q2. If we shall show that (β0 + βl)(S0k − Skl) = 0, then proposition 3 will be
proved. Choosing k = 1 one has

(β0 + βl)(S01 − S1l) = i(β0 + βl)(β0β1 − β1β0 − β1βl + βlβ1) =
= i(β0β0β1 − β0β1β0) + i(βlβlβ1 − βlβ1βl) +
+ i(βlβ0β1 − β0β1βl) + i(β0βlβ1 − βlβ1β0) =
= iβ1 − iβ1 = 0.

The cases k = 2, 3, . . . , l − 1 are treated in the same way.

Consequence. On the set of solutions of eq. (3.64) the following representation of
the Galilei algebra AG(1, l − 1) is realized:

P0 = i∂ω0 , Pa = −i∂ωa
, Jab = ωaPb − ωbPa + Sab,

Ga = ω0Pa +
1
2
(Sal − S0a), a, b = 1, . . . , l − 1.

Note 1. In general, the algebra (3.65) is not a maximal invariance algebra of (3.64).
As an example one can take eq. (13) of (3.16), whose symmetry is described by
proposition 1. Other examples are given in refs. [27, 29].

Note 2. Proposition 3 holds true for Poincaré-invariant generalizations of the Bhabha
equation of the form

[βµpµ + F (Ψ∗,Ψ)]Ψ(x) = 0.

This makes it possible to construct exact solutions of the above nonlinear equations
including arbitrary functions with the help of the procedure of generating solutions
[27, 29]. By a special choice of the arbitrary functions one can pick out classes of
solutions possessing some additional properties.
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Choosing in ψ18(x)

φ0 ≡ exp[θ2(x0 + x3)2], θ = const, φ1 ≡ φ2 ≡ φ3 ≡ 0,

one obtains the following solution of the Dirac–Heisenberg equation:

ψ(x) = exp[−θ2(x0 + x3)2][I + θ2(x0 + x3)(γ1x1 + γ2x2)(γ0 + γ3)] ×
× exp{iλ(χ̄χ)1/2γ1x1 exp[−θ2(x0 + x3)2]}χ.

(3.67)

This solution is not localized in R
3 but it is localized inside an infinite cylinder with

its axis parallel to the Ox3 axis. Moreover (3.67) decreases exponentially in all points
of R

3 as x0 → +∞.
Let us mention that for θ = 0 takes the form

ψ(x) = exp[iλ(χ̄χ)1/2γ1x1]χ. (3.68)

Consequently, (3.67) can be considered as a perturbation of the stationary state (3.68).

3.4. Nongenerable families of solutions of the nonlinear Dirac equation. The so-
lutions ψ1(x)–ψ29(x) depend on the variables xµ in an asymmetrical way, while in the
Dirac–Heisenberg equation all independent variables have equal rights. Using physical
language one can say that the system (3.34) is solved in some fixed reference system.
To obtain solutions (more precisely families of solutions) which do not depend on the
chosen reference system it is necessary to apply a procedure of generating solutions
by a group of transformations [21, 47]. This procedure is based on the following
statement.

Let eq. (3.34) be invariant under the group of transformations

ψ′(x′) = A(x, θ)ψ(x), x′µ = fµ(x, θ), (3.69)

where A(x, θ) is an invertible 4 × 4 matrix, θ = (θ1, . . . , θr) are group parameters.
Besides there is some solution ψ = ψI(x) of eq. (3.34).

Proposition 4. The spinor ψII(x),

ψII(x) = A−1(x, θ)ψI(f(x, θ)), (3.70)

satisfies eq. (3.34) too.
The proof can be found in refs. [21, 32].
We call formula (3.70) the solutions generating formula. Let us mention the solu-

tion generating formulae with transformations of the conformal group C(1, 3).
(1) The group of translations,

ψII(x) = ΨI(x′), x′µ = xµ + θµ, θµ = const, (3.71)

(2) the Lorentz group O(1, 3),
(a) the group of rotations

ψII(x) = exp
(
− i

2
εabcθaSbc

)
ψI(x′),

x′0 = x0, x′ = x cos θ − θ × x

θ
sin θ +

θ(θ · x)
θ2

(1 − cos θ),

θk = const, θ = (θ · θ)1/2, Sab =
1
4
i(γaγb − γbγa),

(3.72a)
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(b) the Lorentz transformations,

ψII(x) = exp
(
−1

2
θγ0γa

)
ψI(x′),

x′0 = x0 cosh θ + xa sinh θ, x′a = xa cosh θ + x0 sinh θ,
x′b = xb, b �= a, a, b = 1, 2, 3, θ = const;

(3.72b)

(3) the group of scale transformations,

ψII(x) = ekθψI(x′), x′µ = eθxµ, θ = const; (3.73)

(4) the group of special conformal transformations,

ψII(x) = σ−2(x)[1 − (γ · x)(γ · θ)]ψI(x′),
x′µ = [xµ − θµ(x · x)]σ−1(x), µ = 0, 1, 2, 3,

(3.74)

where σ(x) = 1 − 2θ · x+ (θ · θ)(x · x), θµ = const.
As an example we shall consider the procedure of generating the solution ψ1(x),

the remaining cases being treated in an analogous way. Let us apply to ψ1(x) formula
(3.72b) with a = 3,

ψ(x) = exp
(
−1

2
θγ0γ3

)
exp[iλ(χ̄χ)1/2k(x3 cosh θ + x0 sinh θ)γ3]χ.

Rewriting the above formula in the equivalent form one obtains

ψ(x) = exp
(
−1

2
θγ0γ3

)
exp[iλ(χ̄χ)1/2k(x3 cosh θ + x0 sinh θ)γ3]×

× exp
(

1
2
θγ0γ3

)
exp
(
−1

2
θγ0γ3

)
χ.

Taking into account the identities

exp
(
−1

2
θγ0γ3

)
γµ exp

(
1
2
θγ0γ3

)
=



γ0 cosh θ + γ3 sinh θ, µ = 0,
γ3 cosh θ + γ0 sinh θ, µ = 3,
γµ, µ = 1, 2,

one has

ψII(x) = exp[iλ(χ̄χ)1/2k(γ3 cosh θ + γ0 sinh θ)(x3 cosh θ + x0 sinh θ)]χ̃,

where χ̃ = exp
(− 1

2θγ0γ3

)
χ. Using formula (3.72a) one comes to the following family

of solutions:

ψII(x) = exp[iλ(χ̄χ)1/2k(γ · d)(d · x)]χ. (3.75)

Hereafter aµ, bµ, cµ and dµ are arbitrary real parameters satisfying the relations

−a ·a = b ·b = c ·c = d ·d = −1, a ·b = a ·c = a ·d = b ·c = b ·d = c ·d = 0(3.76)

[in other words, the four-vectors a, b, c, d create an orthonormal basis in the Mi-
nkowski space R(1, 3)]. It is not difficult to verify that the family (3.74) is invariant
under the transformations (3.71), (3.73).
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Solution (3.75) depends on the variables xµ in a symmetrical way and its form
is not changed both under a transition from one inertial reference system to another
and under a change of the scale according to formula (3.73). In other words, we
have constructed a P̃ (1, 3)-nongenerable family of solutions of the nonlinear Dirac–
Heisenberg equation (the corresponding definition is given in ref. [48]). The transition
from the solution ψ1(x) to the family of solutions (3.75) seems to be very important
because one obtains a class of exact solutions having the same symmetry as the
equation of motion (3.34).

Generating ψ2(x)–ψ5(x) we obtain the following P̃ (1, 3)-nongenerable families of
solutions of eq. (3.34):

ψ2(x) = exp[−iλ(χ̄χ)1/2k(γ · a)(a · x)]χ;

ψ3(x) = exp
[
−1

2
θ(γ · a+ γ · d)(γ · b)(a · z + d · z)

]
×

× exp
{

1
2
iλ(χ̄χ)1/2k(γ · b)[2b · z + θ(a · z + d · z)2]

}
χ;

ψ4(x) = exp
[
−1

2
θ(γ · a+ γ · d)(γ · b)(a · z + d · z)

]
exp
( iλ

2(1 + α2)
(χ̄χ)1/2k ×

× (γ · c− αγ · b)[2(c · z − αb · z) − αθ(a · z + d · z)2]
)
χ;

ψ5(x) = exp
(
θb · z − α ln[θ(a · z + d · z)]

2θ(a · z + d · z) (γ · a+ γ · d)γ · b
)
×

× exp
{

1
2
(γ · a)(γ · d) ln[θ(a · z + d · z)]

}
×

× exp{[(γ · c)(γ · a+ γ · d) + iλ(χ̄χ)1/2k][γ · c− β(γ · a+ γ · d)]×
× [c · z − (β/θ) ln[θ(a · z + d · z)]]}χ,

where zµ = xµ + θµ; α, β, θ, θµ = const.
If in (3.34) k = 3/2, then the equation is invariant under the conformal group

C(1, 3). Therefore one can generate solutions by the transformations (3.74). Genera-
ting solutions ψ1(x)–ψ14(x) (for k = 3/2) one comes to C(1, 3)-nongenerable families
of solutions. The corresponding formulae are omitted because of their cumbersome
character.

3.5. Conditionally invariant solutions of the Dirac–Heisenberg equation. As em-
phasized in refs. [37, 42] additional constraints enlarging the symmetry of the equati-
on are not necessarily differential ones. Let us impose on the solutions of PDE (3.34)
an algebraic condition ψ̄ψ = 1, i.e., we consider the over-determined system

[γµpµ − λ(ψ̄ψ)1/2k]ψ(x) = 0, ψ̄ψ = 1,

or

(γµpµ − λ)ψ(x) = 0, ψ̄ψ = 1. (3.77)

Proposition 5. The system (3.77) is conditionally invariant under the operators
Q1 = p0 − λγ0, Q2 = p3 − λγ3.
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Proof. According to the definition of conditional invariance it is to be proved that the
system

(γµpµ − λ)ψ(x) = 0, ψ̄ψ = 1, Q1ψ = 0 (3.78)

is invariant in the Lie sense [32] under the group of transformations generated by Q1.
Acting on the system (3.78) with the extended operator Q̃1 [32] one obtains

Q̃1ψ̄ψ = 0, Q̃1(p0ψ − λγ0ψ) = 0,

Q̃1(γµpµψ − λψ) = iλγ0(γµpµψ − λψ) − 2iλ(p0ψ − λγ0ψ),

whence it follows that the statement holds true. The case of the operator Q2 is treated
in the same way.

Let us perform a reduction of the system (3.37) using the above statement. Integ-
ration of the equation Q1ψ = 0 yields the following ansatz:

ψ(x) = exp(−iλγ0x0)ϕ(x). (3.79)

Substituting (3.79) into (3.77) one obtains

γ1ϕx1 + γ2ϕx2 + γ3ϕx3 = 0, ϕ̄ϕ = 1. (3.80)

Analogously integration of the equation Q2ψ = 0 yields the ansatz

ψ(x) = exp(iλγ3x3)ϕ(x0, x1, x2), (3.81)

ϕ(x0, x1, x2) satisfying a PDE of the form

γ0ϕx0 + γ1ϕx1 + γ2ϕx2 = 0, ϕ̄ϕ = 1. (3.82)

If one chooses in (3.80) ϕ = ϕ(x1, x2), then the obtained two-dimensional PDE can
be integrated. Its general solution is given by

ϕ = (ϕ0(z∗), ϕ1(z), ϕ2(z∗), ϕ3(z))T ,

where ϕ1, ϕ3 (ϕ0, ϕ2) are arbitrary analytical (anti-analytical) functions.
Imposing on ϕ the condition ϕ̄ϕ = 1 [we use the form (1.2b) of the γ-matrices]

one comes to the following relation for ϕµ:

|ϕ)|2 + |ϕ1|2 − |ϕ2|2 − |ϕ3|2 = 1, |ϕµ|2 = ϕµ∗ϕµ. (3.83)

Analogously choosing in (3.82) ϕ = ϕ(x0, x1) and integrating the obtained equation
one has

ϕ = (h0 + g0, h0 − g0, h1 + g1,−h1 + g1)T ,

where

hµ = h1
µ(x0 + x3) + ih2

µ(x0 + x3),
gµ = g1

µ(x0 − x3) + ig2
µ(x0 − x3), µ = 0, 1,

hiµ, g
i
µ are arbitrary smooth functions. From ϕ̄ϕ = 1 it follows that hiµ, g

i
µ satisfy the

equality

h1
1g

1
0 + h2

1g
2
0 + h1

0g
1
1 + h2

0g
2
1 =

1
4
. (3.84)
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It is easy to convince oneself that (3.83), (3.84) can be written in the form

Al(ξ)Bl(η) = C (3.85)

(summation over repeated indices from 1 to 4 is implied).

Lemma. The general solution of the algebraic equation (3.85) is given by formulae

(a) Ak = θk(φlθl) − φk(θlθl) + Cθk/(θlθl), Bk = θk, k = 1, 2, 3, 4, (3.86)

where θk = const, θk = φk(ξ) are arbitrary functions;

(b) A1 = C1φ+ C4, A2 = C2φ+ C5, A3 = C3φ+ C6, A4 = φ,

B1 = ρ1, B2 = ρ2, B3 = C−1
6 (C − C4ρ1 − C5ρ2),

B4 = C−1
6 [(C3C4 − C1C6)ρ1 + (C3C5 − C2C6)ρ2 − CC3],

(3.87)

where C1, . . . , C6 are constants, φ = φ(ξ), ρi = ρi(η) are arbitrary functions;
(c) two other classes of solutions are obtained via the transposition Ak → Bk,

Bk → Ak in formulae (3.86), (3.87).
The proof is rather formal; therefore it is omitted.
Using formulae (3.79), (3.81), (3.86) and (3.87) we constructed the following

classes of exact solutions of the initial PDE:

ψ(x) = exp(−iλγ0x0)



eiC1

eiC2φ(z)
eiC4φ(z∗) cosC3

eiC5φ(z) sinC3


 , (3.88)

where {C1, . . . , C5} ⊂ R
1, φ is an arbitrary analytical function,

ψ(x) = exp(iλγ3x3)



A3 +B1 + i(A4 +B2)
A3 −B1 + i(A4 −B2)
A1 +B3 + i(A2 +B4)
−A1 +B3 + i(−A2 +B4)


 , (3.89)

where the real functions Al(x0 + x1), Bl(x0 − x1) are determined by formulae (3.86),
(3.87) with C = 1/4.

It is worth noting that solutions (3.88), (3.89) are essentially different from ψ1(x)–
ψ29(x). They cannot be obtained with the help of the ansatze in tables 1 and 2.

3.6. On scalar fields generated by the solutions of the nonlinear Dirac–Heisen-
berg equation. In this subsection we construct a scalar field with spin s = 0 using
the exact solutions of the nonlinear Dirac–Heisenberg equation for a spinor field. The
solutions obtained in this way prove to satisfy the nonlinear d’Alembert equation.

The scalar field generated by the solutions of PDE (3.34) is looked for in the form

u(x) = ψ̄ψeiθ(x), (3.90)

where θ(x) is the phase of the field u(x). For ψ1–ψ10 we have the equality

ψ̄ψ = const,
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whence it follows that u(x) = Ceiθ(x). Choosing θ(x) = τaµx
µ, τ = const, one obtains

the plane-wave solution

u(x) = Ceiτaµx
µ

. (3.91)

So the spinors ψ1–ψ10 generate plane-wave solutions of the form (3.91) sastisfying
the following equation:

pµp
µu(x) = F (|u|)u(x), |u|2 = u∗u. (3.92)

We did not succeed in establishing a correspondence between the spinor fields ψ22,
ψ24 and a scalar field u(x). Spinor ψ19 generates a scalar field of the form

u(x) = C[φ0(x0 + x3)]−1[(x1 + φ1)2 + (x2 + φ2)2]−1/2 exp[iφ3(x0 + x3)],

where φµ are arbitrary smooth functions of x0 + x3. It is easy to check that the
above function satisfies the nonlinear wave equation with variable coupling constant
κ(x) = κ̃[φ0(x0 + x3)]2, κ = const, i.e.,

pµp
µu(x) = κ̃[φ0(x0 + x3)]2|u|2u(x). (3.93)

The remaining solutions of the nonlinear Dirac–Heisenberg equation (3.34) gene-
rate scalar fields satisfying the nonlinear d’Alembert equation

pµp
µ = κ|u|αu, κ = const. (3.94)

The corresponding results are given in table 3.

Table 3

No. u(x) α

11 C(x2
1 + x2

2)
−1/2 exp[iφ0(x0 + x3)] 2

12 C[(x1 + φ1)
2 + (x2 + φ2)

2]−1/2 exp[iφ0(x0 + x3)] 2

13 C(x2
2 + x2

3)
−1/2 exp[iρ(x0 + x1)] 2

14 C(x2
0 − x2

1 − x2
3)

−1 1

15 C(x · x)−3/2 2/3

16 C(x2
0 − x2

3)
−1/2 2

17 C(x2
2 + x2

3)
−1/2 exp[iρ(x0 + x1)] 2

18 Cφ−2
0 (x0 + x3) exp[i(x1 + φ1)] 0

20 C(x2
0 − x2

1 − x2
2)

−2 1/2

21 C(x2
0 − x2

1 − x2
2)

−2 1/2

23 C(x2
1 + x2

2 + x2
3)

−2 1/2

25 C(x2
0 − x2

1 − x2
3)

−1 1

26 C(x2
2 + x2

3)
−1/2 exp[iρ(x0 + x1)] 2

27 C(x · x)−3/2 2/3

28 C
{

[x3 + β(x0 − x2)]
2 +
[
x1 + 1

2
(x0 − x2)

2
]2}−k

1/k, k < 0

29 C
{

[x3 + β(x0 − x2)]
2 +
[
x1 + 1

2
(x0 − x2)

2
]2}−1

1

φ0, φ1, φ2 are arbitrary smooth functions of x0 + x3, ρ of x0 + x1;
C and β are constants.
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Thus the spinors ψ1–ψ29 generate complex scalar fields satisfying the nonlinear
d’Alembert equation (3.94). Let us note that (3.94) with α = 2 admits the conformal
group C(1, 3). Consequently the fields u(x) generated by the spinors ψ11–ψ13, ψ16,
ψ17 and ψ26 satisfy the conformally invariant d’Alembert equation [though the Dirac–
Heisenberg equation may not be invariant under the group C(1, 3)].

Another interesting feature inherent to the fields u(x) is that u(x) → 0 as x0 =
const, |x| → +∞ (the only exception is ψ28). What is more, all the functions u(x)
have a nonintegrable singularity.

4. Exact solutions of the system
of nonlinear Klein–Gordon–Dirac equations

In this section we construct multi-parameter families of exact solutions of the
system of PDE describing the interaction of the spinor field ψ(x) and the complex
scalar field u(x),

γµp
µψ = [λ1|u|k1 + λ2(ψ̄ψ)k2 ]ψ, pµp

µu = [µ1|u|k1 + µ2(ψ̄ψ)k2 ]2u, (4.1)

where x = (x0, x1, x2, x3), |u| = (uu∗)1/2, λ1, λ2, µ1, µ2, k1, k2 are constants.
Let us note that for λ1 = µ2 = 0, k1 = k2 = 0 the system of equations (4.1)

decomposes into the Dirac equation with mass λ2 and the Klein–Gordon equation
with mass µ1. For λ1 = µ2 = 0, k1 = 1, k2 = 1/3 one obtains the nonlinear
conformally invariant Dirac–Gürsey [36] and d’Alembert [49] equations.

With the help of the Lie method one can prove that the system of equations (4.1)
for arbitrary, non-null k1, k2 is invariant under the extended Poincaré group. For
k1 = 1, k2 = 1/3 then (4.1) is invariant under the conformal group C(1, 3). The above
facts make it possible to apply the technique of group-theoretical reduction (as was
done in the previous section). But we use another approach which essentially uses the
connection between spinor and scalar fields established earlier and the ansatz

ψ(x) = {ig1(ω) + g2(ω)γ4 − [if1(ω) + f2(ω)γ4]γµpµω}χ, (4.2)

where g1, g2, f1, f2 are unknown real functions, ω = ω(x) is a scalar function
satisfying the system of PDE

pµp
µω +A(ω) = 0, (pµω)(pµω) +B(ω) = 0, A,B : R

1 → R
1. (4.3)

Ansatz (4.2) was suggested in refs. [23, 24] for the purpose of constructing exact
solutions of the nonlinear Dirac equation. As shown in ref. [28] it can be used to
obtain solutions of the system (4.1). The scalar field u(x) is looked for in the form

u(x) ∼ C(ψ̄ψ), C = const or u(x) = φ(x), φ ∈ C2(R1,C2). (4.4)

Substitution of expressions (4.2), (4.4) into (4.1), ω = ω(x) satisfying (4.3), gives
rise to the following system of ODE for gi, fi and φ:

Bφ̈+Aφ̇ = −{µ1|φ|k1 + µ̃2[g2
1 − g2

2 +B(f2
1 − f2

2 )]k2}2φ,

Bḟ1 +Af1 = {λ1|φ|k1 + λ̃2[g2
1 − g2

2 +B(f2
1 − f2

2 )]k2}g1,
ġ1 = −{λ1|φ|k1 + λ̃2[g2

1 − g2
2 +B(f2

1 − f2
2 )]k2}f1,

ġ2 = {λ1|φ|k1 + λ̃2[g2
1 − g2

2 +B(f2
1 − f2

2 )]k2}f2,
Bḟ2 +Af2 = −{λ1|φ|k1 + λ̃2[g2

1 − g2
2 +B(f2

1 − f2
2 )]k2}g2,

(4.5)
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where λ̃2 = λ2(χ̄χ)k2 , µ̃2 = µ2(χ̄χ)k2 , dot means differentiation with respect to ω.
The system of equations (4.3) is over-determined. Therefore one has to investigate
its compatibility. The compatibility of three-dimensional systems of the form (4.3)
was investigated in detail by C. Collins [50]. He has proved that the system (4.3) is
compatible iff

(1) B(ω) ≡ 0, A(ω) ≡ 0;
(2) B(ω) = ±1, A(ω) = N(ω + θ)−1, N = −1, 0, 1, 2.

In each case the general solution was constructed.
Generalizing Collins’ results to the four-dimensional case we obtain the following

classes of particular solutions of the system of equations (4.3):
(1) A(ω) = −mω−1, B(ω) = −1, m = 1, 2:

ω = [(b · y)2 + (c · y)2 + (d · y)2]1/2, m = 2, (4.6)

ω = [(b · y + ρ1)2 + (c · y + ρ2)2]1/2, m = 1; (4.7)

(2) A(ω) = 0, B(ω) = −1:

ω = (b ·y) cos ρ1 +(c ·y) sin ρ1 +ρ2, a ·y = (b ·y) cos ρ3 +(c ·y) sin ρ3 +ρ4;(4.8)

(3) A(ω) = 0, B(ω) = 1:

ω = a · y; (4.9)

(4) A(ω) = mω−1, B(ω) = 1, m = 1, 3:

ω = [(a · y)2 − (b · y)2]1/2, m = 1,

ω = [(a · y)2 − (b · y)2 − (c · y)2]1/2, m = 2,

ω = (y · y)1/2, m = 3,

(4.10)

In (4.6)–(4.10) yµ = xµ + θµ, θµ = const; ρ1, ρ2 are arbitrary smooth functions of
a · y + d · y, ρ3, ρ4 of ω + d · y; aµ, bµ, cµ, dµ are arbitrary real parameters satisfying
(3.76).

We have succeeded in obtaining the general solution of the system of ODE (4.5)
for A(ω) = 0, while in the remaining cases partial solutions are obtained. Let us give
the final result:

(1) A(ω) = −mω−1, B(ω) = −1, m = 1, 2:

fn(ω) = Cnω
−1/2k2 , gn(ω) = ∓(−1)n(1 − 2k2m)1/2Cnω−1/2k2 ,

n = 1, 2, φ(ω) = Eω−1/k1 ,
(4.11)

the constants k1, k2, C1, C2 and E satisfying the conditions

[(m− 1)k1 − 1]k−2
1 + {µ1|E|k1 + µ̃2[2mk2(C2

1 − C2
2 )]k2}2 = 0,

±(1 − 2k2m)1/2 − 2k2{λ1|E|k1 + λ̃2[2mk2(C2
1 − C2

2 )]k2} = 0,
k2 < 1/2m, k1 < 1/(m− 1);

(4.12)
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(2) A(ω) = 0, B(ω) = −1:

f1 = C1 cosh
(
−λ1

∫
[ρ(ω)]k1dω − λ̃2(C2

3 − C2
1 )k2ω + C2

)
,

f2 = C3 cosh
(
λ1

∫
[ρ(ω)]k1dω + λ̃2(C2

3 − C2
1 )k2ω + C4

)
,

g1 = C1 sinh
(
−λ1

∫
[ρ(ω)]k1dω − λ̃2(C2

3 − C2
1 )k2ω + C2

)
,

g2 = C3 sinh
(
λ1

∫
[ρ(ω)]k1dω + λ̃2(C2

3 − C2
1 )k2ω + C4

)
,

φ = ρ(ω) exp[iθ(ω)],∫ ρ(ω)

[a−(z) + C6]−1/2dz = ω + C7, θ(ω) = C5

∫
[ρ(ω)]−1/2dω + C8,

(4.13)

where

a−(z) =
µ2

1

k1 + 1
z2(k1+1) + µ̃2

2(C
2
3 − C2

1 )2k2z2 +

+ 4
µ1µ̃2

k1 + 2
(C2

3 − C2
1 )k2zk1+2 + 2C2

5z;

(3) A(ω) = 0, B(ω) = 1:

f1 = C1 sin
(
λ1

∫
[ρ(ω)]k1dω + λ̃2(C2

1 − C2
3 )k2ω + C2

)
,

f2 = C3 cos
(
λ1

∫
[ρ(ω)]k1dω + λ̃2(C2

1 − C2
3 )k2ω + C4

)
,

g1 = C1 cos
(
λ1

∫
[ρ(ω)]k1dω + λ̃2(C2

1 − C2
3 )k2ω + C2

)
,

g2 = C3 sin
(
λ1

∫
[ρ(ω)]k1dω + λ̃2(C2

1 − C2
3 )k2ω + C4

)
,

φ = ρ(ω) exp[iθ(ω)],∫ ρ(ω)

[a+(z) + C6]−1/2dz = ω + C7, θ(ω) = C5

∫
[ρ(ω)]−1/2dω + C8,

(4.14)

where

a+(z) = − µ2
1

k1 + 1
z2(k1+1) − µ̃2

2(C
2
1 − C2

3 )2k2z2 −

− 4
µ1µ̃2

k1 + 2
(C2

1 − C2
3 )k2zk1+2 + 2C2

5z

(in the above formulae C1, . . . , C8 are arbitrary constants);
(4) A(ω) = mω−1, B(ω) = 1, m = 2, 3:
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(a) k1 > 1/(m− 1), k2 > 1/2m:

fn(ω) = Cnω
−1/2k2 , gn(ω) = ∓(−1)n(2k2m− 1)1/2Cnω−1/2k2 ,

n = 1, 2, φ(ω) = Eω−1/k1 ,
(4.15)

where C1, C2 and E are constants satisfying the following conditions:

[(1 −m)k1 + 1]k−2
1 + {µ1|E|k1 + µ̃2[2mk2(C2

1 − C2
2 )]k2}2 = 0,

±(2k2m− 1)1/2 − 2k2{λ1|E|k1 + λ̃2[2mk2(C2
1 − C2

2 )]k2} = 0;
(4.16)

(b) k1 = 2(m− 1)−1, k2 > m−1:

fn(ω) = (−1)nθωgn(ω), gn(ω) = Cn(1 + θ2ω2)−(m+1)/2,

n = 1, 2, φ(ω) = E(1 + θ2ω2)(1−m)/2,
(4.17)

where the constants C1, C2 and E satisfy the conditions

θ2(m2 − 1) = [µ1|E|2/(m−1) + µ̃2(C2
1 − C2

2 )1/m]2,

(m+ 1)θ = [λ1|E|2/(m−1) + λ̃2(C2
1 − C2

2 )1/m].
(4.18)

To obtain the exact solutions of the initial system (4.1) one has to substitute
formulae (4.6)–(4.10), (4.11)–(4.17) into the ansatz (4.2), (4.4). The obtained expres-
sions are very cumbersome and will not be given here.

Let us make some remarks.

Note 1. If one interprets the nonlinearities λ1|u|k1 + λ2(ψ̄ψ)k2 , µ1|u|k1 + µ2(ψ̄ψ)k2 ,
as the masses of a spinor field (Mψ) and of a scalar field (Mu) created because of the
nonlinear interaction of these fields, then for solutions (4.11), (4.15) and (4.17) the
following remarkable relations hold:(

Mu

Mψ

)2

=
4k2

2[1 + (1 −m)k1]
k2
1(1 − 2mk2)

, m = 1, 2,

(
Mu

Mψ

)2

=
4k2

2[(m− 1)k1 − 1]
k2
1(2mk2 − 1)

, m = 2, 3,

(
Mu

Mψ

)2

=
m− 1
m+ 1

, m = 2, 3.

(4.19)

These relations can be interpreted as formulae for the mass spectrum of spinor and
scalar particles. What is more, the discrete variable m arises as the compatibility
condition of the over-determined system (4.3) (compare ref. [50]). So the mass spect-
rum is determined by the geometry of the solutions of the form (4.2), (4.4).

Note 2. If one puts in (4.2) g2 ≡ f2 ≡ 0, ω(x) = x · x, then the ansatz suggested by
Heisenberg [2, 14] is obtained,

ψ(x) = [ig1(x · x) + γ · xf1(x · x)]χ.
Note 3. If one chooses λ1 = µ2 = 0 then formulae (4.2), (4.4), (4.6)–(4.18) give
exact solutions of the nonlinear Dirac–Heisenberg equation and of the d’Alembert
equations.
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Note 4. Ansätze (4.2), (4.4) can be used to reduce nonlinear systems of PDE of more
general form than (4.1), namely

γµp
µ = F1(ψ̄ψ, |u|)ψ, pµp

µ = F2(ψ̄ψ, u, u∗), (4.20)

where F1, F2 are arbitrary continuous functions. In particular, the solutions of a
system of equations of the form (4.20) constructed in refs. [12, 13, 51] can be obtained
via ansätze (4.2), (4.4).

5. Exact solutions of the nonlinear Maxwell–Dirac equations
There is a vast literature devoted to the system of equations of classical electrody-

namics (Maxwell–Dirac equations)

[γµ(pµ + eAµ) +m]ψ(x) = 0,
pνp

νAµ − pµpνA
ν = eψ̄γµψ, µ, ν = 0, 1, 2, 3,

(5.1)

where Aµ = Aµ(x) is the vector potential of the electromagnetic field; m and e
are the mass and the charge of the electron. A number of existence theorems have
been proved (in particular, in ref. [52] the solubility of the Cauchy problem has been
investigated). However, as far as we know there are no publications containing exact
solutions of this system in explicit form.

We look for solutions of eqs. (5.1) in the form

ψ(x) = (γ · θ)ϕ(ω), Aµ(x) = θµφ(ω), µ = 0, 1, 2, 3, (5.2)

where ω = {ω0, ω1, ω2} ≡ {θ · x, b · x, c · x}, θµ = aµ + dµ, ϕ(ω) and φ(ω) are
unknown functions. Substitution of (5.2) into (5.1) gives rise to the following system
of two-dimensional PDE for ϕ(ω) and φ(ω)

(γ · b)ϕω1 + (γ · c)ϕω2 + imϕ = 0, (5.3a)

φω1ω1 + φω2ω2 = 2eϕ̄(γ · θ)ϕ. (5.3b)

Let us note that in (5.3) there is no differentiation with respect to ω0, therefore ϕ and
φ contain ω0 as a parameter.

The general solution of eq. (5.3a) is given by the elliptic analogue of the d’Alembert
formula for the wave equation [38]

φ(ω) = F (z, ω0) + F (z∗, ω0) − ie

∫ ω2

0

∫ ω1+i(ω2−τ)

ω1−i(ω2−τ)
ϕ̄(γ · θ)ϕ(ξ, τ)dξdτ, (5.4)

where F is an arbitrary analytical function of z = ω1 + iω2. So the problem of
constructing particular solutions of the initial system of equations (5.1) is reduced to
that of integrating the linear two-dimensional Dirac equation (5.3a).

Choosing the eigenfunction of the Hermitian operator −i∂ω1 as a partial solution
of eq. (5.3a) one obtains

ϕ = exp[iλω1 + iγ · c(m+ λγ · b)ω2]ϕ0(ω0), (5.5)

where ϕ0 is a four-component spinor depending on ω0 in an arbitrary way. Imposing
on (5.5) the additional condition of being periodical with respect to the variable ω1,
we come to the following relation:

λ = λn = 2πn, n ∈ Z. (5.6)
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Substitution of (5.5) into formula (5.4) gives the explicit form of φ(ω),

φ(n)(ω) = F (z, ω0) + F (z∗, ω0) +
1
4
(m2 + λ2

n)
−1 ×

× [τ1 cosh 2(m2 + λ2
n)

1/2ω2 + τ2 sinh 2(m2 + λ2
n)

1/2ω2], n ∈ Z,
(5.7)

where

z = ω1 + iω2, τ1 = 2eϕ̄0(γ · θ)ϕ0,

τ2 = 2ie(m2 + λ2
n)

−1/2ϕ̄0(γ · θ)(m+ λnγ · b)ϕ0.

Substituting (5.5), (5.7) into the ansatz (5.2) one obtains a multi-parameter family of
exact solutions of the Maxwell–Dirac equations depending on three arbitrary complex
functions,

ψ(n)(x) = (γ · a+ γ · d) exp[iλnb · x+ iγ · c(m+ λnγ · b)c · x]ϕ0(a · x+ d · x),
A(n)
µ (x) = (aµ + dµ)

{
F (z, a · x+ d · x) + F (z∗, a · x+ d · x) +

+
1
4
(m2 + λ2

n)
−1[τ1 cosh(2(m2 + λ2

n)
1/2c · x) + τ2 sinh(2(m2 + λ2

n)
1/2c · x)]

}
.

(5.8)

Analogously if one chooses the following solution of eq. (5.3a):

ϕ(ω) = (ω2
1 + ω2

2)−1/4 exp
[
−1

2
(γ · b)(γ · c) arctg

ω1

ω2

]
×

× exp[im(γ · c)(ω2
1 + ω2

2)1/2]ϕ0(ω0)

as ϕ(ω), then formulae (5.2), (5.4) give rise to the following family of exact solutions:

ψ(x) = (γ · a+ γ · d)|z|−1/2 exp
(
−1

2
(γ · b)(γ · c) arctg

b · x
c · x

)
×

× exp[imγ · c|z|]ϕ0(a · x+ d · x),
Aµ(x) = (aµ + dµ)

(
F (z, a · x+ d · x) + F (z∗, a · x+ d · x) +

+
∫ |z|

(τ1 sinh 2mρ+ τ2 cosh 2mρ)ρ−1dρ
)
,

(5.9)

where F is an arbitrary analytical function of z = b · x+ ic · x,
|z| = (z∗z)1/2 = [(b · x)2 + (c · x)2]1/2, τ1 = 2eϕ̄0[γ · a+ γ · d)ϕ0,

τ2 = 2ieϕ̄0(γ · a+ γ · d)(γ · c)ϕ0.

Let us consider in more detail the solution of the Maxwell–Dirac equations (5.8)
putting

F ≡ 0, ϕ0 = exp[−κ2(a · x+ d · x)2]χ,
where χ is an arbitrary constant spinor, κ = const. By direct verification one can
convince oneself that the following equalities hold:

pµp
µA

(n)
ν = 4(m2 + λ2

n)A
(n)
ν , n ∈ Z,

pνA
(n)
ν = 0, pµp

µψ(n) = m2ψ(n).
(5.10)
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The above relations seem to admit the following interpretation: the interaction of
a spinor and a massless electromagnetic field according to the nonlinear eqs. (5.1)
generates massive electromagnetic fields A(n)

µ (x) with masses Mn = 2(m2 + λ2
n)

1/2

(in other words, the nonlinear interaction of the fields Aµ(x) and ψ(x) generates the
mass spectrum). If one puts n = 0 then M0 = 2m, m being the mass of the electron.

As solutions (5.8), (5.9) have an analytical dependence on m, then the solutions of
the massless Maxwell–Dirac equations can be obtained by putting m = 0. The case
m = 0 deserves special consideration because the massless Maxwell–Dirac equations
are conformally invariant (see, e.g., ref. [53]).

It is not difficult to obtain the general solution of the two-dimensional massless
Dirac equation

ϕ = (γ · b+ iγ · c)ϕ1(z, ω0) + (γ · b− iγ · c)ϕ2(z∗, ω0), (5.11)

where ϕ1, ϕ2 are arbitrary spinors depending analytically on z, z∗; z = b · x + ic · x.
Substituting (5.11) into (5.4) one obtains the following expression for φ(ω):

φ(ω) = F (z, ω0) + F (z∗, ω0) +

+ e

(
z∗
∫ z

0

f1(z, ω0)dz + z

∫ z∗

0

f2(z∗, ω0)dz∗
)
,

f1 = ϕ̄1(γ · θ)[1 − i(γ · b)(γ · c)]ϕ2, f2 = ϕ̄2(γ · θ)[1 + i(γ · b)(γ · c)]ϕ1.

(5.12)

Substitution of the above formulae into (5.2) gives rise to a multi-parameter family
of exact solutions including three arbitrary complex functions,

ψ(x) = (γ · a+ γ · d)[(γ · b+ iγ · c)ϕ1(z, a · x+ d · x) +
+ (γ · b− iγ · c)ϕ2(z∗, a · x+ d · x)],

Aµ(x) = (aµ + dµ)
[
F (z, a · x+ d · x) + F (z∗, a · x+ d · x) +

+ e
(
z∗
∫ z

0

f1(z, a · x+ d · x)dz + z

∫ z∗

0

f2(z∗, a · x+ d · x)dz∗
)]
,

z = b · x+ ic · x.

(5.13)

Using the solution generating formula with the group of special conformal transfor-
mations [24, 47]

ψII(x) = σ−2(x)[1 − (γ · x)(γ · θ)]ψI(x′),
AIIµ (x) = σ−2(x)[gµνσ(x) + 2(θµxν − θνxµ +

+ 2θ · xxµθν − x · xθµθν − θ · θxµxν)]AνI (x′),
x′µ = (xµ − θµx · x)σ−1(x), σ(x) = 1 − 2θ · x+ (θ · θ)(x · x),

it is possible to obtain a larger family of solutions of the system of equations (5.1).
We omit the corresponding formulae because of their cumbersome character.

6. Conclusions
In this review we described Poincaré-invariant nonlinear systems of first-order

differential equations for spinor fields which are nonlinear generalizations of the clas-
sical Dirac equation without using variational principles. The large class of nonlinear
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spinor equations invariant under the extended Poincaré group P̃ (1, 3) and the confor-
mal group is constructed. It contains, in particular, the well-known nonlinear Dirac–
lvanenko, Dirac–Heisenberg and Dirac–Gürsey equations. Besides there are many
equations which so far have not been considered in the literature.

The main aim of this review is to suggest a constructive method of solution of
nonlinear Dirac-type spinor equations, that is, to construct in explicit form families of
exact solutions of these equations without applying methods of perturbation theory.
The key idea of our method is a symmetry reduction of the many-dimensional spinor
equation to systems of ordinary differential equations. Many of them can be integrated
in quadratures. Such a reduction is carried out with the help of special ansatze
constructed using the symmetry properties of the equation in question.

To our mind the important result of the present paper is that we have obtained
nongenerable families of exact solutions of nonlinear spinor equations. These solutions
possess the same symmetry as the equation of motion. So nongenerable families of
solutions can be quantized in a standard way without losing the invariance under the
Poincaré group.

It is worth noting that some solutions depend on the coupling constant λ in a
singular way.

It is shown how to construct the simplest fields with spin s = 0 using solutions of
the fundamental spinor equation. Such bosonic fields satisfy the nonlinear d’Alembert
equations.

A new approach to the problem of the mass spectrum is suggested (section 4).
It is established that exact solutions of the system of nonlinear equations for spinor
and scalar fields make it possible to calculate the ratio of the masses of spinor and
scalar fields. It occurs that this ratio is determined by the non-linearity degrees of
the spinor and scalar fields.

We hope that the results presented in our paper will make it possible to understand
more deeply the role played by nonlinear spinor equations in the unified theory of
bosonic and fermionic fields with spins s = 0, 1/2, 1, 3/2, 2, . . ..

Suggested methods can be applied to equations of motion in R(1, n) [54, 55]. The
problem of subgroup classification of generalized Poincaré groups P (1, n), P̃ (1, n),
P (2, n) and Galilei groups G(1, n) was solved in refs. [55–60].
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