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On some new exact solutions of
the nonlinear d’Alembert–Hamilton system

W.I. FUSHCHYCH, R.Z. ZHDANOV

Some new exact solutions of the d’Alembert–Hamilton system of partial differential
equations are obtained. The necessary conditions of integrability of an over-determined
d’Alembert–Hamilton system are established.

Since Euler (1734–1740) the method of reduction of partial differential equations
(PDEs) to ordinary differential equations (ODEs) is one of the most effective ways to
construct partial solutions of PDEs.

In refs. [1–4] the symmetry reduction of the d’Alembert equation,

�u = F1(u), � = ∂2
x0

− ∂2
x1

− ∂2
x2

− ∂2
x3

(1)

(where F1(u) is an arbitrary smooth function), to an ODE has been carried out. So
the four-dimensional PDE (1) with the ansatz

u(x) = ϕ(ω), (2)

where ϕ ∈ C2(R1, R1), and ω = ω(x) ∈ C2(R4, R1) being the new variable, is reduced
to an ODE having variable coefficients,

(ωµωµ)ϕ̈ + (�ω)ϕ̇ = F1(ϕ), (3)

where ωµ ≡ ∂ω/∂xµ, µ = 0, . . . , 3, ϕ̇ ≡ dϕ/dω. Hereafter the summation over
repeated indices in Minkowski space R(1, 3) having the metric gµν = diag (1,−1,−1,
−1) is supposed, i.e.

ωµωµ = gµνωµων = ω2
1 − ω2

1 − ω2
2 − ω2

3 .

In refs. [3, 4] using the symmetry properties of eq. (1) and the subgroup structure
of the Poincaré group P (1, 3) new variables have been constructed for eq. (3) dependi-
ng on ω only.

In the present paper we suggest a more general approach to the problem of
reduction of the PDE (1) to an ODE than the approach based on the employment of
its symmetry properties [1–4].

We say that the ansatz (2) reduces the PDE (1) to an ODE if the new variable
ω(x) satisfies both the d’Alembert and the Hamilton equation,

�ω = F2(ω), (4)

ωµωµ = F3(ω), (5)

where F2, F3 are arbitrary smooth functions.
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Evidently for every ω(x) satisfying the system (4), (5) the ODE (3) depends on ω
only

F3(ω)ϕ̈ + F2(ω)ϕ̇ = F1(ϕ) (6)

(one can be easily convinced that the invariants obtained by Winternitz et al. [4]
satisfy this system). Thus the problem of finding the ansatz (2) reducing the PDE (1)
to an ODE leads to the construction of solutions of the d’Alembert–Hamilton system
(4), (5).

In the present paper the compatibility of the overdetermined system (4), (5) is
investigated, i.e. all smooth functions ensuring the compatibility of the d’Alembert–
Hamilton system are described. Besides wide classes of exact solutions of the system
(4), (5) are presented.

System (4), (5) via the change of the dependent variable Z = Z(ω) can be reduced
to the allowing system:

�ω = F (ω), (7)

ωµωµ = λ, λ = const. (8)

The ODE (6) then takes the form

λϕ̈ + F (ω)ϕ̇ = F1(ϕ). (9)

Before formulating the principal result of the paper we adduce without proof some
auxiliary statements.

Lemma 1. Solutions of the system (7), (8) satisfy the identities

ωµν1ων1µ = −λḞ (ω),

ωµν1ων1ν2ων2µ =
1
2!

λ2F̈ (ω), . . . ,

ωµν1ων1ν2 · · ·ωνnµ =
1
n!

λn dnF (ω)
dωn

,

(10)

where ωαβ ≡ ∂2ω/∂xα∂xβ, α, β = 0, . . . , 3, n ≥ 1.

Lemma 2. Solutions of the system (7), (8) satisfy the following equality:

det(ωµν) = 0. (10′)

Let us now formulate the principal statement.
Theorem 1. The necessary condition of compatibility of the overdetermined system
(7), (8) is

F (ω) =




0,

λ(ω + C1)−1,

2λ(ω + C1)[(ω + C1)2 + C2]−1,

3λ[(ω + C1)2 + C2][(ω + C1)3 + 3C2(ω + C1) + C3]−1.

(11)

where C1, C2, C3 are arbitrary constants.
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Proof. By direct (and rather tiresome) verification one can be convinced that the
following identity holds,

6(ωµν1ων1ν2ων2ν3ων3µ) − 8(�ω)(ωµν1ων1ν2ων2µ) − 3(ωµν1ων1µ)2 +
+ 6(�ω)2(ωµν1ων1µ) − (�ω)4 = 24det(ωαβ).

(12)

Substituting (10), (10′) into (12) one obtains a nonlinear ODE for F (ω)

λ3
...

F + 4λ2FF̈ + 3λ2Ḟ 2 + 6λḞF 2 + F 4 = 0, (13)

where Ḟ = dF/dω.
The general solution of eq. (13) is given by formulae (11). The theorem is proved.

Note 1. Compatibility of the three-dimensional d’Alembert–Hamilton system has been
investigated in detail by Collins [5]. Collins essentially used geometrical methods
which could not be generalized to higher dimensions.

Using Lie’s method (see e.g. ref. [6]) one can prove the following statement.

Theorem 2. System (7), (8) is invariant under the 15-parameter conformal group
C(1, 3) iff

F (ω) = 3λ(ω + C)−1, λ > 0, C = const. (14)

Note 2. Formula (14) can be obtained from (11) by putting C2 = C3 = 0. So Theorem
2 demonstrates the close connection between compatibility of a system of PDEs and
its symmetry.

Note 3. It is common knowledge that the PDE (7) is invariant under the group C(1, 3)
iff F (ω) = λω3 [3]. Consequently, an additional constraint (8) changes essentially the
symmetry properties of the d’Alembert equation (choosing F3(ω) in a proper way one
can obtain a conformally-invariant system of the form (4), (5) under arbitrary F2(ω)).

In Table 1 we list the explicit form of some exact solutions of the d’Alembert–
Hamilton system (7), (8) and the reduced ODEs for the function ϕ(ω). h1, g1 are
arbitrary smooth functions on aµxµ + dµxµ; h2, g2 on ω + dµxµ; and aµ, bµ, cµ, dµ

are arbitrary real parameters satisfying conditions of the form

−aµaµ = bµbµ = cµcµ = dµdµ = −1,

aµbµ = aµcµ = aµdµ = bµcµ = bµdµ = cµdµ = 0.

Table 1

No. λ F (ω) ω = ω(x) QDE for ϕ(ω)

1 1 0 aµxµ ϕ̈ = F1(ϕ)

2 1 ω−1 [(aµxµ)2 − (bµxµ)2]1/2 ϕ̈ + ω−1ϕ̇ = F1(ϕ)

3 1 2ω−1 [(aµxµ)2 − (bµxµ)2 − (cµxµ)2]1/2 ϕ̈ + 2ω−1ϕ̇ = F1(ϕ)

4 1 3ω−1 (xµxµ)1/2 ϕ̈ + 3ω−1ϕ̇ = F1(ϕ)

5 −1 0 bµxµ cos h1 + cµxµ sin h1 + g1 ϕ̈ = −F1(ϕ)

aµxµ − bµxµ cos h2 − cµxµ sin h2 − g2 = 0

6 −1 −ω−1 [(bµxµ + h1)
2 + (cµxµ + h2)

2]1/2 ϕ̈ + ω−1ϕ̇ = F1(ϕ)

7 −1 −2ω−1 [(bµxµ)2 + (cµxµ)2 + (dµxµ)2]1/2 ϕ̈ + 2ω−1ϕ̇ = F1(ϕ)

8 0 0 h1 0 = F1(ϕ)
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Choosing in a proper way constants aµ, bµ, cµ, dµ and functions fi, gi one can
obtain from Table 1 symmetry ansatze constructed by Winternitz et al. [4]. Such an
approach based on the d’Alembert–Hamilton system makes it possible to obtain a
wider family of ansatze for the nonlinear d’Alembert equation (1) (see also ref. [7]).
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