Пуанкаре-инвариантные уравнения третьего и четвертого порядка в механике Остроградского

В.И. ФУЩИЧ, И.В. РЕВЕНКО

A class of the nonlinear Poincaré-invariant ordinary differential equations is obtained.

The ordinary differential equation admitting the extended Poincaré group is integrated in the closed form.

Вариационный принцип на случай, когда лагранжні зависят от похідних, узагальнив М. Остроградский [1]. У механіці Остроградського, на відміну від механіки Ньютона–Лагранжа, природно виникають рівняння високого порядку. Для цих рівнянь повинен виконуватись принцип відносності. Тобто, рівняння в механіці Остроградського повинні бути інваріантними або відносно перетворень Галілея, або відносно перетворень Лоренца [2].

Нижче описані дванадцять диференціальні рівняння третього та четвертого порядку, які є інваріантними відносно груп Пуанкаре та конформної групи. Зображення відповідної конформної алгебри задаюм операторами

\[P_0 = \frac{\partial}{\partial t}, \quad P_1 = \frac{\partial}{\partial x}, \quad I_{01} = t \frac{\partial}{\partial x} + x \frac{\partial}{\partial t}, \quad D = t \frac{\partial}{\partial t} + x \frac{\partial}{\partial x}, \]

(1)

\[K_0 = \frac{1}{2} \left(x^2 + t^2 \right) \frac{\partial}{\partial t} + xt \frac{\partial}{\partial x}, \quad K_1 = \frac{1}{2} \left(x^2 + t^2 \right) \frac{\partial}{\partial x} + xt \frac{\partial}{\partial t}. \]

(2)

Оператори \(\langle P_0, P_1, I_{01} \rangle \) утворюють алгебру Пуанкаре \(AP(1, 1) \). Оператори \(\langle P_0, P_1, I_{01}, D \rangle \) — узагальнену алгебру Пуанкаре \(A\tilde{P}(1, 1) \).

Рівняння третього порядку. Розглянемо рівняння

\[\ddot{x} = f(t, x, \dot{x}, \ddot{x}). \]

(3)

Мають місце такі теореми.

Теорема 1. Рівняння (3) інваріантне відносно алгебри \(AC(1, 1) \) з базисними елементами (1), (2) лише у тому випадку, коли

\[\ddot{x} = -3 \frac{\dot{x} \dot{x}^2}{1 - \dot{x}^2}. \]

(4)

Теорема 2. Рівняння (3) інваріантне відносно алгебри Пуанкаре \(AP(1, 1) \) лише тоді, коли

\[\ddot{x} = -3 \frac{\dot{x} \dot{x}^2}{1 - \dot{x}^2} + \left(1 - \dot{x}^2\right)^2 \varphi \left(\frac{\dot{x}}{1 - \dot{x}^2} \right), \]

(5)

де \(\varphi \) — достатньо гладка функція своїх аргументів.

Теорема 3. Рівняння (3) інваріантне відносно узагальненої алгебри Пуанкаре $AP(1,1)$ тоді, якщо
\[\ddot{x} = -3 \frac{\dot{x}^2}{1 - \dot{x}^2} + \frac{\lambda \dot{x}^2}{1 - \dot{x}^2},\]
(6)
\[\lambda \text{ — довільна стала.}\]

Теорема 4. Алгеброю інваріантності рівняння (6) в класі операторів
\[X = \xi(t, x, \dot{x}) \frac{\partial}{\partial t} + \eta(t, x, \dot{x}) \frac{\partial}{\partial x}\]
є алгебра
\[AP(1,1) + Q_\lambda \text{ при } \lambda \neq 0,\]
\[AC(1,1) + S_a \text{ при } \lambda = 0,\]
de оператори Q_λ, S_a задаються формулами
1) \(\lambda \neq -1, 0, 1\)
\[Q_\lambda = \frac{\dot{x} + \lambda}{(1 - \dot{x}^2)^{1/2}} \left(\frac{1 - \dot{x}}{1 + \dot{x}} \right)^{\lambda/2} \frac{\partial}{\partial t} + \frac{1 + \lambda \dot{x}}{(1 - \dot{x}^2)^{1/2}} \left(\frac{1 - \dot{x}}{1 + \dot{x}} \right)^{\lambda/2} \frac{\partial}{\partial x},\]
2) \(\lambda = 1\)
\[Q_1 = \left(\frac{1 - \dot{x}}{1 + \dot{x}} + \ln \left| 1 - \frac{1 - \dot{x}}{1 + \dot{x}} \right| \right) \frac{\partial}{\partial t} + \left(\ln \left| 1 - \frac{1 - \dot{x}}{1 + \dot{x}} \right| - \frac{1 - \dot{x}}{1 + \dot{x}} \right) \frac{\partial}{\partial x},\]
3) \(\lambda = -1\)
\[Q_{-1} = \left(-\frac{1 + \dot{x}}{1 - \dot{x}} + \ln \left| 1 - \frac{1 - \dot{x}}{1 + \dot{x}} \right| \right) \frac{\partial}{\partial t} + \left(-\ln \left| 1 - \frac{1 - \dot{x}}{1 + \dot{x}} \right| - \frac{1 + \dot{x}}{1 - \dot{x}} \right) \frac{\partial}{\partial x},\]
4) \(\lambda = 0\)
\[S_1 = (1 - \dot{x}^2)^{-1/2} \frac{\partial}{\partial x} + \dot{x} (1 - \dot{x}^2)^{-1/2} \frac{\partial}{\partial t},\]
\[S_2 = x \dot{x} (1 - \dot{x}^2)^{-1/2} \frac{\partial}{\partial t} + x (1 - \dot{x}^2)^{-1/2} \frac{\partial}{\partial x},\]
\[S_3 = t \dot{x} (1 - \dot{x}^2)^{-1/2} \frac{\partial}{\partial t} + t (1 - \dot{x}^2)^{-1/2} \frac{\partial}{\partial x},\]
\[S_4 = (x^2 - t^2) \dot{x} (1 - \dot{x}^2)^{-1/2} \frac{\partial}{\partial t} + (x^2 - t^2) (1 - \dot{x}^2)^{-1/2} \frac{\partial}{\partial x}.\]

Така широка симетрія рівняння (6) дає можливість проінтегрувати його у квадратурах. Інтеграли руху рівняння (6) мають вигляд
\[C_1 = \frac{\dot{x}}{(1 - \dot{x}^2)^{3/2}} \left(\frac{1 - \dot{x}}{1 + \dot{x}} \right)^{\lambda/2}.\]
Пуанкаре-инвариантные уравнения третьего и четвертого порядков

Решение уравнения (6) в неявном виде:

\[C_2 = \begin{cases} \frac{1}{C_1} \left(\frac{x + \lambda}{(1 - x^2)^1/2 (1 - \lambda^2)} \right)^{\lambda/2} - t, & \lambda \neq 1, -1, \\ \frac{1}{4C_1} \left(\frac{1 - x}{1 + x} + \ln \left| \frac{1 - \dot{x}}{1 + \dot{x}} \right| \right) - t, & \lambda = 1, \\ \frac{1}{4C_1} \left(\frac{1 + x}{1 - x} + \ln \left| \frac{1 + \dot{x}}{1 - \dot{x}} \right| \right) - t, & \lambda = -1, \end{cases} \]

Знание интегралов руки уравнений (6) даёт возможность строить общий
рассмотренный рост частного решения (6) у неявного вида:

\[[(x + C_3)^2 - (x + C_2)^2] C_2^2 (1 - \lambda^2) = \left[\frac{(t - x + C_2 - C_3)(\lambda + 1)}{(t + x + C_2 + C_3)(\lambda - 1)} \right]^{\lambda} C_1, \lambda \neq 1, -1, \]

\[2C_1(x - t + C_3 - C_2) = \exp \{-2C_1(x + t + C_2 + C_3)\}, \lambda = 1, \]

\[2C_1(x + t + C_2 + C_3) = \exp \{2C_1(t - x + C_2 - C_3)\}, \lambda = -1. \]

Теорема 5. Уравнение (6) на класс операторов

\[X = \eta(t, x, \dot{x}, \ddot{x}) \frac{\partial}{\partial x} \]

имеет несобственный алгебру инвариантности, элементы которой являются формулами

\[X = \left(\dot{x} \varphi^1 + \varphi^2 + (1 - \dot{x}^2)^{1/2} \left(\frac{1 - \dot{x}}{1 + \dot{x}} \right)^{\lambda/2} \varphi^3 \right) \frac{\partial}{\partial x}, \lambda \neq 1, -1, \]

\[X = \left(\dot{x} \psi^1 + \psi^2 + (1 - \dot{x}^2) \left(\ln \left| \frac{1 - \dot{x}}{1 + \dot{x}} \right| - 1 \right) \psi^3 \right) \frac{\partial}{\partial x}, \lambda = 1, \]

\[X = \left(\dot{x} \chi^1 + \chi^2 + (1 + \dot{x}^2) \left(\ln \left| \frac{1 - \dot{x}}{1 + \dot{x}} \right| - 1 \right) \chi^3 \right) \frac{\partial}{\partial x}, \lambda = -1, \]

где \(\varphi^i, \psi^i, \chi^i \) — соответственно функции от интегралов руки уравнений (6) при \(\lambda \neq 1, -1, \lambda = 1, \lambda = -1 \) соответственно.

Уравнения четвертого порядка. Тут описаны уравнения

\[\dddot{x} = f(t, x, \dot{x}, \ddot{x}) \] (7)

инвариантного подкласса \(\hat{\mathcal{P}}(1, 1) \). Из найденного класса уравнений выделены уравнения, которые допускают лагранжев формулирование.
Теорема 6. Для того щоб рівняння (7) було інваріантним відносно алгебри $\mathcal{A}(1,1)$, необхідно і достатньо, щоб

$$\ddot{x} = -\frac{10\dot{x}^3}{1 - \dot{x}^2} - \frac{15\dot{x}^2 x^3}{(1 - \dot{x}^2)^2} + \frac{x^3}{(1 - \dot{x}^2)^2} \varphi \left(\frac{x (1 - \dot{x}^2)}{\dot{x}^2} + 3\dot{x} \right),$$

де φ — довільна достатньо гладка функція.

Теорема 7. Рівняння (8) допускає лагранжеве формулювання лише в тому разі, коли

$$\varphi \left(\frac{x (1 - \dot{x}^2)}{\dot{x}^2} + 3\dot{x} \right) = a \left(\frac{x (1 - \dot{x}^2)}{\dot{x}^2} + 3\dot{x} \right)^2 + b \left(\frac{x (1 - \dot{x}^2)}{\dot{x}^2} + 3\dot{x} \right) + c,$$

де a, b, c — сталі, які задовольняють співвідношення $a \neq 2, b = 0, c = \frac{5 - 3a}{a - 2}$, $a = 2$, $b = \pm2$. Відповідні лагранжіани мають вигляд

$$L(\dot{x}, \ddot{x}) = K^1 (1 - \dot{x}^2)^{(3a-5)/2} \dot{x}^{2-a}, \quad a \neq 1, 2,$$

$$L(\dot{x}, \ddot{x}) = K^1 (1 - \dot{x}^2)^{-1} \dot{x} (\ln |\dot{x}| - 1), \quad a = 1,$$

$$L(\dot{x}, \ddot{x}) = -K^1 (1 + \dot{x}) \ln |\dot{x}| + K^1 (C - 3) \left\{ \dot{x} \ln \left| \frac{1 - \dot{x}}{1 + \dot{x}} \right| - 2 \right\} -$$

$$- 6K^1 \ln |1 + \dot{x}| - 3(1 \pm \dot{x}) (\ln |1 \pm \dot{x}| - 1) K^1, \quad a = 2,$$

де C, K^1 — довільні стали.

1. Остроградський М. В., Мемуар о дифференциальных уравнениях, относящихся к изопериметрическим задачам, Полн. собр. соч., Киев, Изд-во АН УССР, 1961, Т.2, 359 с.