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On vector and pseudovector Lagrangians
for electromagnetic field
W.I. FUSHCHYCH, I. KRIVSKY, V. SIMULIK

A Lagrange function in terms of electromagnetic field strengths is constructed which is
a 4-vector with respect to the total Poincaré group P̃ (1, 3) and whose Euler–Lagrange
equations are equivalent to the Maxwell equations. The advantages of the Lagrange
function proposed in comparison with the known pseudovector with respect to the
P̃ (1, 3) group Lagrange function are shown. The conserved quantitites on the basis of
corresponding generalization of Noether theorem are found.

A development of Lagrange approach (L-approach) in electro-dynamics in terms
of field-strength tensor F = (Fµν) = ( �E, �H) of electromagnetic field, without using
the potentials Aµ, was discussed in [1–4]. It is easy to show, that in terms of ( �E, �H)
there is no scalar, with respect to the Poincaré group P (1, 3), Lagrange function, for
which the Euler-Lagrange (EL) equations coincide with the Maxwell equations.

The purpose of this work is to construct a vector (with respect to the total
Poincaré group P̃ (1, 3) i.e., P (1, 3) group including the space and time reflections)
Lagrange function in terms of ( �E, �H), with the help of which the system of equations
equivalent to the Maxwell equations can be received from the EL equations. The
conserved quantities are constructed on the basis of corresponding generalization of
Noether theorem. Further we will call such Lagrange vector-function a Lagrange
vector.

Let us represent the Maxwell equations

∂0
�E = rot �H −�j, div �E = ρ, ∂0

�H = −rot �E, div �H = 0 (1)

in a manifestly covariant form

Qµ = jµ, Rµ = 0, µ = 0, 1, 2, 3, (2)

where

Qµ ≡ Fµν
,ν , Rµ ≡ εFµν

,ν , εFµν ≡ 1
2
εµνρσFρσ, (3)

F = (Fµν) is a tensor of electromagnetic field:

F = (Fµν) = ( �E, �H) : F 0i = Ei, F ij = εijkHk, Fµν = −F νµ, (4)

j is a 4-vector of current:

j ≡ (jµ) = (ρ,�j), j0 = ρ, �j = (ji), i = 1, 2, 3, (5)

and εµνρσ is a completely antisymmetric unit tensor, ε0123 = 1:

x = (xµ) ∈ R(1, 3), ∂µ ≡ ∂/∂xµ. (6)
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The explicit form of the components Qµ, Rµ is the following

Q0 = div �E, Qi = (−∂0
�E + rot �H)i ≡ −∂0E

i + εijk∂jH
k, (7)

R0 = div �H, Ri = (−∂0
�H + rot �E)i ≡ −∂0H

i + εijk∂jE
k. (8)

Now consider the tensor Tµρσ and pseudotensor T ′
µρσ of 3-rd rank (with respect

to P̃ (1, 3) group), which are constructed from 4-vectors Qµ, Rµ (3):

Tµρσ ≡ a[gµρ(Qσ − jσ) − gµσ(Qρ − jρ)] + bεµνρσRν , (9)

T ′
µρσ ≡ a′(gµρRσ − gµσRρ) + b′εµνρσ(Qν − jν), (10)

a, b, a′, b′ are constant coefficients.
Theorem 1. For any ab �= 0 �= a′b′ each of the set of equations

Tµρσ = 0, (11)

T ′
µρσ = 0, (12)

is equivalent to the initial Maxwell equations (2).
One can easily varify the validity of this statement by rewriting the components

of tensors T , T ′ (11), (12) in the evident form.
Only the P̃ -tensor set of equations (11) and P̃ -pseudotensor set of equations

(12) will be used in this work for the construction of P̃ -vector L-approach for the
electromagnetic field F = ( �E, �H).

Let us introduce in addition to the Lagrange variables for tensor electromagnetic
field new Lagrange variables F̄ , F̄,µ which are dually conjugated to F , F,µ (on the
manifold φ0 of the solutions of Maxwell’s equations F̄ = εF see (3)). The general
form of P̃ -vector Lagrange function

Lµ = Lµ(F, F,ν , F̄ , F̄,ν), Lµ : R60 → R1 (13)

up to a total 4-divergence terms is the following:

Lµ = a1FµνQν + a2FµνR̄ν + a3εFµνRν + a4εFµνQ̄ν + a5F̄µνQ̄ν +
+ a6F̄µνRν + a7εF̄µνR̄ν + a8εF̄µνQν + (q1Fµν + q2εF̄µν)jν .

(14)

Here we are using also notations

Q̄µ ≡ F̄µν
,ν , R̄µ ≡ F̄µν

,ν , εF̄µν ≡ 1
2
εµνρσF̄ρσ. (15)

Theorem 2. The EL equations for P̃ -vector L = (Lµ) are equivalent to the Maxwell
equations if and only if the following conditions on the coefficients in (14) are
fulfilled

a8 − a2 = a = −b′ = −q1 ≡ −q = 0, a6 − a4 = a′ = −b �= 0,

a1 − a3 − a6 − a8 = a2 + a4 + a5 − a7 = 0.
(16)

Proof. The calculation of Lagrange derivatives δLµ/δFρσ and δLµ/δF̄ρσ from Lµ (14)
leads to the result that the EL equations for the Lagrange vector (14) may coincide
only with the equations (11), (12), and only in the following form

δLµ/δFρσ = Tµρσ = 0, δLµ/δF̄ρσ = T ′
µρσ = 0, (17)

and it is possible only if the conditions (16) are fulfilled.



334 W.I. Fushchych, I. Krivsky, V. Simulik

The four component of the Lagrange vector (14) generate four actions

Wµ(F, F̄ ) =
∫

d3xLµ
(
F (x), F̄ (x), ∂vF (x), ∂vF̄ (x)

)
, (18)

where F , F̄ belong to the set Φ of twice differentiable functions, and Φµ
0 defines the

set of extremals of the action (18) with a fixed µ.

Theorem 3. The intersection Φ0 = ∩µΦµ
0 of the sets Φµ

0 of extremals of four actions
(18) given by the Lagrange function Lµ (14) whose coefficients obey the equations
(16), coincides with the set of solutions of Maxwell’s equations (1).

Proof. The validity of this theorem follows from the derivation of the evident form of
EL equations for (14), i.e. from (17) and the theorem I about the equivalence of the
sytems of equations (11), (12) and the Maxwell equations (2), i.e. (1).

The P̃ -vector Lagrangian (14), proposed here, has several advantages in compa-
rison with the P̃ -pseudovector Lagrangian from [3], which in our notation has the
form

Lµ = Lµ(F, F,ν) = FµνRν − εFµν(Qν − jν). (19)

Firstly, Lagrangian (19) leads only to the pseudotensor system of equations (12),
i.e. it unreasonably separates the pseudo-tensor system of equations (12) in compari-
son with the tensor system of equations (11). That is a direct consequence of a
pseudovector character of Lagrangian (19). Let us note, that without appealing to
the additional Lagrange variable F̄ it is impossible to construct a P̃ -vector Lagrange
function: the demand of function Lµ(F, F,ν) being a P̃ -vector leads to the expression

Lµ = Lµ(F, F,ν) = FµνQν + εFµνRν , (20)

for which the EL equations are the identities.
Secondly, as it is seen from the terms with the current in (19) the interaction

Lagrangian in [3] also is a P̃ -pseudovector one:

LI = εFµνjν , LI0 = �j · �H, LIi = (�j × �E − ρ �H)i. (21)

A physically unsatisfactority of such an interaction is evident already from the fact,
that density of electric charge in (21) is connected not with the electric field strengths
but with the magnetic field strength �H.

Finally, thirdly, during the derivation of conserved quantities the Lagrange function
(19) put into correspondence for P̃ -tensor generator of the Poincaré group a pseudo-
tensor conserved currents. This shortcoming together with the above mentioned ones,
is overcome using the P̃ -vector Lagrange function (14).

Derivation of conservation quantities in the framework of L-approach formulating
here inquires a generalization of Noether theorem for the case of vector Lagrangians.

Theorem 4. Let

q̂ : F (x) → F ′(x) = ĝF (x) (22)
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be the arbitrary transformation of invariance of equations (2) with j = 0. Then the
tensor of current θµ

ν , constructed on the basis of Lµ (14) (of course with j = 0)
according to the formula

q̂ → θµ
ν

df=
1
2

(
∂Lν

∂F ρσ
,µ

F ′ρσ +
∂Lν

∂F̄ ρσ
,µ

F̄ ′ρσ

)
,

F ′ ≡ q̂F, F̄ ′ ≡ q̂F = εq̂F.

(23)

is symmetric and its divergence vanishes for any solution of the equation (2) with

∂µθµ
ν = 0. (24)

Proof. Derivation of currents (23) for Lµ (14) with j = 0 leads to the result

q̂ → θµ
ν = A

(
FµαF ′

αν + F ′µαFαν +
1
2
δµ
ν FαβF ′

αβ

)
,

A = a1 − a2 + a7 − a8 = a3 + a4 + a5 + a6.

(25)

Symmetry of the tensor (25) is evident and the equation (24) is a consequency of
the Maxwell equations (2) with j = 0.

Note that in the vector L-approach the four conservation quantities correspond
(according to the Noether theorem) to one generator of invariance transformation.

Let us give the analysis of conserved quantities which are the consequences of
(25). We receive, taking A = 1, that generators of 4-translations ∂ρ according to the
formula (25) give the trivial current

∂ρ → θµν(q̂ = ∂ρ) = (∂ρ)µν ≡ ∂ρT
µν , (26)

where Tµν is standard energy-moment tensor for the field

Tµ
ν = FµαFαν +

1
4
δµ
ν FαβFαβ , T 0

µ = Pµ, (27)

P0 ≡ 1
2
( �E2 + �H2), P ≡ ( �E × �H)j . (28)

For the analysis of integral conserved quantities

θ̄µ =
∫

d3xθ0µ(x) = const, θ0µ(x) = θ0µ(q̂) ≡ (q̂0µ) (29)

it is sufficient to represent the densities θ0µ, ommiting the terms with spacelike
derviatives, which do not contribute to the integral θ̄µ (29). We obtain from the
formula (25) for the densities θ0µ, corresponding to the rest of the generators of
conformal algebra C(1, 3) (the definition of algebra C(1, 3) see, for example in [5])
the following expressions:

ĵρσ → J0µ
ρδ = δµ

ρPσ − δµ
σPρ, d → D0µ = Pµ, (30)

K̂ρ → K0µ
ρ = 2(δµ

ρD + JρσGδµ), (31)

where

D ≡ xµPµ, Jρσ ≡ xρPσ − xσPρ. (32)
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As one can see, C(1, 3)-generators q̂ = (∂̂, ĵ, d̂, k̂) lead here to the conserved
quantities, which are expressed in terms of well-known series of main conservation
quantities for the electromagnetic field F = ( �E, �H), found by Bessel-Hagen [6] on
the basis of L-approach for vector field A = (Aµ) of potentials, namely:

Pρ =
∫

d3xPρ(x), Jρσ =
∫

d3x(xρPσ(x) − xσPρ(x)),

D =
∫

d3xD(x), Kρ =
∫

d3x(2xρD(x) − x2Pρ(x)).
(33)

It is interesting to note, that according to the formula (25) the duality transfor-
mation ε gives identically zero. Nontrivial conservation laws are given here by the
generators of the algebra A32 ⊃ C(1, 3) of invariance of free Maxwell’s equations (1)
found in [1], which has the form of composition q̂′ = εq̂ of C(1, 3) generators q̂ and the
generator ε. Integral conserved quantities, which are found on the basis of formulae
(23) or (25) and (29) for εC(1, 3)-generators q̂′ = (ε∂̂, εĵ, εd̂, εK̂) are expressed in
terms of series

Zµ
ρ =

∫
d3xZµ

ρ (x), Zµ
ρσ =

∫
d3x(xρZ

µ
σ − xσZµ

ρ ),

Zµ =
∫

d3xxνZµ
ν (x), Zµ

ρ =
∫

d3x(2xρx
σZµ

σ − x2Zµ
ρ ),

(34)

of conserved quantities having polarization nature, of Lipkin [7] and others [8–10]
(in [7–10] the conservation laws (34) were found without using the L-approach and
Noether theorem). In (34) the densities Z of conserved quantities are expressed in
the terms of Lipkin’s Zilch tensor

Zµ
ρ ≡ Z0|µ

ρ , Zν|µ
ρ = F ναεF ,µ

αρ − εF ναF ,µ
αρ. (35)
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